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Abstract. We consider the numerical approximation of integrals involving layer functions, which appear as
components in the solution of singularly perturbed boundary value problems. The hp version of
the Gauss-Legendre composite quadrature, from [1], is utilized in conjunction with the Spectral
Boundary Layer mesh from [2]. We show that the error goes to zero exponentially fast, as the
number of Gauss points increases, independently of the singular perturbation parameter. Numerical
examples illustrating the theory are also presented.

1. Introduction. We consider the numerical approximation of integrals

(1.1) I [a,b][u] :=

∫ b

a
u(x)dx,

where u(x) is a typical layer function, namely

(1.2) u(x) = f(x)e−βx/ε , x ∈ [a, b] , β ∈ R+.

In (1.2), ε ∈ (0, 1] is a (singular perturbation) parameter that can approach 0, and f(x) is a
given (real) analytic function, satisfying

(1.3) max
x∈[a,b]

∣∣∣f (n)(x)
∣∣∣ ≤ |b− a|CfK

n
f n!,

for some positive constants Cf ,Kf , independent of ε, and β is a given positive constant. It
follows that u satisfies the bound (see, e.g. [3])

max
x∈[a,b]

∣∣∣u(n)(x)∣∣∣ ≤ CuK
n
u max

{
n, ε−1

}n
,

where Cu,Ku are positive constants depending on u. Functions of type (1.2) arise as compo-
nents in the solution of singularly perturbed two-point boundary value problems (SPPs) [4].
Even in two-dimensional SPPs, the solution will still contain functions of type (1.2), with x
being the distance from the boundary, multiplied by a smooth function of the second variable
(see, e.g. [5]). Such problems arise in a variety of contexts, from fluid and solid mechanics, to
control theory and chemical reactions [6].

We study this problem from the Gauss-Legendre point-of-view: recently in [1], the hp
Gauss-Legendre composite quadrature was studied, in the case when the integrands are either
analytic functions, or functions exhibiting singularities near the endpoints of the interval. It
was shown that with the proper choice of the intervals in the composite quadrature rule,
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the integrals are approximated at an exponential rate, as the number of quadrature points
in increased. The tools used in establishing the results in [1] stem from the hp theory for
Finite Elements (see, e.g., [7]). We comment on how one may approximate integrals, with the
integrands exhibiting layer behavior, as in (1.2), using the same tools, but the choice of the
intervals is based on the Spectral Boundary Layer mesh [2]. For this method, we establish
robust, exponential convergence as the number of quadrature points in increased.

We note that for integrals like (1.1), there holds

(1.4) I [a,b][u] :=

∫ b

a
u(x)dx =

∫ a+ξε

a
u(x)dx+

∫ b

a+ξε
u(x)dx,

for some ξ ∈ R+, and this ‘separates’ the interval into a layer region and a non-layer one. Each
integral above will be approximated ‘differently’, as we will explain in the sequel. For now,
we show in Figure 1, the graph of the function u(x) = (x−x2)e−x/ε, x ∈ (0, 1), for different ε,
which shows how the area under the graph is negligible after a certain point (which depends
on ε).
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Figure 1. A typical layer function.

We close this section with some notation: with I ⊂ R a bounded open interval with
boundary ∂I and measure |I|, we will denote by Ck(I) the space of continuous functions on
I with continuous derivatives up to order k. We will use the usual Sobolev spaces W k,q(I) of
functions on I with 0, 1, 2, ..., k generalized derivatives in Lq(I). The norm of the space L∞(I)
of essentially bounded functions is denoted by ∥ · ∥L∞(I). When q = ∞ and k is an integer,

we equip the Sobolev space W k,∞(I) with the norm

∥v∥Wk,∞(I) = max
0≤j≤k

∥∥∥v(j)∥∥∥
L∞(I)

,

with v(j) denoting the jth derivative of v. When k ≥ 0 is not an integer, the fractional-order 
space W k,∞(I) is defined via the K-method of interpolation [8]. The letter C, with or without
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decorations, will be used to denote a generic positive constant independent of ε and u, and
possibly having different values at each occurance.

2. hp Gauss-Legendre quadrature. In [1] the hp version of the Gauss-Legendre (G-L)
quadrature was presented, in which the interval is subdivided into N subintervals, and a G-L
quadrature is used on each subinterval. To describe the material from [1], let Λ = [a, b], N ∈ N
and define the quadrature nodes {xk}Nk=1 and weights {wk}Nk=1 by

xk =
b− a

2
ξk +

b+ a

2
, wk =

b− a

2
ωk,

where {ξk, ωk}Nk=1 are the standard G-L nodes and weights with respect to the interval [−1, 1]

(see, e.g. [9]). Then, theN point G-L quadrature rule I
[a,b]
N [u] for the approximation of I [a,b][u],

is defined as

(2.1) I
[a,b]
N [u] :=

N∑
k=1

wku(xk).

The hp version of the G-L composite quadrature is defined as follows: we begin with an
arbitrary partition M = {Λm}Mm=1 of Λ = [a, b] into M open subintervals Λm = (xm−1, xm)
of length hm = xm − xm−1. To each subinterval Λm we associate pm + 1 quadrature points
and set −→p = {p1, . . . , pM} the vector of quadrature nodes. Then, the hp quadrature rule for
a given continuous function u on [a, b] is defined as

(2.2) I
[a,b]
hp [u] =

M∑
m=1

I [xm−1,xm]
pm [u] =

M∑
m=1

pm∑
k=1

wm,ku(xm,k),

where {xm,k, wm,k}pmk=1 are the shifted G-L quadrature nodes and weights for the interval Λm.
The following result was established in [1].

Proposition 2.1. Let M be an arbitrary partition of [a, b] and let u ∈ C ([a, b]) be given,
satisfying u|Λm ∈ W s0,m+1,∞ (Λm) for some s0,m ≥ 0. Then

∣∣∣I [a,b][u]− I
[a,b]
hp [u]

∣∣∣ ≤ C
M∑

m=1

(
hm
2

)sm+2 [ Γ(2pm + 2− sm)

(2pm + 1)Γ(2pm + 2 + sm)

]1/2
∥u∥W sm+1,∞(Λm) ,

for any sm = 0, . . . ,min{2pm + 1, s0,m}, where Γ is the usual Gamma function and C > 0 is
a constant independent of hm, pm and sm.

Using the above theorem, it was shown in [1] that the error tends to 0 exponentially fast
for functions u that have a point singularity, provided the partition M is geometrically refined
towards the point causing the singularity and the quadrature nodes vector −→p is increasing
linearly (see [1] for details).

For layer functions, we believe the best choice is the Spectral Boundary Layer mesh/partition,
defined below.
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Definition 2.2. Let p ∈ N, ε ∈ (0, 1], κ ∈ R+ be given. We define the Spectral Boundary
Layer mesh/partition on I = [a, b] as

MSBL(κ, p) =

{
[a, b] , κpε > 1/2

[a, a+ κpε, b] , κpε ≤ 1/2
.

Strictly speaking, it is not a hp but rather a p version, since the number of subintervals
is not increasing – only p is. Nevertheless, we use this terminology to be consistent with the
literature [2].

Using the above mesh, in conjunction with the composite G-L rule and increasing the
number of quadrature nodes p, yields extremely accurate results (as shown in Theorem 2.3
below). In practice, we take κ = 1 and we simply divide the interval [a, b] into [a, a+ pε], [a+
pε, b] and we use as our approximation to (1.1),

I [a,a+pε][u] ≈ I
[a,a+pε]
hp [u] + u(a+ pε) =

p∑
k=0

ℓku(χk) + u(a+ pε),

where {ℓk, χk} are the shifted G-L nodes and weights for the interval [a, a+ pε].

Theorem 2.3. The approximation of (1.1) by the hp G-L quadrature rule on the Spectral
Boundary Layer mesh/partition satisfies∣∣∣I [a,b][u]− I

[a,b]
hp [u]

∣∣∣ ≤ Cεe−σp,

with C, σ ∈ R+ independent of ε, u and p.

Proof. We note that in the case κpε > 1/2, the function (1.2) is analytic and the results
of [1] for analytic functions apply.

Thus, we will concentrate on the case where κpε ≤ 1/2. In this case, we have two
sub-intervals Λ1 := (a, a + κpε) and Λ2 := (a + κpε, b). In the second one, we will simply
approximate the integral by the value of the integrand at κpε, as seen below:

I [a,b][u] = I [a,a+κpε][u] + I [a+κpε,b][u] ≤ I [a,a+κpε][u] + u(a+ κpε)

≤ I [a,a+κpε][u] + f(a+ κpε)e−κp

≤ I [a,a+κpε][u] + Cεe−κp,(2.3)

since by (1.3), we have
|f(a+ κpε)| ≤ Cpε.

For I [a,a+κpε][u] we will use the G-L quadrature rule with p nodes, viz.

I
[a,a+κpε]
hp [u] =

p∑
k=1

wku(xk).

Proposition 2.1, then gives

(2.4)∣∣∣I [a,a+κpε][u]− I
[a,a+κpε]
hp [u]

∣∣∣ ≤ C
(κpε

2

)s+2
[

(2p+ 1− s)!
]1/2

∥u∥W s+1,∞([a,a+κpε]) .(2p + 1)(2p + 1 + s)!
529
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We first estimate the norm appearing above:

∥u∥W s+1,∞([a,a+κpε]) = max
0≤j≤s+1

∥∥∥u(j)∥∥∥
L∞([a,a+κpε])

,

and using Leibniz’s rule we find

|u(j)(x)| = | d
j

dxj

(
f(x)e−α(x)/ε

)
| ≤

j∑
k=0

j!

(j − k)!k!
|f (k)(x)||(e−x/ε)(j−k)|

≤ C

j∑
k=0

j!

(j − k)!k!
|f (k)(x)|εk−j .

Hence we have

∥∥∥u(j)∥∥∥
L∞([a,a+κpε])

≤ C

j∑
k=0

εk−j j!

(j − k)!k!
max
x∈Λ1

∣∣∣f (k)(x)
∣∣∣ ,

and by (1.3) we get, after summing,

∥∥∥u(j)∥∥∥
L∞([a,a+κpε])

≤ Cε−j
j∑

k=0

j!

(j − k)!
CfK

k ≤ Cε−jCfe
1/KKjΓ(j + 1),

where Γ(·) is the usual Gamma function [10]. Therefore,

(2.5) ∥u∥W s+1,∞([a,a+κpε]) ≤ max
0≤j≤s+1

∥∥∥u(j)∥∥∥
L∞([a,a+κpε])

≤ Cε−(s+1)Ks+1(s+ 2)!,

and thus combining (2.4) and (2.5), we obtain the following expression for the error between
the exact integral and its approximation on the interval [a, a+ κpε]:∣∣∣I [a,a+κpε][u]− I

[a,a+κpε]
hp [u]

∣∣∣ ≤ C
(κpε

2

)s+2
[

(2p+ 1− s)!

(2p+ 1)(2p+ 1 + s)!

]1/2
ε−(s+1)K(s+1)(s+ 2)!

≤ Cε
(κp
2

)s+2
K(s+1)(s+ 2)!

[
(2p+ 1− s)!

(2p+ 1)(2p+ 1 + s)!

]1/2
.

Aiming for convergence as p → ∞, for all ε > 0, we continue by choosing s = λ(2p + 1), λ ∈
(0, 1) to be selected shortly, which gives

∣∣∣I [a,a+κpε][u]− I
[a,a+κpε]
hp [u]

∣∣∣ ≤ Cε
(κp
2

)λ(2p+1)+2
Kλ(2p+1)+1 (λ (2p+ 1) + 2)!

(2p+ 1)1/2

[
(2p+ 1− λ(2p+ 1))!

(2p+ 1 + λ(2p+ 1))!

]1/2
.

Stirling’s formula (see, e.g., [2, Lemma 3.6]) allows us to handle the factorials:[
(2p+ 1− λ(2p+ 1))!

(2p+ 1 + λ(2p+ 1))!

]1/2
≤ C

[
(1− λ)1−λ

(1 + λ)1+λ

]p+1/2

(2p+ 1)−λ(2p+1)eλ(2p+1),
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(λ (2p+ 1) + 2)!

(2p+ 1)1/2
≤ C(λ (2p+ 1) + 2)(λ(2p+1)+2)e−(λ(2p+1)+2) ≤ C(2λp+ 3)2λp+3e−λ(2p+1).

Hence,

∣∣∣I [a,a+κpε][u]− I
[a,a+κpε]
hp [u]

∣∣∣ ≤ Cε(κK)2λp
[
(1− λ)1−λ

(1 + λ)1+λ

]p+1/2 (p
2

)2λp+3
(2p+1)−(2λp+1)(2λp+3)2λp+3

≤ Cε(κK)2λp
[
(1− λ)1−λ

(1 + λ)1+λ

]p+1/2 (p
2

)2λp+3
(2p+ 1)−(2λp+1)(2λp+ 3)2λp+3

≤ Cp3ε(κK)2p,

since there exists λ ∈ (0, 1) such that (see [1])[
(1− λ)1−λ

(1 + λ)1+λ

]p+1/2 (p
2

)2λp+3
(2p+ 1)−(2λp+1)(2λp+ 3)2λp+3 ≤ Cp3.

Choosing κ < 1/K ∈ (0, 1) in the definition of the mesh, we obtain

∣∣∣I [a,a+κpε][u]− I
[a,a+κpε]
hp [u]

∣∣∣ ≤ Cεe−γp,

where γ = | ln q|, q = 1/K < 1, and we have absorbed the powers of p into the exponential.
Combining the above with (2.3), we get the desired result.

3. Numerical computations. In this section we show the results of numerical computa-
tions for the integral (1.1), for two different choices of the function f(x), x ∈ (0, 1). We will
be measuring the error

Error = 100× ε
|I[u]− Ihp[u]|

|I[u]|
,

where Ihp[u] denotes the approximation. (We omitted the superscripts.) The factor of ε is
used to test the results of Theorem 2.3. We will be plotting the above Error versus the
number of Gauss points, in a semi-log scale. The resulting lines will verify the exponential
convergence.

Example 1 : The integral we wish to approximate is

I [0,1][u] := 1 +

∫ 1

0
(−x2 + x)e−x/εdx,

with exact value1

I [0,1][u] = (2ε3 + ε2)e−1/ε − 2ε3 + ε2 + 1.

1We want the answer to be different from 0.
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We show in Figure 2 the results for the G-L quadrature on the SBL mesh/partition, for
various value of ε – other values gave similar results and smaller ones gave results beyond
machine precision. Since the semi-log plot results in straight lines coinciding, we deduce that
the method converges uniformly, at an exponential rate.
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Figure 2. Example 1: Convergence of the G-L quadrature rule.

Example 2: Next, we consider the integral

I [0,1][u] :=
ln(3)

2
+

∫ 1

0

4xe−x/ε

2x+ 1
dx,

whose exact value involves special functions (and in particular the exponential integral function
[10]). So, we will use as the exact value the answer that MATLAB© gives with the integral
command. We repeat the experiment, showing the results in Figure 3, for the same values of
ε. The conclusions are the same as in Example 1.
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