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Abstract

Highly accurate numerical approximations of analytic Caputo fractional derivatives are dif-

ficult to compute due to the upper bound singularity in its integral definition. However, it

has been recently demonstrated that Caputo fractional derivatives of analytic functions can

be numerically evaluated to double-precision accuracy by utilizing only function values in a

grid. This is done by considering a modified Trapezoidal Rule (TR) and placing equispaced

finite difference (FD) correction stencils at both endpoints. In terms of complex-valued analytic

functions f(z), these fractional derivatives are multi-valued. In this paper, we provide several

test functions for this numerical method of evaluating Caputo fractional derivatives. We pro-

duce figures of the principal branch of the functions’ approximated fractional derivatives, and

include error plots of these approximations.

Keywords: Fractional derivatives, finite differences, analytic functions, complex variables,

contour integration.

1 Introduction

Fractional calculus is the extension of the differentiation D and integration I operators
from integer orders to real and complex orders. Regarding differentiation of an analytic
function f(z), derivatives of non-integer order at a point z = z0 depend on every value of f
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along some curve joining z0 and an evaluation point (rather than only on a small open neigh-
borhood around z0). These derivatives of arbitrary order are called fractional derivatives,
and can be computed by integrating from a base point to an evaluation point.1 Regarding
the computation of fractional derivatives defined by integrals, the standard trapezoidal rule
(TR) for numerical contour integration on grid-based function values fails to approximate
fractional derivatives up to high-order accuracy. This is due to the singularity at the upper
endpoint in the integrand of a fractional derivative as well as the endpoint weights of the TR
in general. However, a recent modification to the TR has been shown to produce highly ac-
curate convergence rates for fractional derivatives [5], capable of achieving double-precision
10−16 accuracy. In this paper, we utilize the method discussed in [5] to compute fractional
derivatives of several complex-valued analytic functions with similar style illustrations as
used in [4].

2 Mathematical background

In this section, we give a brief discussion of analytic functions, multi-valued functions,
branch cuts, and the definition of the Caputo fractional derivative. We save the finite
difference (FD) approximations for definite integrals and fractional derivatives for Sections
3 and 4, respectively, and then later apply it to produce figures of fractional derivatives of
analytic functions in the following section.

2.1 Analytic functions

A complex-valued function f is an extension of real-valued functions in which complex
numbers are mapped to complex numbers. If we write a complex number as z = x+ iy with
x, y ∈ R and i2 = −1, then f(z) = u(x, y)+ iv(x, y) where u(x, y) and v(x, y) are real-valued
functions. We graph the real and imaginary parts separately, along with the magnitude
|f(z)| and its corresponding phase portrait.

If f(z) is differentiable in an open neighborhood centered around z = z0, then f(z)
is analytic at z0 if f ′(z0) = lim∆z→0

f(z0+∆z)−f(z0)
∆z

is uniquely defined at z0 irrespective of
direction by which ∆z → 0. If f is analytic, then it satisfies the Cauchy-Riemann (CR)
equations

∂u

∂x
=

∂v

∂y
,

∂u

∂y
= −∂v

∂x
. (1)

Conversely, if f satisfies the CR equations, then f is analytic. There are numerous and
significant consequences of the CR equations. Consequences include that f is infinitely
differentiable and that it has a locally convergent Taylor series around z0. The common
elementary functions are all analytic.4

1Though they need not be defined by an integral [7].
4For more information on analytic functions, see for example [4].
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2.2 Multi-valued functions and branch cuts

One property of fractional derivatives and of certain analytic functions is that they are
multi-valued. A multi-valued function maps a single input value to several values. An
example of a multi-valued function is f(z) = log(z). Taking z in polar coordinates and
using the properties of logarithms yields z = log |z| + iθ. Since θ is 2π−periodic, f(z) =
log |z| + i(θ + 2πk), where k ∈ Z. Thus, log(z) takes on infinitely many values for any z.
Furthermore, z = 0 is a branch point singularity5 of log(z), i.e., a single loop around z = 0
results in a different value from the starting point to the end point.

In order to make a multi-valued function single-valued, a branch cut must be chosen.
A branch cut is a continuous curve from a branch point to another branch point in which
a multi-valued function takes on a single-valued form, called a Riemann sheet. Although
branch cuts can be chosen arbitrarily, the standard convention for a branch cut satisfies
Arg(z) = θ ∈ (−π, π], which places the branch cut from 0 to −∞. Further illustrations and
information on multi-valued functions and branch cuts can be found in chapter 2 of [4].

2.3 Fractional derivatives

In differential calculus, derivatives of integer order are local and tell us how a function
f(z) behaves within a small neighborhood of function values around z = z0. For derivatives
of arbitrary order, known as fractional derivatives, this local property is not preserved, and
hence fractional derivatives do not share all of the properties that integer-order derivatives
possess. Related to this, many definitions of fractional derivatives exist, each of which aims
to preserve some, but not all properties from integer order derivatives. Depending on the
properties preserved from a defined fractional derivative, certain fractional derivatives can
be more applicable than others. For this paper, we choose to focus on the Caputo fractional
derivative:

C
a D

α
t f(t) =

1

Γ(n− α)

∫ t

a

f (n)(τ)

(t− τ)α+1−n
dτ, n− 1 < α < n, (2)

which was first introduced by M. Caputo in [1]. The main preserving properties of the Caputo
fractional derivative is that 0D

α
z (c) = 0 for any constant c, and the Laplace Transform of

a Caputo derivative can be expressed by the base-point values of f(t) and its integer-order
derivatives,

L{C0 Dα
t f(t)}(s) = sαF (s)−

n−1∑
k=0

sα−k−1f (k)(0), n− 1 < α < n. (3)

As a result, Caputo fractional derivatives are more favored for modeling initial value problems
in fractional differential equations than other definitions of fractional derivatives [6, 7]. The
main disadvantage of Caputo fractional derivatives over other fractional derivatives is that

5More specifically, a logarithmic singularity. Similarly, z = ∞ is also a logarithmic singularity.
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f (n)(t) must exist. In most cases however, f (n)(t) exists and is often assumed to exist when
modeling fractional differential equations. In the case of complex-valued analytic functions
f(z), f (n)(z) always exists and hence existence need not be verified.

Another fractional derivative definition is the Riemann-Liouville derivative:6

RL
0 Dα

t f(t) =
1

Γ(n− α)

dn

dtn

∫ t

a

f(τ)

(t− τ)α+1−n
dτ, n− 1 < α < n. (4)

One major similarity between the Caputo and Riemann-Liouville derivatives is that for any
power function f(t) = tk with k > α, its fractional derivative with a base point a = 0 is
expressed as

RL
0 Dα

t f(t) =
C
0 D

α
t f(t) =

Γ(k + 1)

Γ(k − α + 1)
tk−α. (5)

Since analytic functions can be expressed as some locally convergent power series, it follows
from (5) that fractional derivatives of analytic functions are multi-valued.7 As a result,
we choose a branch cut such that the fractional derivative of some analytic function f(z)
becomes single-valued. For this paper, we choose the standard branch cut.

Without loss of generality, we consider 0 < α < 1 and base point a = 0, (focusing first
on t > 0, but later generalizing to any t), and introduce the notation C

0 D
α
t = Dα for the

remainder of the paper. Then (2) can be written as

Dαf(t) =
1

Γ(1− α)

∫ t

0

f ′(τ)

(t− τ)α
dτ. (6)

We choose to consider 0 < α < 1 explicitly since Dα+mf(t) = Dαf (m)(t) for integer m,
allowing us to extend this method to compute derivatives of any arbitrary order. In the
case of approximating Dα+mf(t), the complex plane FD formulas discussed in [3] will suffice
for computing f (m)(t). It should also be noted that the Caputo fractional derivative is
non-commutative [6]. Furthermore, a = 0 is the standard convention for defining Caputo
fractional derivatives [7].

3 FD approximation for definite integrals

One well-known method to approximate definite integrals is to use the trapezoidal rule
(TR). The TR uses function values at N equispaced nodes located at xk = x0 + kh, for
k = 0, 1, 2, . . . , N, to obtain an approximate result of the form

∫ xN

x0

f(x)dx ≈ h
N∑
k=0

f(xk)−
h

2
[f(x0) + f(xN)] +O(h2). (7)

6Whose preserving properties and comparisons to the Caputo fractional derivative can be found in [6, 7],
along with other definitions of fractional derivatives.

7Unless f(z) = zk+α where k is an integer, thus producing a single-valued fractional derivative.
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By the Euler-Maclaurin formula, the error between the exact integral value and the TR
approximation becomes the following series:∫ xN

x0

f(x)dx− TR ≈ h2

12
[f (1)(x0)− f (1)(xN)]

− h4

720
[f (3)(x0)− f (3)(xN)] +

h6

30240
[f (5)(x0)− f (5)(xN)]−+ · · · .

(8)

One may also choose to numerically integrate a function with a midpoint expansion with
nodes located at xk = x0+(k+ 1

2
)h. In this case, the second Euler-Maclurin formula for this

error expansion becomes∫ xN

x0

f(x)dx− TR ≈ −h2

24
[f (1)(x0)− f (1)(xN)]

+
7h4

5760
[f (3)(x0)− f (3)(xN)]−

31h6

967680
[f (5)(x0)− f (5)(xN)] +− · · · .

(9)

The coefficients of (8) and (9) are extracted from the series expansions of 1
1−e−z − 1

z
and

ez/2

ez−1
− 1

z
, respectively. In both cases, the majority of the error produced from utilizing the

TR arises from the two endpoints.8 Thus, the weights at the endpoints should be adjusted
to improve the accuracy.

One method to improve the accuracy of the TR is to place N = (2n+ 1)× (2n+ 1), n =
1, 2, . . . , equispaced nodes of spacing h at both endpoints. These nodes, which are the
FD correction stencils discussed in [2, 3], are used to create weights for the odd-ordered
derivatives in the Euler-Maclurin formula. The accuracy of these FD stencils for the kth

derivative is O(hN−k). After creating as many FD stencils for the derivatives in the Euler-
Maclaurin formulas without losing any significant accuracy, these weights are then added up
to create the final end correction stencils.

An example left-end correction stencil for odd-ordered derivatives up to f (7)(z) with 3×3
stencils for

∫∞
0

f(x)dx is

∫ ∞

0

f(x)dx ≈ h





−821− 779i

403200
− 1889i

100800

821− 779i

403200

− 1511

100800

1

2
1 +

1511

100800

−821 + 779i

403200

1889i

100800

821 + 779i

403200


1 1 1 1 . . .


, (10)

where the boxed values are the added FD stencils. In the case of integrating on a finite
interval, the right-end correction stencils are the negative of the left-end stencils. In either

8In the case that f (n)(z0) = f (n)(zN ) for positive odd integers n, the TR accuracy becomes highly
accurate, as is the case for periodic functions.
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case, the accuracy of the TR with 3× 3 end-correction stencils is now increased to O(h10).

4 FD approximation for fractional derivatives

As discussed in [5], the two main issues with applying a TR-based approximation of the
integral I = 1

Γ(1−α)

∫ z

0
f ′(τ)

(z−τ)α
dτ are the singularity created by 1

(z−τ)α
at the upper bound of

the integrand, and the f ′(τ) factor in the numerator of the integrand (as f ′(τ) may not be
numerically available). To fix these issues, we first split the interval [0, z] into [0, z − h] and
[z − h, z], and then perform integration by parts on the first sub-interval. Excluding the

1
Γ(1−α)

constant, we obtain

I =

{
−f(0)

zα

}
︸ ︷︷ ︸

left end

−α

{∫ z−h

0

f(τ)

(z − τ)α+1
dτ

}
︸ ︷︷ ︸

central part

+

{
f(z − h)

hα
+

∫ z

z−h

f ′(τ)

(z − τ)α+1
dτ

}
︸ ︷︷ ︸

right end

. (11)

By applying the TR to the central part of (11), we obtain

∫ z−h

0

f(τ)

(z − τ)α+1
dτ ≈ h

[ zh ]−1∑
k=1

f(kh)

(z − kh)α+1
(12)

The correction weights for each of these parts are derived in Section 3 of [5], where a change
of variable z − τ = σ with f(τ) = f(z − σ) = c(σ) is performed on the singular parts of
the central and right end parts of (11). From here, each correction weight follows a similar
derivation of (10) obtained from [2]. Example N = 5×5 singular part end correction weights
for α = 0.5 are given as

−0.0000− 0.0000i 0.0001 + 0.0001i −0.0000− 0.0006i −0.0001 + 0.0001i 0.0000− 0.0000i
0.0001 + 0.0001i 0.0165 + 0.0145i 0.0222 + 0.1470i −0.0166 + 0.0192i −0.0001 + 0.0001i

−0.0005 + 0.0000i 0.1318 + 0.0000i 1.3030 + 0.0000i −0.1729 + 0.0000i 0.0006 + 0.0000i
0.0001− 0.0001i 0.0165− 0.0145i 0.0222− 0.1470i −0.0166− 0.0192i −0.0001− 0.0001i

−0.0000 + 0.0000i 0.0001− 0.0001i −0.0000 + 0.0006i −0.0001− 0.0001i 0.0000 + 0.0000i

Using N = 5× 5 correction weights with α = 0.5 increases the accuracy of the modified TR
to O(h45/2) [5]. To evaluate at any arbitrary complex evaluation point z (rather than only
at positive real z), piecewise linear paths are followed with rotated correction stencils that
depend on the direction of the line of integration. Paths are also chosen such that no base
point or corner point correction stencil is near the singular evaluation point. If the evaluation
point is close to the base point, a Taylor expansion of f(z) centered at the midpoint between
the base and evaluation point is evaluated numerically term by term to produce the same
accuracy as the surrounding region. Further discussion of the paths followed from the base
point to the evaluation point are described in Sections 4 and 5 of [5], with further special
cases in Section 6.
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5 Fractional derivatives of analytic functions

In this section, we test the FD method for fractional derivatives discussed in [5] on a
collection of analytic functions for different α using MATLAB. Since most analytic functions
do not have an exact solution for their Caputo fractional derivatives, we have selected test
cases where exact results can be found in [8] or by Mathematica. Some of the fractional
derivatives are represented by 3F2 hypergeometric functions, which produce an excessively
long computation time for testing the relative error of some functions. To speed up this
computation time, the 3F2 function values are evaluated on a grid in Mathematica, and
then transferred to MATLAB to test the relative error. From this method, figures 11 − 14
appear to produce a large error around the unit circle. This is believed to occur due to
how Mathematica computes the generalized pFq hypergeometric functions and not caused
by the present algorithm. Larger errors near the logarithmic singularities are also present,
but expected.

For these test functions, we compute the real and imaginary parts, the complex magnitude
with its corresponding color wheel, and a relative error plot at each node. Each of these
figures use a square domain containing 70 nodes along the real and imaginary axes with
a step size of h = 1

20
to produce a square 3.5 × 3.5 domain centered around z = 0. We

also choose to use N = 5 × 5 correction stencils around the base and evaluation points to
produce double-precision accuracy with this FD method.9 In the real and imaginary parts,
the red curve represents when y = 0, and the black curve in the complex magnitude plot
also represents when y = 0. In the error plot, the red circle indicates the region in which
the midpoint Taylor expansion method is used. We further choose to restrict these functions
on small domains to show where these branch cuts restrict these multi-valued functions into
single-valued functions.

9With an accuracy of O(h45/2) for α = 0.5, it is possible to achieve higher precision accuracy using one
of MATLAB’s extended precision toolboxes.
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Figure 1: FD approximation of Dαe−z2 with α = 1
3
whose analytic Caputo α−derivative is

− 9z5/3

5Γ(2/3) 2F2(1,
3
2
; 4
3
, 11

6
;−z2).

Figure 2: FD approximation ofDα log(1+z) with α = 1
2
whose analytic Caputo α−derivative

is 2arcsinh(
√
z)√

π(1+z)
.
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Figure 3: FD approximation of Dα sin(πz) with α = π
8
whose analytic Caputo α−derivative

is πz1−π/8

Γ(1−π/8) 1F2(1; 1− π
8
, 3
2
− π

16
;−π2z2

4
).

Figure 4: FD approximation of Dα cos
(
π
2
z
)
with α = π

4
whose analytic Caputo α−derivative

is − π2z2−π/4

4Γ(1−π/4) 1F2(1;
3
2
− π

8
, 2− π

8
,−π2z2

16
).
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Figure 5: FD approximation of Dα sinh(z) with α = 1
5
whose analytic Caputo α−derivative

is 5z4/5

4Γ(4/5) 1F2(1;
9
10
, 7
5
, z

2

4
).

Figure 6: FD approximation of Dα cosh(z) with α = 2
5
whose analytic Caputo α−derivative

is 25z8/5

24Γ(3/5) 1F2(1;
9
10
, 7
5
; z

2

4
).
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Figure 7: FD approximation of Dα fresnelC(z) with α = 3
5

whose analytic Caputo

α−derivative is 5z2/5

2Γ(2/5) 3F4(
1
4
, 3
4
, 1; 7

20
, 3
5
, 17
20
, 11
10
;−π2z4

16
).

Figure 8: FD approximation of Dα fresnelS(z) with α = 4
5

whose analytic Caputo

α−derivative is 125πz11/5

66Γ(1/5) 3F4(
3
4
, 1, 5

4
; 4
5
, 21
20
, 13
10
, 31
20
;−π2z4

16
).
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Figure 9: FD approximation of DαJ1(z) with α = 2
3
whose analytic Caputo α−derivative is

4
27Γ(7/3)z5/3

(
2 1F2(−1

2
;−1

3
, 1
6
;− z2

4
) + 9z2 1F2(

1
2
; 2
3
, 7
6
;− z2

4
)− 2

)
.

Figure 10: FD approximation of Dα erf(z) with α = 1
2
whose analytic Caputo α−derivative

is 4
√
z

π 2F2(
1
2
, 1; 3

4
, 5
4
;−z2).
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Figure 11: FD approximation of Dα arcsin(z) with α = 3
4

whose analytic Caputo

α−derivative is 4z1/4

Γ(1/4) 3F2(
1
2
, 1
2
, 1; 5

8
, 9
8
; z2).

Figure 12: FD approximation of Dα arccos(z) with α = 1
4

whose analytic Caputo

α−derivative is − 4z3/4

3Γ(3/4) 3F2(
1
2
, 1
2
, 1; 7

8
, 11

8
; z2).
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Figure 13: FD approximation of Dα arctan(z) with α = 13
20

whose analytic Caputo

α−derivative is 20z7/20

7Γ(7/20) 3F2(
1
2
, 1, 1; 27

40
, 47
40
;−z2).

Figure 14: FD approximation of Dα arctanh(z) with α = 7
20

whose analytic Caputo

α−derivative is 20z13/20

13Γ(13/20) 3F2(
1
2
, 1, 1; 33

40
, 53
40
; z2).
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6 Conclusion

By using the FD-based TR method discussed in [5], numerous tests of Caputo fractional
derivatives of complex-valued analytic functions have here been approximated with near
double-precision accuracy. Since this method has successfully approximated a large number
of Caputo fractional derivatives, we can now produce figures of presently unknown fractional
derivatives of analytic functions.10 As a result, future work may include determining approx-
imate solutions to unknown fractional derivatives. It may also be of interest to approximate
fractional derivatives on several Riemann sheets, including how many Riemann sheets a
derivative of order α produces for a given function f(z). It may also be possible to general-
ize α to complex numbers to produce approximate complex-ordered fractional derivatives of
analytic functions.
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