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Abstract

Developed at unprecedented speeds, vaccines have thus far played a crucial role in slowing down the COVID-
19 pandemic around the world. Therefore, it is an absolute necessity for countries to be able to accu-
rately forecast the distribution of vaccines. This paper uses an Auto-Regressive Integrated Moving Average
(ARIMA) model to analyze and forecast 30 days of COVID-19 vaccine distribution for the United States,
Japan, Taiwan, and China. Specifically, for the United States and Japan, the predicted variable was the
percent of the population that was fully vaccinated while the predicted variable for Taiwan and China was
the total number of doses administered. The data used to fit our model was pulled from a publicly available
dataset compiled from various sources around the world. For each country, the training data consisted of
that country’s vaccination data from whenever they first administered vaccines until July 19, 2021. After
fitting the model on the training data, the model was then tested against 30 days of data from July 20, 2021
to August 18, 2021. The paper found that the univariate ARIMA model was able to, on average, forecast
the distribution of COVID-19 vaccines within 5% of the actual value for each country.

1. Introduction

As of August 24, 2021, the COVID-19 pandemic, caused by the coronavirus SARS-CoV-2, has claimed
the lives of over 4.4 million people worldwide according to Johns Hopkins University [1]. As the virus
continues to spread around the world, the need for vaccines becomes more and more essential with each
passing day. Vaccines made by Pfizer-BioNTech or Moderna are used by the United States, Japan, and
Taiwan, and they are 94% effective against COVID-19 hospitalization among fully vaccinated adults and
64% effective among partially vaccinated adults aged 65 years and older [2]. The Sinovac vaccine, often
used by China, has been shown to have an efficacy of 51% against symptomatic SARS-CoV-2 infection,
100% against severe COVID-19, and 100% against hospitalization [3]. By reducing risk of hospitalization
and slowing the spread of the virus, the vaccines give countries control over the pandemic and protection
for their people. Therefore, the ability to predict and forecast the distribution of vaccines is essential for
healthcare systems to plan ahead and produce the most optimal strategy against the pandemic going forward.
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In this paper, we analyze and forecast the vaccine distribution for the United States, Japan, Taiwan, and
China. For the United States, a country that initially struggled to contain the spread of the virus, the
COVID-19 vaccines became a core part of their campaign against the pandemic. An aggressive push for the
distribution of vaccines allowed for the country to administer over 200 million doses within the first 100 days
of President Joe Biden’s term [4]. Japan, on the other hand, experienced early success in terms of containing
the spread of the virus [5].

However, with the Olympics held in Tokyo during the summer of 2021 and a recent surge in COVID-19
cases, vaccine distribution became a priority for the country [6]. Similarly, during the early months of the
pandemic, Taiwan was one of the most successful countries in terms of suppressing the pandemic. However,
as restrictions began to relax and the island nation struggled to obtain vaccines, there has been a resurgence
of COVID-19 outbreaks [7]. Lastly, China, despite being ground zero for the COVID-19 pandemic, has been
on the forefront of global vaccine distribution [8]. As of June 9, 2021, China has administered nearly 60%
of all COVID-19 vaccine doses globally [9]. Figure 1 shows the daily COVID-19 cases for the United States,
Japan, Taiwan, and China.

Figure 1: Daily COVID-19 cases for the United States, Japan, Taiwan, and China

In recent research, Cihan used Auto-Regressive Integrated Moving Average (ARIMA) models as well to 
predict COVID-19 vaccine distribution on the continental level [10]. Similarly, substantial work has been 
done with forecasting the spread of COVID-19 cases using the ARIMA model. Moftakhar and Seif used 
the ARIMA model to forecast COVID-19 cases in Iran for the next 30 days after March 21, 2020 [11]. 
Marbaniang predicted the trend of COVID-19 cases around India for the next 20 days after March 18, 2020 
using the ARIMA model as well [12]. Perone utilized the ARIMA model to predict cumulative COVID-19 
cases in Italy for a period after April 4, 2020 [13]. ArunKumar et al. used both ARIMA and SARIMA 
models to forecast the epidemiological trends of the COVID-19 pandemic for the 16 countries that account 
for most of the global cumulative cases [14].

The remainder of the paper is organized as follows. Section 2 will provide information on the dataset. Section
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3 describes the methodology used in the paper including imputation, data analysis, model selection, and
model accuracy. The results, which will include the final model for each country as well as its respective
accuracy with the test data, will be provided in Section 4. Subsequent discussion will be in Section 5.
Lastly, the conclusion will be in Section 6 where we discuss the implications and findings of this paper. The
programming language used in this paper was R and we primarily utilized the following packages: ggplot2,
car, forecast, astsa, Metrics, tseries, and imputeTS [15, 16, 17, 18, 19, 20, 21, 22].

2. Data

Table 1: Summary statistics of the predicted variables

Country Min. Q1 Median Mean Q3 Max. SD
USA 0.00405 0.08386 0.25423 0.24803 0.41226 0.48717 0.1682881
Japan 0 0.00617 0.02190 0.05431 0.08399 0.23800 0.06883339
Taiwan 0 28,883 190,414 943,717 1,597,721 5,419,988 1,373,305
China 1,500,000 170,781,750 386,810,000 566,887,983 950,525,500 1,467,316,000 468,608,872

The data is obtained from Our World in Data, and the dataset is compiled from various sources depending
on the country. The data for the United States is obtained from the CDC, the Prime Minister’s Office for
Japan, the National Health Commission for China, and the Taiwan CDC for Taiwan [23]. The data itself
contains daily information regarding COVID-19 vaccinations for 234 countries around the world such as total
doses administered, total number of people that are fully vaccinated, and the daily number of vaccinations.
At the time of writing, the dataset consists of 14 columns and over 42,000 rows. Note that the dataset is
updated daily with new data.

For the United States and Japan, the predicted variable is the percent of the population that is fully
vaccinated. This variable was created by dividing the number of people that are fully vaccinated by the
total population according to the 2020 Census for both the United States and Japan [24, 25]. For Taiwan
and China, due to a lack of data, the predicted variable will be the total number of doses administered. The
data for these variables shown over time is presented in Figure 2 below.

Missingness is often a term used to describe the manner in which data are missing from a sample of a
population [26]. Specifically, with our dataset, we see that the missingness varies by country (see Table 2).
For the United States and Japan, there are relatively few missing values compared to the total length of
the time series with most of the missing values occurring during the earlier days. This missingness would
most likely be due to the fact that during the early days of vaccine distribution, there may not be enough
information to warrant a daily report. On the other hand, Taiwan and China have a comparatively larger
number of missing values. For Taiwan, the missingness is distributed more evenly while China has all of
their missing values occurring during the first half of the time series. Currently, Taiwan has been struggling
to obtain vaccines, so this may be the most likely reason for the missingness in the data. With regards to
China, the National Health Commission may have simply decided not to report the information daily for
the first 108 days or so of the time series. Imputation for these values will be discussed in Section 3. Note
that for the United States and Japan, the first 25 and 21 values, respectively, were missing because there
had yet to be anybody that was fully vaccinated during those days.

Table 2: Summary statistics of missingness in the data

Country Length Missing Values % Missing Bin 1 Bin 2 Bin 3 Bin 4
USA 187 6 3.21% 4 NAs 0 NAs 1 NAs 1 NAs
Japan 132 10 7.58% 10 NAs 0 NAs 0 NAs 0 NAs
Taiwan 121 23 19% 2 NAs 5 NAs 12 NAs 4 NAs
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Country Length Missing Values % Missing Bin 1 Bin 2 Bin 3 Bin 4
China 217 85 39.2% 47 NAs 38 NAs 0 NAs 0 NAs

3. Methodology

3.1 ARIMA

For this paper, we mainly utilized the Auto-Regressive Integrated Moving Average (ARIMA) model to
analyze and forecast the data. First introduced by Box and Jenkins in 1976, the ARIMA(p, d, q) model
is used to forecast time series data by taking into account the data and residual error at previous time
values [27]. Further, it can incorporate possible non-stationarity of the data via differencing. Specifically, an
ARIMA model is essentially broken down into three parts:

1. Auto-Regression (AR) with order p
2. Integrated (I) with order d
3. Moving Average (MA) with order q.

Let yt be the time series data at time t and ϵt ∼ wn(0, σ2) is a white noise series at time t. The AR(p)
model regresses the current variable at time t against the previous p time values as follows:

yt = α + ϕ1yt−1 + ϕ2yt−2 + ... + ϕpyt−p + ϵt

where α is the intercept and ϕi for i ∈ {1, 2, ..., p} are the coefficients of the model. On the other hand, the
MA(q) model regresses the current variable at time t against the residuals at the previous q time values as
follows:

yt = α + θ1ϵt−1 + θ2ϵt−2 + ... + θpϵt−p + ϵt

where α is the intercept and θi for i ∈ {1, 2, ..., q} are the coefficients of the model. The ARMA(p, q) model
then incorporates both AR(p) and MA(q) as follows:

yt = α + ϕ1yt−1 + ϕ2yt−2 + ... + ϕpyt−p + θ1ϵt−1 + θ2ϵt−2 + ... + θpϵt−p + ϵt.

Finally, the ARIMA(p, d, q) model accounts for non-stationarity in the time series data by applying an
ARMA(p, q) model to the time series differenced d times. This is essentially the “integrated” part of the
ARIMA model. A time series value at time t that has been differenced once, y

(1)
t , is defined as follows:

y
(1)
t = yt − yt−1,

and a time series value at time t that has been differenced twice, y′′
t , is defined as follows:

y
(2)
t = y

(1)
t − y

(1)
t−1 = (yt − yt−1) − (yt−1 − yt−2) = yt − 2yt−1 + yt−2.

A time series with d-order differencing has been differenced d times. Note that although yt itself need not
be a stationary time series to fit an ARIMA(p, d, q) model, it is assumed that yt is stationary after d-order
differencing.

3.2 Imputation

Imputation, the acting of filling in missing values in the data, is necessary to reduce bias and improve the
quality of our model. To impute missing values in the data, we utilized the package imputeTS created by
Moritz and Bartz-Beielstein. For each imputation algorithm in imputeTS we did the following:
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Figure 2: Time series plot of the predicted variables for the United States, Japan, Taiwan, and China

1. Impute the dataset (for a given country)
2. Perform an 80-20 split on the dataset for cross-validation
3. Fit the cross-validation training dataset with an ARIMA(p, d, q) model using the auto.arima1 function
4. Test model accuracy with the cross-validation test dataset using MAE and MAPE as evaluation metrics

Note that for an 80-20 split, the training data will consist of the first 80% of days and the validation data
will consist of the final 20% of days. For instance, if there are 100 days of data in total, the first 80 days of
data will be the training data and the final 20 days will be the validation data. For each country, we used
this procedure to pick the imputation algorithm that gave us the best test results from the cross-validation.
After we select an imputation algorithm for a given country, we tune the parameters of the algorithm by
applying the same procedure to a set of parameter candidates.

3.3 Exploratory Data Analysis

Before we fit an ARIMA model, we must first check that the data is either stationary or stationary after
some level of differencing. To do so, we check the autocorrelation function (ACF) plots for each country
(Figure 3).

Upon examination of Figure 3, it is clear that the time series data from each country is not stationary. Thus,
we perform differencing for each dataset in order to produce a stationary time series. For each country, we
tried first order, second order, and third order differencing to determine the order of differencing. Any order
higher than three would cause overdifferencing and thus was not attempted. Second order differencing proved
to be the most effective for each dataset in terms of producing a stationary time series, as evidenced by Figure

1The auto.arima function in the forecast package uses a variation of the Hyndman-Khandakar algorithm to fit an ARIMA
model [18]
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Figure 3: Autocorrelation Function (ACF) plots for the United States, Japan, Taiwan, and China. The
blue dotted lines indicate the 95% confidence bands for autocorrelation. Values higher than the line indicate
statistically significant autocorrelation.
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4. Note that in the context of the vaccination data set, first order differencing produces the daily increase
in the percentage of the population that is vaccinated (or total number of vaccine doses administered) while
second order differencing produces the rate of increase. To further confirm stationarity of the time series, we
examined the ACF plot and ran an Augmented Dickey-Fuller2 (ADF) test as shown in Figure 5 and Table
3, respectively. The adf.test function in the tseries package was used to run the ADF test.

Figure 4: Twice differenced time series plot for the United States, Japan, Taiwan, and China

Table 3: ADF test results for twice differenced data

Country Test Statistic P-value
USA -13.822 < 0.01
Japan -12.559 < 0.01
Taiwan -23.239 < 0.01
China -20.799 < 0.01

It should be important to note that the ACF plot for the United States in Figure 5 exhibits a sinusoidal
pattern which may be an indication of non-stationarity. This pattern continues even as we increase the
order of differencing to three and four (any order higher than four was not attempted in order to avoid
overdifferencing). However, since the differenced time series plot and the Augmented Dickey-Fuller test
indicated strong evidence of stationarity after second order differencing, we deemed the time series data
for the United States to be “stationary enough” for practical use. The reason being that real-world data
can be messy at times, and thus it is unreasonable to expect perfect stationarity from real-world datasets.
Similarly, with the differenced ACF plot for Japan in Figure 5, we see that there is statistically significant
autocorrelation at lags that are multiples of 7 (lags 7, 14, and 21) which may also be an indication of non-
stationary. However, like with the time series data for the United States, we deemed the Japanese time series

2The ADF test tests the null hypothesis that a unit root is present in a time series sample [28]
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Figure 5: Autocorrelation Function (ACF) plot of twice differenced time series for the United States, Japan,
Taiwan, and China
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data to be “stationary enough” as well after examining the differenced time series plot and conducting the
Augmented Dickey-Fuller test.

3.4 Model Selection

For each country, we first fit an ARIMA(p, d, q) model to the dataset using the auto.arima function and
check diagnostics using the sarima function in the astsa package. To determine if the residuals are sta-
tionary, we mainly examine the ACF plot and Ljung-Box statistic plot to check for statistically significant
autocorrelation. An example of satisfactory diagnostics plots is provided in Figure 6.

Figure 6: Diagnostics for an ARIMA(7, 2, 4) model fitted on the USA time series. The top graph is a plot
of the standardized residuals to check the assumption that the residuals are stationary. The middle-left
graph is an autocorrelation function (ACF) plot of the residuals to check if residuals are autocorrelated. The
middle-right graph is a Normal Q-Q plot of the standardized residuals to check if the distribution of the
residuals is normal. The bottom graph is a plot of the p-values for the Ljung-Box statistics. The Ljung-Box
test checks for significant autocorrelation up to specified lags.

If we see that the residuals are not stationary, we then manually select parameters for our ARIMA(p, d, q)
model by looking at the ACF and partial autocorrelation function (PACF) plots for the given country. That
is, by examining the ACF and PACF plots and looking for lag values where there is statistically significant
autocorrelation and partial autocorrelation, respectively, we come up with a set of candidate values for the
orders p and q of the ARIMA(p, d, q) model (d = 2 here since our data is twice differenced). We then try
every combination of (p, 2, q) values until we get satisfactory diagnostics from the residual. If there is more
than one combination that provides satisfactory diagnostics, we then run cross-validation with an 80-20 split
for each of the combinations and pick the combination that provides the best test results in terms of MAPE
and MAE. Finally, we run an ADF test on the residuals to further confirm stationarity. This process is
summarized in Figure 8 in the form of a flowchart.
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Figure 7: Partial autocorrelation function (PACF) plot of twice differenced time series for the United States,
Japan, Taiwan, and China. Partial autocorrelation measures the autocorrelation of different lags conditioning
on the values in between. The blue dotted lines indicate the 95% confidence bands for partial autocorrelation.
Values higher than the line indicate statistically significant partial autocorrelation.

Figure 8: Flowchart of the model selection process
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3.5 Final Accuracy & Forecast

The dataset was obtained on July 19, 2021 and the dataset is updated daily with new data for that day.
The goal of this paper is to evaluate how well the ARIMA model can forecast and predict future values of
vaccine distribution. Thus, to test the accuracy, the models will be fitted on all the data until July 19, 2021
and tested against the incoming data from the 30 days between July 20, 2021 and August 18, 2021. That is,
the models will be tested against 30 “future” days of data in order to determine how well they can forecast
30 days into the future. Once we have tested the accuracy of the model, we fit the model again on all the
data until August 18, 2021 in order to forecast the vaccine distribution for the next 30 days from August 19,
2021 to September 17, 2021.

4 Results

4.1 Imputation

We summarize the results for the imputation selection process in Table 4.

Table 4: Cross-validation results from imputation method selection

Country Method Training MAPE Training MAE Test MAPE Test MAE
USA Next Observation Carried Backward 0.63780% 0.0004656 1.32378% 0.0064919
Japan Spline Interpolation 4.91300% 0.0002662 0.30161% 0.0004777
Taiwan Simple Moving Average 5.02959% 15,491 18.03203% 569,333
China Linear Moving Average 2.71791% 1,333,107 1.81786% 23,253,830

As the name suggests, Next Observation Carried Backward (NOCB) imputes the missing value at time t
with the nearest non-missing value at time t∗ > t. Since NOCB does not have any parameters, there was
no need for additional tuning. For Japan, the main parameter that needed to be tuned for (cubic) spline
interpolation was the specific method of spline interpolation that was used. The resulting method that was
chosen from the procedure described in Section 3.2 was the Forsythe, Malcolm, and Moler (FMM) spline
interpolation [29]. Note that spline interpolation imputes missing values by fitting multiple piecewise (cubic,
in this case) polynomials to the data. For Taiwan and China, the main parameter to tune was the number of
non-missing neighbors, k, to take into account when calculating the moving averages. For instance, a value
of k = 4 means that the moving average is calculated with the two nearest non-missing neighbors on each
side of a given missing value. Note that a simple moving average imputes a missing value with the arithmetic
mean while a linear (weighted) moving average utilizes weights that decrease in arithmetical progression for
its average value. The parameter candidates for both datasets were 2, 4, 6, 8 (1, 2, 3, 4 neighbors on each
side, respectively). For Taiwan, the parameter selected was k = 6 and for China, the parameter selected was
k = 4.

Using the graphing functions in the imputeTS package, we can visualize the imputations in the context of
the original time series. Specifically, in Figure 9 and Figure 10 below, the original data values are shown
with blue circles and the new imputed values are shown with red diamonds.

4.2 Model Selection

The results of the model selection process described in Section 3.4 are summarized below in Table 5.
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Figure 9: Time series plots with imputations shown for the United States and Japan

Figure 10: Time series plots with imputations shown for Taiwan and China 
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Table 5: Cross-validation results of model selection process

Country Model Training MAPE Training MAE Test MAPE Test MAE
USA ARIMA(7, 2, 4) 0.6170833% 0.0004236083 0.9249835% 0.004350111
Japan ARIMA(7, 2, 2) 3.056263% 0.0001943532 1.746194% 0.003066149
Taiwan ARIMA(0, 2, 3) 5.379693% 16,860 13.12162% 517,400
China ARIMA(0, 2, 9) 2.755072% 1,304,621 1.879643% 23,465,862

4.3 Final Accuracy & Forecast

The results of the models tested against the 30 days of test data from July 20, 2021 to August 18, 2021 are
shown in Table 8 below. We compare the scores of the ARIMA models with the scores of corresponding
simple linear regression (SLR) models fitted to the same dataset with time as the independent variable. In
order to increase the accuracy of the regression model for Japan, Taiwan, and China, the output variable is
transformed using the inverseResponsePlot (IRP) function from the car package. The IRP function aims to
improve the fit of a linear regression model by raising the response variable to the power of λ. Specifically,
nonlinear least squares is used to estimate λ in the function Ŷ = b0 + b1Y λ where Y is the response and Ŷ
are the fitted values. This relationship is then visualized by plotting Y on the vertical axis and Ŷ on the
horizontal axis [30].

Table 6: Comparison of final accuracy between ARIMA and SLR

Country Model Final MAPE Final MAE
USA ARIMA(7, 2, 4) 0.1315424% 0.0006598469
USA SLR 14.56898% 0.08595986
Japan ARIMA(7, 2, 2) 1.174482% 0.003836685
Japan SLR with IRP (λ = 0.23) 8.064614% 0.03261154
Taiwan ARIMA(0, 2, 3) 4.805561% 451,903
Taiwan SLR with IRP (λ = 0.08) 30.36361% 4,733,186
China ARIMA(0, 2, 9) 4.261691% 71,481,164
China SLR with IRP (λ = 1

8 ) 29.38651% 747,587,791

Once we have tested the accuracy of the model, we fit the model to the data up until August 18, 2021, and
use the model to forecast a further 30 days into the future. That is, we predict what the vaccine distribution
will look like for the United States, Japan, Taiwan, and China from August 19, 2021 to September 17,
2021. Figure 11 and 12 show the forecasted values of the ARIMA(p, d, q) model for each country with
a blue line while the 80% and 95% confidence intervals are shown with the dark blue and gray shaded
areas, respectively. For the United States and Japan, the models predict that around 54% and 53% of
the respective populations will be fully vaccinated by September 17, 2021. For Taiwan and China, the
models predict that 11,971,830 and 2,247,671,449 total vaccine doses, respectively, will be administered by
September 17, 2021.
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Figure 11: Forecasted values over time (in days) for the United States and Japan. The number of days was
used instead of actual dates for clarity because each country started vaccinations at different dates.

Figure 12: Forecasted values over time (in days) for the Taiwan and China

263



5 Discussion

5.1 Accuracy

For each country, the model is quite accurate in terms of minimizing MAE and MAPE. If we refer to the
MAE column in Table 8, the ARIMA(p, d, q) model for the United States makes, on average, predictions
that are about 0.066% off from the actual percentage of the population that is fully vaccinated. That is
exceptionally accurate when compared to the standard deviation of around 16.8% for the time series from
Table 1. From Figure 13, we see that the model tends to slightly underestimate the values. Similarly, for
Japan with the MAE from Table 8, we see that the ARIMA(p, d, q) model, on average, makes predictions
that are about 0.384% off from the actual percentage of the population that is fully vaccinated. Although
not as accurate as the USA model, the Japan model is still incredibly accurate when compared with the
MAE to the time series standard deviation of around 6.88% (Table 1). From Figure 13, we see that the
model overestimates the values during the last few days. For Taiwan’s ARIMA(p, d, q) model, we see
that, on average, the predictions are off by about 451,903 doses from the actual total number of doses
administered with the test data (Table 8). That gives an average absolute percent error of about 4.81%
with the test data which is not as accurate as the USA and Japan models (Table 8), but still quite accurate
when the MAE achieved is compared to the time series standard deviation of around 1,373,305 (Table 1).
From Figure 13, we see that the model underestimates the values initially, but overestimates the values for
the latter half of the test data. Finally, the ARIMA(p, d, q) model for China performs quite similarly to
the Taiwan model, with an average percent error of about 4.26% (Table 8). Compared to the time series
standard deviation of about 468,608,872 (Table 1), the model is quite accurate as well with an average
absolute error of about 71,481,164 (Table 8). From Figure 13, we see that the model underestimates the
values for most of the test data.

Figure 13: Predicted vs Actual values for the United States, Japan, Taiwan, and China from July 19, 2021
to August 18, 2021
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5.2 Simple Linear Regression

We examine the accuracy of the ARIMA(p, d, q) models further by comparing them with the accuracy
achieved by using simple linear regression (SLR) models. SLR models are often used in practice but they
do not account for the data’s dependence over time. Thus, SLR models provide good context and act as a
baseline to understand the improvement in model accuracy and quality when using time series models like
ARIMA. For each country from Table 8, we see that the ARIMA(p, d, q) models are much more accurate by
examining and comparing the final MAPE and MAE scores for both models. Furthermore, Figure 14 gives
a visualization of the comparison by plotting the predicted values from July 19, 2021 to August 18, 2021
for the ARIMA(p, d, q) models in blue, the SLR models in orange, and the actual values in red. Specifically,
for each country, we see that the SLR model predictions become less and less accurate as the number of
testing days increase while the ARIMA model predictions remain, for the most part, quite close to the actual
values. It is important to note again that the SLR models are not statistically valid. Specifically, the time
dependent nature of the data violates the independence assumption for simple linear regression.

Figure 14: Comparison of ARIMA and SLR for the United States, Japan, Taiwan, and China from July 19,
2021 to August 18, 2021
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5.3 Forecasts

For the United States, the model predicts that the country will have about 54% of its population fully
vaccinated by September 17, 2021. This follows the recent trend of slowdown for the country in terms of
vaccine distribution. Note that 51% of the population have been fully vaccinated as of August 18, 2021.
While it is important that more than half of the population is fully vaccinated, this slowdown in vaccine
distribution could be concerning as schools begin to open up around the country and the more contagious
Delta variant continues to spread [31]. On the other hand, the ARIMA(p, d, q) model for Japan predicts that
the country will have around 53% of the population fully vaccinated by September 17, 2021. Compared to
the United States, this is incredible progress considering that about 39% of the Japanese population are fully
vaccinated as of August 18, 2021 and that the country had a relatively late start in vaccine distribution. This
aggressive push to distribute COVID-19 vaccines and have its citizens protected could be mostly attributed
to the Olympics being held in Tokyo during the summer of 2021 in conjunction with a recent surge in
COVID-19 cases around the country as mentioned in Section 1.

Forecasts from the ARIMA(p, d, q) for Taiwan show steady progress in the 30 days leading up to September
17, 2021 in terms of the total number of vaccine doses administered. With almost 12 million doses predicted
to be administered by September 17, 2021, this progress seems to be mostly attributed to the consistent
supply of vaccines that Taiwan has been receiving from foreign countries and the fact that Taiwan has begun
to distribute their own vaccines as well [32]. Hopefully, this will help Taiwan reach its expectation of having
60% of the population receive at least one dose by October [33]. For China, the ARIMA(p, d, q) model
forecasts that the country will make consistent progress in vaccine distribution with over 2.2 billion doses
predicted to be administered by September 17, 2021. This is not surprising with China administering vaccines
as early as July of 2020 [34]. Further, this indicates that China’s contribution to the global vaccination efforts
of COVID-19 will continue to be substantial.

5.4 Imputation

Certain assumptions must be made about the data set before imputation methods can be implemented.
Specifically, the missing values in the data set must be either Missing Completely At Random (MCAR) or
Missing At Random (MAR) [35]. Upon investigation of each data set and the corresponding vaccination
distribution history for the United States, Japan, and Taiwan, we found that the missingness in each data
set did not appear to be particularly correlated with any variables, observed or unobserved. That is, when
we examined a missing value at a given time, t, we did not find any reason for the data to be missing at
that time when we referred to the corresponding vaccination distribution history. Thus, we are then able to
assume that the missing data for the United States, Japan, and Taiwan are MCAR.

However, it should be noted that the imputations using the simple moving average with the Taiwan data
set failed to maintain the monotonic structure that is expected of the data. While a linear moving average
would have helped maintain the monotonicity in the data, we opted to impute with the simple moving
average instead because it performed better during the method selection phase of the imputation process.
Furthermore, the resulting ARIMA model for the Taiwan data set was still able to produce monotonic
forecasts with accuracy despite the non-monotonic imputations. That being said, it would be interesting
and a possible next step in this research project to see how monotonic imputations using the linear moving
average would affect the resulting forecasts of the ARIMA model.

Furthermore, there is quite a bit of uncertainty from the imputations of the China data set due to the fact
that the entirety of its missingness occurs during the first half of the data set. This lack of data during
the earlier periods of vaccination can be attributed to the fact that China started vaccinations much earlier
than the rest of the world and did not have enough data to be reporting at a daily frequency. In other
words, we can reasonably assume that the missingness is correlated with time, and hence missing at random
(MAR) [35]. Furthermore, the data that was reported came in at a rather consistent frequency, and it did
not exhibit a tremendous amount of activity. The inactivity, along with the MAR assumption and the fact
that the data is monotonic, allows us to be confident in our decision to impute the missing values in the
China data set. Thus, we opted to include the imputed data from the earlier time period in the ARIMA
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model despite the uncertainty because we believed that the imputation could still provide information that
can help model accuracy.

5.5 Model Assumptions

It is important to discuss the assumptions of ARIMA models, especially when applied to monotonic data as
with the case here. Specifically, the ARIMA model does not assume the data to be monotonic, and thus the
forecasted values are not guaranteed to be monotonic. Since the forecasted values produced from our models
exhibited monotonicity and high accuracy, the lack of monotonicity in the ARIMA model assumptions did
not present itself as a major concern with this particular data set. However, it is still worth exploring the
possibilities with a model that explicitly assumes monotonicity. This could be a possible next step for this
research project, and it may yield even better performance along with more robust assumptions.

6 Conclusion

In this paper, we have shown that the ARIMA(p, d, q) model can be exceptionally accurate when it comes
to predicting COVID-19 vaccine distribution for the United States, Japan, Taiwan, and China. From the
MAPE column in Table 8, we see that the ARIMA(p, d, q) models are, on average, able to make predictions
within 5% of the actual value for each country. This forecasting power can be helpful for policy makers
and healthcare workers to make decisions that would optimize COVID-19 vaccine distribution and protect
people against this pandemic. For instance, by knowing how many vaccine doses will be administered in 30
days, Taiwan would be able to plan ahead and figure out how to properly distribute their limited supply of
vaccines. Another example would be if Japan was able to know how much of their population would be fully
vaccinated for the Olympics a month ahead of time. Having that prior knowledge perhaps would have led
to better preparation for the quadrennial event.

Furthermore, the ARIMA(p, d, q) model, although a fundamental and time-tested model, is relatively simple
compared to other tools in time series analysis. While incredibly accurate with predicting vaccine distribu-
tion, there is still plenty of room to improve. Specifically, the ARIMA(p, d, q) models for Taiwan and China
are not quite as accurate as the models for the United States and Japan. From the MAPE column in Table
8, we see that the models for Taiwan and China make, on average, predictions within 4-5% of the actual
value while the models for the United States and Japan make, on average, predictions within 0.15% and 1.5%
of the actual value, respectively. This difference in accuracy can be quite large especially when considering
that the total number of vaccine doses are in the millions for Taiwan and in the billions for China. Thus,
a reasonable next step would be to try more time series models in order to see how well we can increase
the accuracy of the predictions. For instance, the Long Short-Term Memory (LSTM) model is often used
to forecast COVID-19 cases as well as other various time series data. The toolbox of time series analysis is
quite vast, so there is potential for improving the accuracy of predictions for Taiwan and China.
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