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Abstract

Glioblastoma is an aggressive brain tumor with cells that infiltrate and proliferate rapidly into sur-

rounding brain tissue. Current mathematical models of glioblastoma growth capture this behavior using

partial differential equations (PDEs) that are simulated via numerical solvers—a highly-efficient im-

plementation can take about 80 seconds to complete a single forward evaluation. However, clinical

applications of tumor modeling are often framed as inverse problems that require sophisticated numer-

ical methods and, if implemented naively, can lead to prohibitively long runtimes that render them

inadequate for clinical settings. Recently, physics-informed neural networks (PINNs) have emerged as a

novel method in scientific machine learning for solving nonlinear PDEs. Compared to traditional solvers,

PINNs leverage unsupervised deep learning methods to minimize residuals across mesh-free domains,

enabling greater flexibility while avoiding the need for complex grid constructions. Here, we describe

and implement a general method for solving time-dependent diffusion-reaction PDE models of glioblas-

toma and inferring biophysical parameters from numerical data via PINNs. We evaluate the PINNs

over patient-specific geometries, accounting for individual variations with diffusion mobilities derived

from pre-operative MRI scans. Using synthetic data, we demonstrate the performance of our algorithm

in patient-specific geometries. We show that PINNs are capable of solving parameter inference inverse

problems in approximately one hour, expediting previous approaches by 20–40 times owing to the robust

interpolation capabilities of machine learning algorithms. We anticipate this method may be sufficiently

accurate and efficient for clinical usage, potentially rendering personalized treatments more accessible in

standard-of-care medical protocols.

1 Introduction

Glioblastoma multiforme (GBM) is the most aggressive and common malignant primary intracranial tumor,

comprising 57% of gliomas and 48% of malignant central nervous system tumors [1]. GBM is characterized
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by infiltration and microvascular proliferation beyond visible lesions on medical scans, with a median survival 
time of 15 months [2]. While there is no cure, treatments include resection, radiotherapy, and chemotherapy; 
these procedures are generally derived from population studies and fail to account for individual patient 
details (for instance, current radiotherapy plans construct a simple uniform margin beyond visible tumor 
volumes, neglecting the anisotropic and patient-specific nature of tumor growth).

Mathematical models that incorporate raw patient data may address this shortcoming with computational 
analyses, offering doctors a better understanding of a tumor’s prognosis, morphology, and response to various 
treatments [3,4]. These models can be used to rationally generate personalized RT plans, surgical operations, 
and chemotherapy dosages [5–8] that reduce overtreatment, increase the targeted accuracy of malignant 
tissue, and improve patient outcomes.

Existing models often formulate tumor growth with partial differential equations (PDEs); these equations are 
used to construct inverse problems in which biophysical parameters of the model are inferred from empirical 
tumor observations [9–16]. Solving the patient-specific inverse problem thereby calibrates the model, enabling 
personalized prognoses and treatment decisions. However, simulation methods remain a challenge—even 
highly-efficient numerical so lvers can require 60–180 se conds [3, 17 ] to  produce a si ngle fo rward evaluation. 
With approximate [10, 18] and fully Bayesian [3] calibrations requiring tens of thousands of evaluations 
that translate to weeks of computation, this cost is prohibitive at the scale needed for widespread clinical 
viability.

Over the last two decades, deep learning has driven revolutionary advancements in image classification, 
drug discovery, and reinforcement learning [19]. Only recently, however, has attention been diverted toward 
solving PDEs with these methods. Introduced in [20], physics-informed neural networks (PINNs) map input 
parameters to the solution of a differential e quation, c onstructing a  l oss f unction d efined fr om th e PDE’s 
residual. In contrast to data-driven methods [21], PINNs do not serve as surrogates for externally-generated 
data, but instead directly learn the PDE by expressing differential operators with automatic differentiation 
(AD) [22]. Here, we consider the application of PINNs to glioblastoma growth models.

First, we develop a PINN to solve a forward problem simulating tumor growth over a designated time period, 
mapping spatial locations x at times t to output tumor concentrations. Second, following [23], we modify 
the forward problem by changing the loss function to solve a parameter inference problem in which unknown 
biophysical values of the model are recovered by the network using the same training algorithm in the forward 
problem. Third, we demonstrate the performance of the approach using synthetic data generated by the 
solution of the forward problem. We show that PINNs can resolve the parameters to 15% accuracy within 
1.25 hours for an approximately 20–40-fold speedup compared to traditional methods, lowering the cost and 
increasing the potential accessibility of personalized cancer treatments in clinical settings.
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2 Tumor Simulator

2.1 MRI Dataset

We consider de-identified pre-operative patient MRI scans acquired from the McConnell Brain Imaging

Centre and the Montreal Neurological Institute at McGill University [3]. Included in the dataset are white

matter, gray matter, and cerebrospinal fluid segmentations, which we use to construct a patient-specific

domain. Fig. 1 presents a single slice of the data.

Figure 1: Axial view of white matter (left), gray matter (center), and cerebrospinal fluid (right). Scans were
acquired at a resolution of 1 mm3 with dimension 193× 193× 229. Length scale: 1 unit = 10 cm.

2.2 Mathematical Growth Model

We consider the Fisher-Kolmogorov diffusion-reaction equation with logistic growth [6,24,25], selecting this

model for its ability to describe infiltration and proliferation of tumor cells, and because it serves as a baseline

for more complicated approaches.

Let u ∈ [0, 1] denote normalized tumor cell density, D(x) denote the diffusion coefficient representing the

infiltration of the tumor cells at position x, and ρ denote the proliferation rate of the tumor cells. Let

Ω denote the brain anatomy as defined by the MRI scans. Then we construct the following differential

equation:

∂u

∂t
=

Diffusion︷ ︸︸ ︷
∇ · [D(x)∇u] +

Proliferation︷ ︸︸ ︷
ρu(1− u) in Ω, (1)

where D, ρ serve as downstream parameters describing more complex behavior (e.g. individual cell move-

ments [26]). Equation (1) mathematically describes a “traveling wave” solution [27] in which the tumor 
expands radially outwards by the diffusion t erm while i ncreasing i n d ensity t o a  c arrying c apacity by the

√
proliferation term. Fisher’s equation [28] approximates the speed of the traveling wave’s “edge” as 2 Dρ,

which we use to verify our simulations.
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Table 1 summarizes the salient elements of the mathematical model.

Symbol Value Units Definition
Variables

x mm Spatial coordinate
t days Temporal coordinate
u - Tumor concentration

Parameters
Dw 0.13 mm2 days−1 Measure of random tumor dispersal in white matter
pw − - Proportion of white matter
Dg 0.013 mm2 days−1 Measure of random tumor dispersal in gray matter
pg − - Proportion of gray matter
ρ 0.025 days−1 Measure of net tumor proliferation from natural processes
xic (105, 140, 99) mm Tumor origin location
T {150, 300} days Simulation duration

Table 1: Variables and parameters in the diffusion-reaction growth model.

2.2.1 Diffusion and Proliferation Constants

The diffusion coefficient is patient-specific, defined as a weighted sum of gray and white matter [6]: D =

pwDw + pgDg where the values of pw and pg denote heterogeneous tissue proportions that are determined

from the patient MRI scans [3]. This accounts for observations that tumor growth is more pronounced along

white matter tracts. We assume Dw = 10Dg [29] and apply a bilinear interpolation [30] to approximate the

white and gray matter concentrations at fine resolutions, finding this method to be within our computational

restraints and less prone to oscillations than higher-order alternatives.

We set Dw = 1.3× 10−1 mm2 days−1 and ρ = 2.5× 10−2 days−1 [25], consistent with a standard high-grade

glioma. We consider simulation durations of 150 and 300 days, finding the former is sufficient in the patient-

specific case to form a tumor with a radius of roughly 1.5 cm. Using Fisher’s approximation, we estimate

the radial velocity of the tumor’s expansion to be 0.11 mm days−1, implying radii of 1.7 and 3.4 cm for the

tumors at 150 and 300 days, respectively.

2.2.2 Initial Condition

The tumor concentration is initialized as a Gaussian distribution about a point xic [24]:

IC(x) = 0.1 exp(−10∥x− xic∥2). (2)

The distribution is chosen such that the initial tumor has an approximate radius of 5 mm.
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2.2.3 Boundary Condition

Figure 2: Axial plane view of phase-field function (left), diffusion coefficients (center), and T1 scans (right).
The phase-field function defines the boundary of the simulation domain. Length scale: 1 unit = 10 cm.

Since tumor cells cannot penetrate the skull or enter the ventricles [6, 31] we impose a no-flux boundary

condition:

∇u · n⃗ = 0 on ∂Ω, (3)

where n⃗ represents the normal surface vector and ∂Ω denotes the boundary of the skull and ventricles. We

enforce these boundary conditions using the diffuse domain method (DDM) [32–34], allowing us to express

the complex brain geometry. To generate the phase-field function ϕ from a binary segmentation of combined

gray and white matter, we construct a simple rectangular prism containing the cropped brain geometry

ΩR := [0, 138]× [0, 167]× [0, 123][mm3] and solve the following Cahn-Hilliard equation [3]:

∂ϕ

∂t
= ∇ · [ϕ(1− ϕ) · ∇(g′(ϕ)− ϵ2∆ϕ)], (4)

where

ϕ(t = 0) =

1 in Ω,

0 in ΩR \Ω.
(5)

We take g(ϕ) = 1
4ϕ

2(1−ϕ)2 as a double-well potential and ϵ = 0.1. The equation is simulated in time until a

sufficiently thin interface forms between the brain geometry and surrounding space (Fig. 2, left). Following

the DDM, Eq. (1) is reformulated as [32]:

∂

∂t
(ϕu) = ∇ · (Dϕ∇u) + ϕρu(1− u). (6)

This modification to the PDE implicitly enforces the boundary condition in Eq. (3).
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2.3 Physics-Informed Neural Network

Next, we use a neural network to learn the PDE subject to patient-specific domains and boundary conditions.

In particular, we construct a PINN with spatial and temporal inputs. Spatial values are selected by sampling

a radially-symmetric uniform distribution centered at xic while temporal values are uniformly randomly

sampled from the interval [0, T ][days]. We define the input space as θp with the neural network operation

u(θp) mapping to tumor concentrations. The neural network is implemented with DeepXDE [23], a deep

learning library built from TensorFlow [30]. We also apply a hard-constraint [23] to the PINN output û such

that u(x, t = 0;θ) = IC(x):

u(x, t;θ) := û(x, t;θ)t+ IC(x). (7)
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Figure 3: Diagram of a physics-informed neural network with three hidden layers used for parameter in-
ference. The differential equation and observational data are used to concurrently optimize θ, D, and ρ,
yielding θ∗, D∗, and ρ∗, respectively.

Let Tf ⊂ θp denote a set of training data and θ denote the parameters of the neural network. We construct

the loss function from the mean-squared residuals of the differential equation:

Lf (θ; Tf ) =
1

|Tf |
∑
Tf

∥ ∂

∂t
(ϕu)− [∇ · (Dϕ∇u) + ϕρu(1− u)]∥22. (8)

Thus minimizing Lf (θ; T ) approximates the differential e quation. We train the network on this loss function 
with two gradient-based optimizers: the Adam [35] and Broyden-Fletcher-Goldfarb-Shanno (BFGS) [36]
algorithms. Automatic differentiation i s u sed t o e xpress e ach t erm o f t he PDE ( e.g. ∂  (ϕu), ϕρu(1 − u)).

∂t

We select a feedforward neural network with three hidden layers of 100 neurons each and input/output
layers corresponding to θp and u(θp), respectively. We use the hyperbolic tangent for the activation, set the 
learning rate to 1.0 × 10−3, and initialize θ from a Glorot distribution [37]. In the patient-specific forward
problem, we batch train 100,000 epochs with the Adam scheme followed by the BFGS scheme. Simulations

were performed on NVIDIA Tesla V100s.
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2.4 Parameter Inference

PINNs can be readily modified to solve inverse problems for parameter inference [23]: given a dataset Ti ∈ θp

with corresponding observations Ui, we define a loss metric:

Li(θ, D, ρ; Ti) =
1

|Ti|
∑
τ∈Ti

||I(u, τ )||22 (9)

where I(u,x) is the elementwise difference between the observational data Ui and the predicted neural

network inferences. Note that D and ρ have been embedded into the loss function; we aim to determine

these values from empirical data. We initialize Dw = 1.0×10−1 mm2 days−1 and ρ = 1.0×10−2 days−1 [38]

as guesses that are successively inferred with the differential equation and additional information provided

from Ti. Hence the parameter inference loss function is

L(θ, D, ρ; T ) = wfLf (θ, D, ρ; Tf ) + wiLi(θ, D, ρ; Ti), (10)

where wf , wi are weights. Here, we choose wf = wi = 1, finding it suitable for obtaining convergence.

Because this algorithm is iterative, we establish a stopping criterion by tracking the relative changes every

1,000 epochs for the biophysical constants across a 10,000 epoch window. We stop if for epoch N ,

9∑
k=0

|DN+1000(k+1) −DN+1000k|
|DN+1000k|

+
9∑

k=0

|ρN+1000(k+1) − ρN+1000k|
|ρN+1000k|

< ϵtol, (11)

where ϵtol is a user-supplied tolerance. We train the PINN over 800,000 epochs, halving the learning rate

to 5.0 × 10−4 after 400,000 epochs to decelerate the network’s fluctuations. A schematic of the PINN for

parameter inference is presented in Fig. 3.
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3 Results

We consider two forward problems in 2D: one on a circular domain with a radius of 5 cm and another

on a patient-specific domain constructed from MRI scans (Fig. 2, axial plane). Using the synthetic data

generated from solutions to the forward problems, we infer the parameter values of D and ρ.

3.1 Simple Domain

3.1.1 Forward Problem

We set T = 300 days and solve the forward problem in Eq. (6) over the radially-symmetric domain via a

finite-difference numerical solver [39]. We let ϕ = 0.5+0.5 tanh (50− r) where r is the distance from a point

to the origin, creating a boundary at r = 50 mm. In Fig. 4, we present the solutions u at 30-day intervals;

we observe that the tumor expands radially outward, grows to a maximum concentration of about u = 0.9,

and has a radius of approximately 3.5 cm.

Figure 4: Plot of u vs. radial distance colored by time to Day 300. Solid: radially-symmetric, finite difference 
numerical solver. Circles: PINN solutions with inferred parameters. Solutions presented in 30-day intervals.

3.1.2 Parameter Inference

From the forward problem solution in Sec. 3.1.1, we sample 20,000 new inputs and observations up to 
T = 300 days. We infer parameters from this data for 800,000 epochs and consider tolerances from 0.04 to 
0.20. The total runtime is 250 minutes.
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Figure 5: Predicted and actual diffusion coefficients against epochs. Initial value of D = 1.0 ×
10−1 mm2 days−1 is optimized to D ≈ 1.23 × 10−1 mm2 days−1. Tolerances and corresponding epochs
shown as colored vertical lines.

Figure 6: Predicted and actual proliferation rates against epochs. Initial value of ρ = 1.0 × 10−2 days−1 is
optimized to ρ ≈ 2.48× 10−2 days−1. Tolerances and corresponding epochs shown as colored vertical lines.
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The PINN solution to Eq. (6) with inferred parameters and the ground truth radially-symmetric solution

are shown in Fig. 4. Notably, the agreement is excellent; the PINN solution (solid) and the ground truth

(circle) exhibit a high degree of overlap. The mean-squared difference between the trained PINN’s solution

and the radially-symmetric finite difference solution in Sec. 3.1.1 is Li = 2.71 × 10−7 while the final PDE

residual is Lf = 2.19× 10−6.

From Figs. 5 and 6, we observe that the final predicted values of D and ρ differ from their true values

by 5 and 1 percent, respectively. Further inspection of the graphs reveals rapid initial movements in both

parameters for the first few thousand epochs, followed by gradual asymptotic increases toward the ground

truth values. From Fig. 7, both parameters have relative errors within approximately 15% after 234,000

epochs (1.25 hours of training). The inferred parameters continue to fluctuate before demonstrating more

stable behavior after 400,000 epochs. Table 2 presents the runtimes at various tolerance levels, along with

corresponding epochs and relative errors in D and ρ.

Tolerance (ϵtol) Epoch Time (mins.) Dw % Error ρ % Error
0.20 82000 26 46.69 8.74

0.15 234000 75 16.00 2.36

0.10 428000 136 9.97 0.74

0.05 512000 163 6.78 1.06

0.04 700000 223 5.54 0.81

Table 2: Epochs, times, and relative errors for diffusion and proliferation constants against error tolerances
in the radially-symmetric domain.

Figure 7: Relative errors between predicted and ground truth diffusion coefficients and proliferation rates
versus epochs in radially-symmetric domain.
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Figure 8: Plot of u vs. radial distance colored by time from Day 300 to 450. Solid: radially-symmetric,
finite difference numerical solver. Circles: trained parameter inference PINN solutions on new time domain.
Solutions presented in 30-day intervals.

Figure 9: Plot of mean-squared loss versus training epoch while minimizing residual with fixed inferred 
parameter. The network trains for 20,000 epochs with the Adam scheme followed by L-BFGS-B, finishing in 
8 minutes with a final l oss o f 2.81 × 10−6.

Additionally, we test how well the PINN with inferred parameters can predict the solution at later times. 
We solve Eq. (6) from T = 300 to T = 450 using the PINN with the inferred parameters held fixed. After 
30,000 epochs, we report a total runtime of 8 minutes and a final loss of 2.81 × 10−6. Thus, the re-trained
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PINN is able to approximate unseen data with high accuracy. The comparison between the numerical solver

and re-trained PINN is presented in Fig. 8. The mean-squared difference between the trained PINN and

numerical solution is 6.62× 10−5.

3.2 Patient-Specific Domain

3.2.1 Forward Problem

We solve Eq. (6) via PINNs in a patient-specific geometry defined from a cross-section of MRI scans (Fig.

2) and simulate the tumor evolution for T = 150 days. We sample 20,000 collocation points for the training

data and present the solution in Fig. 10 along with training logs in Fig. 12.

Figure 10: Axial view of tumor concentrations at 50-day intervals in patient-specific geometry as generated
by a forward PINN solver. Tumor growth is anisotropic. Length scale: 1 unit = 10 cm.

Figure 11: Axial view of tumor concentrations at 50-day intervals in patient-specific geometry as l earned by 
the trained PINN with inferred parameters. The concentrations exhibit close agreement with ground truth 
concentrations in Fig. 10. Length scale: 1 unit = 10 cm.
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Figure 12: Plot of mean-squared loss versus training epoch. The network trains for 100,000 epochs with the
Adam scheme followed by the BFGS scheme, finishing in 50 minutes with a final loss of 1.29× 10−5.

Figure 10 reveals anisotropic diffusion, with infiltration more rapid along white matter tracts, as the tumor

expands across the right frontal lobe. The tumor radius we estimated at Day 150 is 1.5 cm. The tumor

avoids infiltrating the skull and ventricles, observing the no-flux condition. The network rapidly optimizes

the PDE residual for the first 20,000 epochs followed by slower progress until the BFGS scheme converges

the loss to the order of 10−5 (Fig. 12). Table 3 presents the losses, diffusion coefficients, and proliferation

rates for the last 5,000 epochs of parameter inference.

Epoch Loss Dw [mm2 days−1] ρ [days−1]
795000 [4.19× 10−6, 4.96× 10−7] 1.26× 10−1 2.48× 10−2

796000 [2.05× 10−5, 1.58× 10−6] 1.28× 10−1 2.46× 10−2

797000 [1.48× 10−5, 1.33× 10−6] 1.25× 10−1 2.49× 10−2

798000 [2.79× 10−5, 1.57× 10−6] 1.24× 10−1 2.50× 10−2

799000 [2.37× 10−5, 8.33× 10−7] 1.26× 10−1 2.47× 10−2

800000 [3.78× 10−6, 5.36× 10−7] 1.26× 10−1 2.48× 10−2

Table 3: Losses, diffusion coefficients, and  proliferation rates for  the  last 5,000 epochs of parameter inference 
in the patient-specific d omain. The l oss i s f ormatted a s [Lf (θ; Tf ), Li(θ, D, ρ; T i)], p resenting t he PDE and 
observational residuals.

3.2.2 Parameter Inference

From the forward problem in Sec. 3.2.1, we sample 26,830 new inputs and observations up to T = 150 days. 
We infer parameters from this data for 800,000 epochs and consider tolerances from 0.07 to 0.20. The total 
runtime is 450 minutes.
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Figure 13: Predicted and actual diffusion coefficients against epochs in patient-specific geometry. Initial
value of Dw = 1.0 × 10−1 mm2 days−1 is optimized to Dw ≈ 1.26 × 10−1 mm2 days−1. Tolerances and
corresponding epochs shown as colored vertical lines.

Figure 14: Predicted and actual proliferation rates against epochs in patient-specific geometry. Initial value
of ρ = 1.0×10−2 days−1 is optimized to ρ ≈ 2.48×10−2 days−1. Tolerances and corresponding epochs shown
as colored vertical lines.
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Figure 11 presents the PINN solutions after training and inferring the parameters from the forward solution

in Sec. 3.2.1. There is excellent agreement between the PINN and ground truth tumor concentrations—

the mean-squared difference between the trained PINN’s solution and the forward solution in Sec. 3.2.1 is

Li = 5.36× 10−7 while the final PDE residual is Lf = 3.78× 10−6

From Figs. 13 and 14, we observe that the final predicted values of D and ρ differ from their true values

by 3 and 1 percent, respectively. Further inspection of the graphs reveals rapid initial movements in both

parameters for the first few thousand epochs, followed by gradual asymptotic increases to the ground truth

values. From Fig. 15, both parameters have relative errors within 15% after 137,000 epochs (1.25 hours of

training). Table 3 shows that the final loss is small for both the PDE and observational residuals, having

reached the orders of 10−6 and 10−7, respectively. Table 4 presents the runtime at various tolerance levels,

along with corresponding epochs and relative errors in D and ρ. Strikingly, the computation times are very

similar to those in the simple geometry (Table 2). The errors in D and ρ are even smaller in the patient-

specific geometry, likely because the ground truth tumor concentrations were generated by the forward solver

of the PINN.

Tolerance (ϵtol) Epoch Time (mins.) Dw % Error ρ % Error
0.20 137000 76 12.90 3.87

0.15 407000 224 4.15 1.74

0.10 490000 271 3.54 1.28

0.07 663000 365 3.53 0.92

Table 4: Epochs, times, and relative errors for diffusion and proliferation constants against error tolerances
in the patient-specific domain.

Figure 15: Relative errors between predicted and ground truth diffusion coefficients and proliferation rates
versus epochs in patient-specific domain.
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4 Discussion

We find that PINNs p erform robustly in f orward and inverse diffusion-reaction simulations of  glioblastoma 
in both simple and patient-specific g eometries. T he PDE a nd o bservational l osses a re m inimized t o the 
orders of 10−6 and 10−7, respectively. Close agreement between predicted and actual tumor radii (1.7 and 
1.5 cm in the simple geometry, 3.4 and 3.5 cm in the patient-specific g eometry) f urther s uggests accurate 
learning of the differential e quation. Moreover, the PINN captures the anisotropic g rowth o f brain tumors 
in patient-specific geometries, implying functionality in heterogeneous domains.

In Sec. 3.1.1, we use a radially-symmetric finite d ifference me thod to  pr ovide gr ound tr uth da ta to  train 
the PINN and infer the diffusion c oefficient D a nd  pro liferation rat e ρ. Onc e the  network has  completed 
training, we hold constant the predicted parameters for D and ρ and then solve a forward problem in a 
time domain beyond the original problem, introducing unseen data to the network. The resulting solution 
is highly accurate relative to the ground truth radial solution, yielding a mean-squared error on the scale of 
10−5, and converges in only 8 minutes. We find that continuing to train from the PINN trained over earlier 
spatiotemporal data yields significantly faster convergence than re-initializing a  new network.

In Sec. 3.2.1, we solve forward problems via a PINN in 50 minutes; utilizing the flexibility o f t he mesh-

free neural network, we successfully account for heterogeneous diffusion. Compared t o t he 60–180 seconds 
required by modern finite difference methods [3,17], we agree with the author of [40] that PINNs fare poorly 
against traditional solvers in evaluating forward problems. Nevertheless, we solve them to construct synthetic 
data for the parameter inference inverse problem and ensure the functionality of PINNs over patient-specific 
domains.

We conclude that PINNs are highly capable of recovering biophysical parameters. Notably, the diffusion and 
proliferation constants are determined to within five and one percent accuracy, respectively, in both simple 
and patient-specific g eometries w ith a bout a n h our o f c omputation. I n f uture work, we p lan t o generate 
data from a different numerical solver in time for the patient-specific geometry, thus creating an independent 
source to construct the inference dataset. We may also consider adding varying degrees of noise to gauge 
the robustness of the PINN approach to parameter inference.

We find t hat t he e rror t olerances b ased o n r elative c hanges o f i terates p rovide a n e ffective co ndition for 
halting the training process; relying on relative changes over a moving window of 10,000 epochs grants the 
network greater resistance to minor fluctuations. From Tables 2 and 4, we observe that lower tolerances tend 
to imply better agreements between the predicted and ground truth values, though at the cost of increased 
training time. We also find that reducing the learning rate is crucial to improving c onvergence: after halving 
the learning rate at 400,000 epochs, we observe significantly r educed variation i n t he p redicted values on 
Figs. 6, 7, 11, and 12. We caution that the selection of the tolerance is largely heuristic, and can be improved 
provided one is willing to continue training the network; here, we prioritize speed for medical applicability. 
In future works, we may consider using dropout [41] and B-PINNs (Bayesian PINNs) [42] to construct 
uncertainty bounds for the problem parameters, providing an alternative to user-supplied tolerances.

We observe that while traditional numerical methods in [3,17] can efficiently solve a single forward problem, 
they must be used to solve thousands of problems in order to address inverse problems—particularly using
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Bayesian approaches—translating to lengthy computational costs. In contrast, PINNs bypass the need for 
forward solvers by concurrently minimizing the residual from the PDE and the differences between predicted 
and observed data. Here, we recover patient-specific problem parameters to within 15% accuracy in as little 
as 1.25 hours (Secs. 3.1.2, 3.2.2); in [3], the authors suggest 6,000 forward simulations of their numerical 
solver are sufficient fo r in ference, eq uating to  10 0–300 ho urs of  co mputation. Thus we  ac hieve anywhere 
from an 80–240-fold increase in speed (we note that the relative errors in their simulations for diffusion 
and proliferation constants were 0.2 and 20 percent, respectively). However, the inverse problems we solved 
involved fewer parameters than the ones in [3,11,21], including statistical variables and initial positions, and 
were evaluated over two dimensions, not three. Assuming the complexity of the 3D problem is O(n3) and 
the 2D problem is O(n2), we conservatively estimate their numerical solver would require 15–30 seconds per 
simulation of a 2D problem (exponentiating to 2/3). This limits our speedup to 20–40 times; nevertheless, we 
find that PINNs are a promising alternative to sequential forward computations in parameter inference tasks. 
More conservative conditions, such as training for 400,000 epochs so that relative errors are bounded within 
5%, would reduce our speedup to 5–10 times. In follow-up works, we plan to incorporate these additional 
parameters in the inference problem and consider similar models for other solid tumors such as melanomas, 
colon cancer, breast cancer, and lung cancer.

It should be noted that the required runtime for parameter inference varies greatly. In [14–16], a fine-
resolution reaction-diffusion s ystem i n t hree d imensions r equires merely s ix h ours t o r ecover d iffusion and 
proliferation constants within relative errors of 22 and 15 percent, respectively. The results presented here 
ought to be viewed as a baseline for expediting current numerical algorithms using non-traditional meth-

ods.

Extending our methodology to three dimensions is limited by the phase-field f unction: t he d iscrete reso-
lution of the MRI scans causes accidental artifacts after solving Eq. (5) (e.g. tissue connections between 
brain hemispheres, disrupting the boundary). Though we manually check for this in our two-dimensional 
simulations, a more rigorous algorithm may be needed to efficiently define the boundary in three-dimensional 
volumes. Moreover, effective interpolation algorithms should be explored for smoothing p w and p g. The lin-
ear interpolation we apply here creates discontinuities in the diffusion term, as first-order spatial derivatives 
of linear interpolations produce piecewise values. While we do not find that this s ignificantly impacted our 
solutions, it remains desirable that a superior method be developed.

We observe that the hyperparameters of the PINNs can be improved: our chosen feedforward networks 
may benefit f rom g reater d epth, b readth, a nd t raining d ata i n a ddressing t he l oss f unction. However, 
increasing any of these quantities will incur additional computational expenses, forming a trade-off between 
model complexity and accuracy. Other architectures such as residual or convolutional networks may be 
considered, along with an assortment of parameters (e.g. learning rates, batch sizes, activation functions) 
that can be heuristically determined. Moreover, our choice of a diffusion-reaction model c an b e replaced 
by a Fokker-Planck equation [43] or other models that may describe the tumor’s progression by accounting 
for more biophysical processes. We can also directly encode treatments such as resection, radiotherapy, and 
chemotherapy into the solver by changing the model equation [38, 44]. To fully validate the capabilities of 
this computational framework, it could be tested on a cohort of patients to investigate whether the predicted 
parameters and subsequently-generated treatments accurately combat in vivo tumor growth.
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5 Conclusion

We have demonstrated that PINNs are capable of solving patient-specific d iffusion-reaction eq uations for 
glioblastoma in forward and parameter inference problems, the latter holding clinical significance f or its 
applications to personalized medicine. In our experiments, we find t hat P INNs r equire a bout a n h our to 
accurately calibrate a set of biophysical parameters against empirical observations, improving upon the weeks 
of computational expenses incurred by certain standard approaches by 20–40 times. While this metric is 
not representative of all current numerical methods, we find i t i s a  promising d irection f or f uture research. 
Moreover, we have extended the functionality of PINNs to arbitrary geometries, encoding patient-specific 
variations with the diffuse d omain m ethod. These c ontributions may e xpedite p rogress i n computational 
medicine, thereby increasing the efficacy of existing treatments for glioblastoma pa tients. Due to the flexible 
nature of neural networks, this approach is readily modifiable t o address o ther models f or d iseases such as 
breast cancer and lung cancer, offering d octors a nd p atients a like a  mathematically-guided t ool t o inform 
medical decisions.
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