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1School of Mathematics, University of Bristol, Fry Building, Woodland Road, 
Bristol, BS8 1UG, United Kingdom.

Abstract

This work is a simple example of the quantum dynamics of a particle in a disordered system in
one dimension. In particular, we illustrate numerically the phenomenon of Anderson localisation
of a wave packet using a basic model constructed with small random rectangular potential
barriers. Also, we study the dynamics of a quantum particle in a disordered potential formed
by an harmonic oscillator perturbed by random rectangular barriers. To show the effects of
disorder on the dynamics of the system, we compare the time evolution of the wave function
of the unperturbed harmonic oscillator with the wave function of the disordered system. We
do this by taking the scalar product between the unperturbed and perturbed wave functions at
each timestep for different values of the perturbation parameters affecting the disordered wave
packet.
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1 Introduction

Quantum disordered systems are common in nature and are very important in applications. In par-
ticular, the study of the evolution and transport phenomenon in disordered potentials is a relevant
problem related to electron conduction, light propagation, chemical reactions, and so on. A general
discussion about transport in disordered systems is found in the recent review article [1].

One of the most intriguing properties of disordered systems is the absence of diffusion of wave
packets in the space for some special cases. This peculiar phenomenon is called Anderson localisa-
tion [2, 3] and it is a consequence of the interference of the waves that are transmitted and reflected
in the disordered media. The localisation lengths of the wave functions are related with the dimen-
sion of the system and the properties of the disorder.

A simple model has been proposed to study transport properties of wave function of disordered
potentials in one dimension, see [4]. In this model, the total potential energy consists of a sequence
of rectangular barriers with the same width and random height. The energy of the particle con-
sidered is larger than the maximal value of the potential energy. The analytical solutions of the
Schrödinger equation for this kind of system can be constructed using the elementary solutions of
the wave equation for the step barrier potential with finite width. With these solutions it is possible
to obtain analytical expressions for the transmission and reflection coefficients and study the trans-
port in the system.

In the present work, we present two basic numerical examples to illustrate the quantum evolu-
tion of a particle in a disordered one dimensional potential. These examples are aimed at helping
the undergraduate university student better understand how seemingly simple quantum mechanical
effects can lead to interesting phenomena. The outline for this work is the following: in section 2, we
explain the Anderson localisation phenomenon using solutions to the time-independent Schrödinger
equation for a series of step barriers. In section 3, we investigate the time evolution of the wave
function for a particle in a free particle potential and also a harmonic oscillator potential, both of
which are perturbed by adding disorder at a number of points. To appreciate the effects of the
disorder on the temporal evolution of the system we consider different values of the parameters of
the potential barriers that form the perturbation. Finally, we present our conclusions and remarks
in section 4.

2 Transfer matrices and Anderson localisation

The general solution of the Schrödinger wave equation for a particle in a finite rectangular step
barrier is well known, see for example [5]. Based on this elementary solution is possible to construct
the solution of more complex systems like the following. Let us consider a potential energy V formed
by arbitrary N ∈ N step functions with random height in each region. In each of these regions, we
solve the one-dimensional time-independent Schrödinger equation,

− ~2

2m

d2

dx2
Ψj(x) + VjΨ(x) = EΨj(x), (1)

where Vj(x) is the constant potential in region j ∈ N, 1 ≤ j ≤ N . This gives the solutions in the jth

and (j + 1)th regions,

Ψj = Aje
ikjx +Bje

−ikjx, (2)

Ψj+1 = Cj+1e
ikj+1x +Dj+1e

−ikj+1x (3)
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where Aj , Cj+1 are the coefficients for right moving components of the wave function, Bj , Dj+1 are

the coefficients for the left moving components of the wave function and kj =
√

2m(E − Vj)/~.

At this point, we would like a relation between the coefficients Aj and Bj for the incident wave, and
Cj+1 and Dj+1 for the transmitted wave at each step. We would like this to be of the form,(

Aj

Bj

)
= pj

(
Cj+1

Dj+1

)
, (4)

where pj is the 2x2 propagation matrix at step j. In this way we can calculate the probability that
a particle is transmitted over the whole potential by using a product of propagation matrices.

By requiring that Ψj and
dΨj

dx are continuous functions at the boundaries between regions and
using Eq. (2) and Eq. (3), we find that at each step:

pj =
1

2

(
1 +

kj+1

kj
1− kj+1

kj

1− kj+1

kj
1 +

kj+1

kj

)
. (5)

The transfer matrix for region j is given by Eq. (5), which leads us to the total transfer matrix,

P =
N∏
j=1

pj . (6)

Assuming that particle is incident from the left, we have that A1 = 1 and DN = 0, hence,(
A1

B1

)
=

(
1
B1

)
= P

(
CN

DN

)
= P

(
CN

0

)
(7)

Finally, we can see that since 1 = P11C, the transmission probability is given by the equality,

|C|2 =
1

|P11|2
, (8)

where P11 is the top-left entry Eq. (6).

For the sake of simplicity, let us consider a particle with momentum positive and only a poten-
tial barrier like in Figure 1a. Part of the wave function is transmitted through the potential barrier
and other part is reflected by barrier. The probability to find the particle in a given position x
changes due to the effect of the barrier. If the particle has more energy E then the effect of the
barrier is less noticeable. If we increase the number of barriers, the effects accumulate and the
probability to find the particle on the right side decreases. However, if the energy of the particle
E is bigger than the height of the barriers then the situation is more complex. The transmitted
and reflected waves could interfere with each other and thus generate the localisation phenomenon.
This time-independent scenario is indicative of the cancellation effect which is key to understanding
Anderson localisation. Time-dependent simulations are more complex, requiring numerical methods
to solve the Schrödinger equation.
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(a) Solution to the Schrödinger equation for a single barrier. We notice that the wave function oscillates as
expected in areas where the potential is zero, and decays exponentially in areas where the potential is bigger
than the height of the barrier.
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(b) Solution of the Schrödinger equation for a double barrier. The second barrier has caused the wave
function to oscillate with less amplitude in the right region when compared to the single barrier case.
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(c) Solution of the Schrödinger equation for a triple barrier.

Figure 1: The figures indicate the reduction in the probability that a wave is transmitted when
the number of barriers is increased. In (a) we see that transmission is seriously impeded for lower
energies, but not so much for higher energies. This contrasts with (c), where we see that for waves
with energies below E4 transmission is almost completely stopped, and is seriously lowered for all
energies.

3 Anderson localisation

The process of understanding how a Gaussian wave packet evolves in time is made simpler by di-
rect visualisation of the systems involved. In order to serve this purpose, we have developed an
intuitive tool for generating animations of disordered quantum systems, where a wave is subjected
to a user-defined potential. Our code makes use of the Crank-Nicolson method (see appendix A)
for numerically estimating the time evolution of a quantum system. The simulation tool is free to
access via our GitHub repository online (see appendix B).

In order to illustrate numerically the Anderson localisation phenomenon generated by a disordered
potential energy let us consider an initial wave packet in a potential energy formed by an array of
rectangular potential barriers similar to the work in [4]. A potential landscape, spanning from −a
to a, is discretised into N rectangular barriers of width lc = 2a

N . The height of each barrier is a small
number Vj , where j = 1, ..., N . Each Vj is drawn uniformly at random such that Vj ∼ Uniform[−ε, ε],
where ε is the disorder parameter with units of energy. There is also the ability to add spacing be-
tween the disordered points using a spacing parameter, s, which has units of length. The spacing
parameter s works by acting on the perturbation Vj as follows

Vj =

{
Vj , if jmod s = 0

0, otherwise,
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if s > 0 and Vj = Vj ∀j if s = 0, where j = 1, ..., N . A Gaussian curve with the equation:

Ψ(x) =
1

4
√

2πσ2
0

exp

(
−(x− x0)2

4σ2
0

)
exp (ik0x) , (9)

is then added to this landscape in order for us to analyse its time evolution.

3.1 Free particle

For the following simulations we choose the initial parameters N = 150, x0 = 0, σ0 = 1.5 and
k0 = 3.0, which represent the initial position, initial shape and initial momentum of the wave,
respectively. After some sufficiently long time τ ≈ 5, we take an snapshot of the wave packet Ψ(x, τ)
of the particle, which can be seen in Figure 2. We can appreciate how the wave packet Ψ(x, τ) is
confined in some finite region of space, and that the length of the region of localisation decreases as
the value of ε is increased.

(a) Disorder, ε = 0.1.
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(b) Disorder, ε = 0.5.
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(c) Disorder, ε = 1.0.

Figure 2: Plots showing the Anderson localisation of a wave function Ψ(x, τ), τ ≈ 5, for different
values of the the maximal value of the disorder to the potential ε = 0.1, 0.5, 1.0. It is clear to see
that as the disorder increases, the particle is localised in a narrower region of the space.
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3.2 Noisy harmonic oscillator

We now consider the effect of disorder on the motion of a wave through a harmonic oscillator
potential. The initial wave function is a Gaussian with the same parameters as in Eq. (9), although
we now use N = 100 in order to increase the speed of the simulation. The setup code for the
oscillator can be found in appendix B. We have varied the maximal amplitude of the barriers that
generate the disorder ε, and also the spacing s between barriers in order to study the effect of these
factors on the inner product between perturbed and unperturbed waves. By measuring the inner
product, we seek to understand how increasing the disorder and spacing affects the difference in
phase between the states.

(a) Screenshot at t = 0.
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(b) Screenshot at t = 0.85 fs.

Figure 3: Snapshots for disordered quantum harmonic oscillator with ε = 0.5 and s = 0 at times
t = 0 and t = 0.85. At time t = 0, the wave functions are in phase. As time moves on we notice that
the perturbed wave function remains localised at the origin whilst the unperturbed wave oscillates
normally.
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(a) Spacing, s = 0.0.
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(b) Spacing, s = 5.

395



0.0 0.5 1.0 1.5 2.0
Time

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 |
 

d 

Inner product of unperturbed and perturbed state
at each timestep with fixed spacing, s = 10

Disorder, 
0.0
0.3
0.6
0.9
1.2
1.5
1.8
2.1

(c) Spacing, s = 10.
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(d) Spacing, s = 15.

Figure 4: Plots for the average inner product 〈Ψ0(x, t)|Ψp(x, t)〉 using different values of step spacing
(a) s = 0, (b) s = 5, (c) s = 10, and (d) s = 15 as the maximal amplitude of the barriers ε is varied.
In each plot we can see that increasing the disorder ε causes the inner product to be lower on average.
From (a) we can directly read the period of the wave’s oscillation.

We will first consider Figure 4a, in which we have set the spacing s = 0, i.e. disorder at every step of
the oscillator. As expected, when ε = 0 the inner product remains constant at 〈Ψ0(x, t)|Ψp(x, t)〉 = 1,
indicating that the waves stay totally in phase. This is consistent for any value of s. As ε is in-
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creased, we see that the waves drift out of phase more quickly. In this case the figure shows that
the waves drift completely out of phase and the lines echo the period of oscillation of the waves
when ε is high. We also see this in the animation screenshots, where the perturbed wave remains
completely localised in the centre for higher values of ε. This is an example of Anderson localisation.

In Figures 4b, 4c and 4d, we increase the spacing to s = 5, s = 10, and s = 15, respectively.
We can see that as the spacing is increased, the perturbed wave is less localised, which is indicated
by the fact that the inner product 〈Ψ0(x, t)|Ψp(x, t)〉 approaches 1. This is also expected as fewer
disordered points would lead to less localisation.

In Figures 5 and 6, we see that the inner product 〈Ψ0(x, t)|Ψp(x, t)〉 decreases as the disorder
parameter ε is increased and increases as the spacing s between the barriers is increased.
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Figure 5: Average inner product 〈Ψ0(T )|Ψp(T )〉 plotted against disorder amplitude and spacing. As
spacing decreases, and as disorder increases, the inner product decreases.
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Figure 6: Analysis of the inner product 〈Ψ0(t)|Ψp(t)〉 averaged over all time steps for variable
spacing, s, and disorder, ε. We see the same phenomenon as in Figure 5, where decreasing the
spacing and increasing the disorder causes the inner product to decrease.
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4 Conclusions and final remarks

In the numerical example in section 2, the Anderson localisation of the wave packet emerges as a
result of the interference between the reflected and transmitted waves by the array of step barriers.
The effect of the array of barriers generates the confinement of the wave packet in finite region of
the space as we can see in Figure 2. The length of the localisation region decreases as the maximal
value of the amplitude of the potential barriers ε is increased.

For the harmonic oscillator perturbed with a series of random barriers, it is possible to observe
the same kind of localisation effect around the minimum of the potential when the wave packets are
initialised at this minimum. The transport in the disordered medium is less than the transport in
the unperturbed version of the system. For some critical values of the noise parameters the wave
function is almost localised on the minimum of the harmonic oscillator potential.

The effects of the disorder have a clear impact on the evolution of the wave packet. Figures 4,
5 and 6 show the scalar product 〈Ψ0(x, t)|Ψp(x, t)〉, comparing the evolution of the wave packet in
the disordered media with the evolution in harmonic oscillator. Changes in the parameters of the
disorder ε and s manifest in the evolution of the system.
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Appendices

A The Crank-Nicolson method

The Crank-Nicolson method combines the forward and backward Euler methods [6] for solving
differential equations - in our case, the one dimensional, time-dependent Schrödinger equation:(

−h2

2m

d2

dx2
+ V (x)

)
Ψ(x, t) = i~

∂

∂t
Ψ(x, t). (10)

Written in operator form, this looks like:

ĤΨ(x, t) = i
∂Ψ(x, t)

∂t
, (11)

where we have also taken ~ = 1. The forward Euler method is explicit and hence offers us relatively
less computational expense when compared with the backward Euler method, which is implicit.
However, due to its explicit nature, we find the backward Euler method to be more computationally
stable. This leads us to combine the two, yielding the so-called Crank-Nicolson method, which offers
us greater stability for less computational strain.

Our employment of the Crank-Nicolson method looks like this:

Ψ(x, t+ dt)−Ψ(x, t)

dt
≈ Ĥ

2i
(Ψ(x, t) + Ψ(x, t+ dt)) ,
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and can be rearranged for Ψ(x, t) to give us:

Ψ(x, t+ dt) =

(
1− Ĥdt

2i

)−1(
1 +

Ĥdt

2i

)
Ψ(x, t), (12)

assuming that Ĥ is invertible.

Calculating the inverse matrix Ĥ is computationally very expensive. For this reason we make
use of the second order finite difference approximation in order to discretise our continuous variable
x into N ‘sites’ xi, and hence reduce Ĥ to a tri-diagonal matrix. This makes computer simulation
feasible whilst allowing us to recover continuity in the limit N →∞. To be explicit, this gives us a
Hamiltonian operator, Ĥ, of the form:

Ĥ =
1

2


2 −1
−1 2 −1

−1 2 −1
. . .

+


V (0)

V (1)
V (2)

. . .

 . (13)

The Hamiltionian will be an NxN matrix, with each V (i) being the value of the potential at a given
xi, where i ∈ 0, ..., N − 1. This can be seen in the project code, which is found by following the link
in appendix B.

B Code

The online repository with code for the calculations is in:
https://github.com/emgsharp99/evolution-DQS

References

[1] Mattia Walschaers, Frank Schlawin, Thomas Wellens, and Andreas Buchleitner. Quantum trans-
port on disordered and noisy networks: An interplay of structural complexity and uncertainty.
Annual Review of Condensed Matter Physics, 7(1):223–248, 2016.

[2] P. W. Anderson. Absence of diffusion in certain random lattices. Phys. Rev., 109:1492–1505,
Mar 1958.

[3] Ad Lagendijk, Bart van Tiggelen, and Diederik S. Wiersma. Fifty years of Anderson localization.
Physics Today, 62(8):24–29, 2009.
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