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Abstract. Multi-agent systems have found wide applications in science and engineering ranging from opinion
dynamics to predator-prey systems. A grand challenge encountered in these areas is to reveal the
interaction laws between individual agents leading to collective behaviors. In this article, we consider
a system of ODEs that is often used in modeling opinion dynamics, where the laws of the interaction
are dependent on pairwise distances. We leverage recent advancements in sparsity-promoted algo-
rithms and propose a new approach to learning the interaction laws from a small amount of data.
Numerical experiments demonstrate the effectiveness and robustness of the proposed approach in a
small, noisy data regime and show the superiority of the proposed approach.

1. Introduction. Multi-agent systems are ubiquitous in science and engineering. The
individual interactions among agents produce a rich variety of compelling patterns, such as
crystallization of particles, clustering of peoples’ opinions, and coordinated movements of ants,
fish, birds, or cars. However, the interaction laws of agents often remain elusive. It has been a
long-standing problem in various disciplines to reveal the links between the collective behavior
and the individual interaction laws [3, 15, 19, 9].

A common belief in scientific discovery is that complicated collective behaviors are con-
sequences of simple interaction rules. In the mathematical modeling community, there have
been tremendous research efforts to model collective dynamics using interaction laws based
on pairwise distances. Researchers derive the governing equations for multi-agent systems by
combining the fundamental physical law with relatively simple parametric families of elemen-
tary interaction functions. The goal is to find certain conditions on the interaction functions
such that the underlying dynamical systems are well-posed and the asymptotic behavior of
the solutions reproduce similar qualitative macroscopic patterns as observed in reality, such
as flocking [7], crystallization [12, 20], clustering[10, 4, 17], and milling [6, 1, 2].

Recent rapid advancements in data information technology (especially in digital imaging
and high-resolution lightweight GPS devices and particle tracking methods) allow gathering
high-resolution trajectories of individual agents. This inspires the urgent need for devising
efficient data-driven methods to uncover the governing interaction laws. The objective is to
turn data into interaction functions that are not just predictive, but also provide physical
insight into the nature of the underlying system from which the data was generated. Sparse
regression techniques have drawn a lot of recent attention since many complex systems have
simple algebraic representations corresponding to a sparse representation in high dimensional
nonlinear functional spaces. By applying sparse regression to dynamical systems, we may de-
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termine the fewest terms in the dynamic governing equations required to accurately represent
the data. This results in parsimonious models that balance accuracy with model complexity
to avoid over-fitting.

In this work, we leverage the recent advancement in the mathematical modeling of multi-
agent systems and sparse regression techniques for identifying nonlinear dynamical systems
called ”SINDy” (Sparse Identification of Nonlinear Dynamics) [5]. We consider the data-
driven discovery of interaction laws in a family of homogeneous agent systems that are derived
from fundamental physical laws with an unknown interaction function modeling the pairwise-
distance-based interactions. We propose sparsity-promoting techniques to approximate or
discover the interaction functions from a large library, i.e., a set of candidate functions.

1.1. Relevant Work. This work is built on the recent progress on the data-driven discov-
ery of interacting particle system [14, 21, 13], where a least square regression approximation is
applied to learn the interaction kernel φ from trajectory data. One can also refer to [11, 16] for
recent advancements on the mean-field equation. In particular, [16] proposed a weak SINDy
approach to identify the interaction kernel in the mean-field equation from the particle data.

1.2. Our Contribution. Using a similar spirit in [5], we formulate the learning problem
as a sparse regression problem. We use both the Sequential Least Square (SLS) and the Least
Absolute Shrinkage and Selection Operator (LASSO) approach, as done in [5], to solve the
corresponding sparse regression problem. We conduct an extensive numerical study. The
numerical results support the effectiveness and robustness of the proposed approaches to
opinion dynamics. In particular, we perform the comparison with the Least Squares estimator
proposed in the previous work [14]. The numerical results show the superiority of leveraging
the sparsity. We remark that our learning approach is different from [5]. In [5], one looks for
the sparse coefficient for each row of the governing equations in a common dictionary. Here,
our governing equations are coupled and connected by the interaction law, or kernel, φ. We
look for the sparse coefficient vector for φ. Then together with the structure of the governing
equations, one learns the form of the governing equations.

2. Problem Statements.

2.1. Formulation of Sparse Regression Problem. We start with a first-order homoge-
neous agent system consisting of N agents in R

d, interacting according to

(2.1) ẋi(t) =
1

N

N∑
i′=1

φ(‖xi(t)− xi′(t)‖)(xi(t)− xi′(t)),

where i = 1, 2, ..., N ; xi(t) ∈ R
d is the state of the ith particle; ‖xi(t)−xi′(t)‖ is the Euclidean

norm, and φ is the interaction law.
The form of the governing equation is derived using the Newton’s second law where the

mass of agents is assumed to be zero. The evolution of agents is governed by minimizing the
potential energy function, depending on pairwise distance,

U(x1, · · · ,xN ) =
1

2N

N,N∑
i,i′=1,1

Φ(‖xi − xi′‖)

2
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so that the interaction force is the derivative of the potential function U and φ(r) = Φ′(r)
r

.
This kind of system has found applications in modeling opinion dynamics in social science
[18, 8].

In modeling problems, a key challenge lies in the choice of φ to induce the desired collective
behaviors, since we have very limited knowledge of the underlying complex system and there
is no canonical choice of potential functions for many complex agents systems. One important
observation is that many ad-hoc potential functions that have found successful applications
have extremely simple parametric forms, such as the Leonard Jones potential in the form of
Φ(r) = A

rp
− B

rq
(p, q are some positive integers) and the power-law potential in the form of

Φ(r) = Cr−p, where A,B,C are constants. In our numerical section, potentials involving
both polynomials and sinusoidal terms, like (3.2), are considered. They typically take the
form of a linear combination of only a few items, as opposed to an infinite series, making it
sparse in the space of possible functions. This inspired the idea of using the sparse regression
techniques to look for a sparse representation of φ in a large library of candidate functions.

2.1.1. Observational data regime. We consider the observational data consisting of posi-

tional and velocity data, {x
(m)
i (tl), ẋ

(m)
i (tl)}

N,M,L
i=1,m=1,l=1. There are four parameters controlling

the size of data: L denotes the instances of time 0 = t1 < t2 · · · < tL = T ; M denotes the
number of trajectories, and N, d denote the number of agents in R

d. The initial positions for
each trajectory are drawn i.i.d from a probability measure μ0 = Unif([0, 10]Nd) defined on the
state space R

dN ,i.e., the uniform distribution over a cube with the side length 10.
For demonstration purpose, we begin with the case of M = 1 and show how this learning

problem can be formulated as a sparse regression problem. In this case, we collect the time
history of one trajectory, X(t) =

[
x1(t), · · · ,xN (t)

]
∈ R

dN and either measure its derivative

Ẋ(t) ∈ R
dN or numerically approximate it. The trajectory data for each agent is sampled at

different time instances t1, t2, · · · , tL, and organized into state vector X and velocity vector
Ẋ, which contain all agents evolved over time :

(2.2) X =

⎡
⎢⎣
X(t1)

...
X(tL)

⎤
⎥⎦ ∈ R

dNL and Ẋ =

⎡
⎢⎣
Ẋ(t1)

...

Ẋ(tL)

⎤
⎥⎦ ∈ R

dNL

Next, we construct a library Θ consisting of candidate nonlinear functions , {ϕ1(r), · · · , ϕn(r)},
where r belongs to the domain of pairwise distance among agents. For example, say Θ =
{1, r, r2, · · · , r10, sin r, cos r, · · · , sin(10r), cos(10r)}. For any 1D function ϕ defined in the pos-
itive axis of the real line, we introduce a map f so that fϕ defines an interaction force field of
the same form with the right hand side of (2.1) where we replace φ with ϕ. In other words,
for X(t) ∈ R

dN , the i−th component of fϕ(X(t)) ∈ R
dN is written as

[fϕ(X(t))]i =
1

N

N∑
i′=1

ϕ(‖xi(t)− xi′(t)‖)(xi(t)− xi′(t)) ∈ R
d,

which is used to construct

fϕ(X) = [fϕ(X(t1))
�, fϕ(X(t2))

�, · · · , fϕ(X(tL))
�]� ∈ R

dNL(2.3)
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for each ϕ. Then we build the dictionary matrix

fΘ(X) =

⎡
⎣ · · ·
fϕ1

(X) fϕ2
(X) · · · fϕn(X)

· · ·

⎤
⎦ ∈ R

dNL×n.(2.4)

where n is the number of candidate functions ϕ in the library Θ. A crucial note is that if φ has
a sparse representation in Θ, then so does the interaction force function fφ in the dictionary
fΘ. Leveraging this observation, we may set up a sparse regression problem for learning φ by
solving the system of equations

Ẋ = fΘ(X)c,(2.5)

where c is a sparse vector of coefficients that determine which nonlinear functions are included
in the approximation.

Realistically, often only the data X is available, and Ẋ must be approximated numerically,
via the finite difference method or something similar. We will also investigate the case where
our data is contaminated with noise, solving the noise perturbed version of (2.5):

Ẋ = fΘ(X)c+ σZ,(2.6)

where Z is a matrix of independently identically distributed Gaussian entries with zero mean,
and σ is the noise magnitude and we assume that Z is also independent of μ0. The noise
model we adapt here can be viewed as a discretization of corresponding SDEs (Stochastic
Differential Equations) with homogeneous Brownian noise and is used to model the random
effects of the environment on the measurement of velocities. We point out that this assumption
has appeared in [5].

In both cases, the sparse regression problem can be formulated as

argmin
c∈Rn,c sparse

1

N
‖Ẋ− fΘ(X)c‖2.(2.7)

The above formulation can be easily generalized if we have multiple trajectory data starting
at different initial conditions, which we shall specify it below. Now consider for general M , we

have X(m)(t) =
[
x
(m)
1 (t), · · · ,x

(m)
N (t)

]
∈ R

dN and its corresponding derivative Ẋ(m)(t) ∈ R
dN

, where 1 ≤ m ≤ M . Then, for each trajectory, the state and the velocity matrix are

(2.8) X(m) =

⎡
⎢⎣
X(m)(t1)

...

X(m)(tL)

⎤
⎥⎦ ∈ R

dNL and Ẋ(m) =

⎡
⎢⎣
Ẋ(m)(t1)

...

Ẋ(m)(tL)

⎤
⎥⎦ ∈ R

dNL,

which are combined to form

(2.9) X =

⎡
⎢⎣
X(1)

...

X(M)

⎤
⎥⎦ ∈ R

dNML and Ẋ =

⎡
⎢⎣
Ẋ(1)(t1)

...

Ẋ(M)(tL)

⎤
⎥⎦ ∈ R

dNML.
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Then, the sparse regression problem becomes

argmin
c∈Rn,c sparse

1

NM

M∑
m=1

‖Ẋ(m) − fΘ(X
(m))c‖2,(2.10)

where the function library Θ and dictionary matrix fΘ(X
(m)) is defined as in (2.3). The (2.10)

can be further simplified to

argmin
c∈Rn,c sparse

1

NM

M∑
m=1

‖Ẋ− fΘ(X)c‖2,(2.11)

where fΘ is applied component wise to X so that fΘ(X) ∈ R
dNML×n.

2.2. Methodology for Solving the Sparse Regression Problem. Let X ∈ R
m×n, Y ∈

R
n, β ∈ R

m. In this section, we review the approaches that find the sparse solution β such
that

(2.12) Xβ ≈ Y.

2.2.1. Least Squares (LS). In the first regression method, the key in the calculation of
the coefficient vector is the matrix division. The equation (2.12) is solved as a system of linear
equation. For M = 1, we used the “\” command in MATLAB to find the coefficient vector.
For M ≥ 2, we solve (2.10) by finding the normal equation and obtain the coefficient vector
via

c =

( M∑
m=1

L∑
l=1

(fΘ(X
(m)(tl)))

T fΘ(X
(m)(tl))

)†( M∑
m=1

L∑
l=1

(fΘ(X
(m)(tl)))

T Ẋ(m)(tl)

)
,

where the inverse (−1) is chosen as the pseudo-inverse (†) in the code. Note that Least
Squares is not a sparsity promoting technique, though it is used as a comparison to show the
importance of sparsity promoting.

2.2.2. Sequential Least Squares (SLS). Sequential Least-Squares or sequential threshold
least-squares is a modified version of Least Squares. An initial guess β is made by taking the
Least Squares. As a result, SLS would perform very well if β is close enough to the true
coefficient vector. Next, the algorithm checks for any coefficients in the coefficient vector
that are below a selected threshold λ. Functions corresponding to these small coefficients
are removed from the approximation by setting the coefficients exactly to zero and the Least
Squares approximation is performed again and again with the remaining functions fϕ. After
no coefficients are below the threshold, the coefficient vector has been found. Note that, we
pick the value of λ in the range from 1 × 10−13 to 1 (1 is not included), because λ larger
than 1 would remove significant coefficients, and a threshold below than 1×10−13 would offer
limited help since it is close to the machine precision. To find the fitting λ, we pick 50 values
from this range, where the log of these λ’s are equally spaced in the log range from -13 to 0.
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Then, for each example or setting that uses SLS in the Numerical Section, we run through
all the 50 λ’s to select the one with smallest error, defined in equation (3.1). We repeat the
above procedure about 20 times to get a set of λ′s with smallest error. Then, we use the
mean of this set as our threshold in SLS for that specific setting. In practice, one can use the
cross-validation approach described in [5] to pick λ. Here our rationale is to find λ in a range
of values that yields best performance as a SLS estimator. We will show even in this case,
they are not as good as Lasso estimators in data regime we considered.

2.2.3. Least Absolute Shrinkage and Selection Operator (LASSO). The Least Abso-
lute Shrinkage and Selection Operator is a sparse regression technique that uses an L1-norm
penalized term to balance model complexity with accuracy. In contrast to Least Squares
regression, which returns only nonzero coefficients, LASSO can ensure that the β vector is
sparse. Section 3 can be referenced to show a concrete example of the difference between Least
Squares and LASSO regression. LASSO finds a sparse coefficient vector β by minimizing

‖Y −Xβ‖22 + λ‖β‖1.

In our code, we used MATLAB built-in 2-fold cross validation, where cross-validation is a
method of segmenting data randomly to perform the regression on multiple data subsets for
higher accuracy.

3. Numerical Results.
Numerical Setup. We consider a system with N agents in R

d, and observe M trajectories,
where the initial condition for each trajectory is sampled i.i.d according to the probability
measure μ0 = Unif([0, 10]Nd). We generated trajectory data over the time interval [0, T ] at L
equidistant time instances. All systems are evolved using ode15s in MATLAB with a relative
tolerance at 10−5 and absolute tolerance at 10−6. Across all experiments, the parameters listed
below remained constant, and we pick the value of threshold λ in SLS as the way described
in section 2.2.2. The software used in this experiment is made available here 1.

Choice of Dictionary. In our numerical examples, the dictionary consists of single variable
monomial functions and trigonometric functions. We selected a wide dictionary, 806 functions
so that the regression was not feasible by manual calculation. We also restricted monomial
functions to have exponents less than or equal to 5, rp, p ≤ 5, because MATLAB has a
numerical limit of 264. As bounded functions, trigonometric functions are not impeded by
this numerical limit.

• The specific library is

{1, r, ..., r5, sin(r), sin(2r)..., sin(400r), cos(r), cos(2r), ..., cos(400r)}.

The large size of the dictionary decreases the probability of accidentally correct approxima-
tions. In this wide dictionary, the regression methods are forced to test more functions. That
means that the regression method that performs best with the large dictionary will be the
regression method that can perform even without intimate knowledge of the characteristic
functions of a system.

1https://github.com/TomDongyangLi/HomogeneousSparseLearning
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Evaluation Metrics. To evaluate the performance, we choose different number of agents N ,
different sample sizes M,L, and various noise levels σ; for each choice of {d,N,M,L, σ}, we
report the results using the following metrics:

• Interaction Kernel Estimation. Performance of the regression techniques is seen
primarily in the magnitude of the error norm of the true coefficient vector β and the
approximate coefficient vector β̂ as

(3.1) E
β̂
=

‖β − β̂‖

‖β‖
.

We chose to calculate the relative error E
β̂
as it is the standard practice among the

scholars in the field. The threshold for a successful coefficient approximation is E
β̂
<

1 · 10−4.
• Trajectory Prediction. We compare the discrepancy between the true trajectories
(evolved using φ) and approximated trajectories (evolved using φ̂) using the relative
max-in-time trajectory error over time interval [T0, T1] that is defined as

∥∥∥X− X̂

∥∥∥
‖X‖

∣∣∣∣∣∣
TM([T0, T1])

=
supt∈[T0,T1]

∥∥∥X(t)− X̂(t)
∥∥∥

supt∈[T0,T1] ‖X(t)‖
.

3.1. Interaction Law as Linear Combination in Library. We consider the interaction law
given by

(3.2) φ(r) = r + 2 sin(r)− 4 cos(2r),

which is a continuous function. The studied model find applications in opinion dynamics
[14, 17] where φ is often chosen as a positive function bounded above by 1. In our example, φ
models short range repulsion and long range strong attraction, which can model aggregation
of particles. Then the true coefficient vector β, with a length of 806, for the given library is

(3.3) β(2) = 1, β(7) = 2, β(408) = −4, else β(n) = 0,

The true interaction law is displayed in Figure 1.
In this example, we choose the training time interval [0, 0.5]. The settings of the system are

determined by the parameters {d,N,M,L, σ}. We have a linear system of size dNML× 806
and therefore it is underdetermined as long as dNML < 806. We remark that the values of
φ are not observed directly (we only observe a functional value of φ). Even in the case where
dNML ≥ 806, it is still a possible ill-posed problem. We refer the reader to [13] for the detailed
analysis from the perspective of the inverse problem. We are interested in sparse, noisy data
regimes, where the regression methods have fewer data to make their approximations, making
the approximations more difficult to complete.

3.1.1. Constant Parameters Experiment.
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Figure 1. Within the bounds of 0 ≤ r ≤ 10, this interaction law has a minimum value of -4 and a maximum
value of 13.8. This law is a continuous function over the bounds, and there are 6 inflection points,

Experiment with a set of noise-free data. We began with dNML = 240 to find how little
data could be provided to a regression method while still performing an accurate approxi-
mation. Specifically, the first system used the settings {d,N,M,L, σ} = {2, 10, 4, 3, 0}. This
system was tested with ideal data capture, i.e., the position and velocity data are exact. Later,
the noise is added to velocity observations to simulate a realistic setting. Note that following
the procedure described in section 2.2.2, we have selected λ to be 2.23× 10−4 in SLS.

The interaction law is oscillatory and increases on average. The bounds of the interaction
law within the domain of 0 ≤ r ≤ 10 are −5 < φ(r) < 15.

Numerical results interpretation. In the ideal data case, only the LASSO regression could
provide a satisfactory approximation of the interaction law. The Figure 2 makes it glaringly
obvious that the LS and SLS methods have significant approximation errors, and we impute
the failure of SLS to the fact that LS provided a poor initialization. Both the LS and SLS
approximations exist far beyond the bounds of the interaction law. This large error can
be attributed to the number of the nonzero coefficients of the LS and SLS approximated
coefficient vector, β̂. There are 3 nonzero terms in the true interaction law out of the 806
available functions in the library. For the chosen regression methods’ β̂, SLS and LS failed to
produce sparse solutions. One can refer to Table 1 for numerical errors of three estimators.
The errors E

β̂
of LS and SLS is much larger than the one of LASSO regression. So in the

setting {d,N,M,L, σ} = {2, 10, 4, 3, 0}, LASSO has the best performance. To confirm the
performance of the approximations, we have plotted the trajectories for a given system of
particles with the approximated interaction laws.

The Figure 3 is a collection of trajectory visualizations for this noise-free scenario. The top
left plot is the visualization of the trajectory of the training IC (Initial Conditions) using the
true interaction law. The top-right plot is the visualization of the trajectory of the training IC
with the LASSO regression approximation. The regression was performed over data collected
from the time interval [0, 0.5] but the trajectory displayed is on time interval [0, 10]. This
means that the interaction law learned over the smaller initial interval [0, 0.5] was used to
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Figure 2. In these 6 plots, the true interaction law is overlaid by the approximated interaction law from the
3 regression methods. The top 3 graphs are the approximations of the ideal data capture scenario. The bottom
3 graphs are the approximations in a system where 0.001 noise is added to data capture. The graphs from left
to right are LS, SLS, and LASSO approximations. LS and SLS approximations have many fluctuations and
larger magnitudes than the true interaction law. LASSO can perfectly mimic the original interaction law.

Table 1
The normalized coefficient error of LS, SLS and LASSO estimators in Figure 2

Regression Method Ideal System E
β̂

Noisy System E
β̂

Least Squares 3.4 · 102 6.9 · 102

Sequential Least Squares 2.3 · 102 3.7 · 102

LASSO 9.4 · 10−16 4.0 · 10−5

predict the trajectory in the larger second time interval [0.5, 10]. These two plots are visually
identical, so LASSO was able to properly approximate the trajectory over the learning time
interval [0, 0.5], and was also able to predict the trajectory over the prediction time interval
[0.5, 10]. Trajectory visualization was also performed for the LS and SLS methods, but these
methods were entirely unable to provide a proper approximation. These plots have been
omitted.

The bottom two graphs are also trajectory visualizations. The bottom left is a trajectory
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Table 2
The trajectory prediction errors of LS, SLS and LASSO estimators in Figure 3

Regression Method Training IC [0, 0.5] Training IC [0.5, 10] New IC [0, 0.5] New IC [0.5, 10]

Least Squares 4.2 · 10−1 4.7 · 10−1 3.2 · 10−1 3.6 · 10−1

Sequential Least Squares 4.2 · 10−1 4.8 · 10−1 3.2 · 10−1 3.6 · 10−1

LASSO 2.7 · 10−13 5.1 · 10−13 2.0 · 10−13 3.1 · 10−13

visualization with the given interaction law on a new set of initial data, the New ICs. The
bottom right is the trajectory visualization of the New ICs using the same approximation
of φ(r) from the original ICs. This means that the previous LASSO estimator generalizes
well: when given a new system, LASSO was still able to properly approximate the trajectory.
However, SLS and LS again had no ability to properly approximate the trajectory. Again,
the plots for these two methods have been omitted. From this figure, we can understand that
incorrect approximations of the β̂ like the ones for SLS and LS are unable to produce proper
trajectories for an evolving system. One can refer to Table 2 for the trajectory prediction
error of three estimators.

2.0 4.0 6.0 8.0

2.0
4.0
6.0
8.0

0

T

T
f

2.0 4.0 6.0 8.0

2.0
4.0
6.0
8.0

0

T

T
f

2.0 4.0 6.0 8.0

2.0
4.0
6.0
8.0

0

T

T
f

2.0 4.0 6.0 8.0

2.0
4.0
6.0
8.0

0

T

T
f

Figure 3. Trajectory predictions produced by the LASSO estimator. Each line shows the evolution of the
position ( represented in 2D coordinates) for an agent in time interval [0, 10]. Top two panels are the true
dynamics (left) and trajectory prediction by LASSO estimator (right) given an initial condition chosen from
training data . Bottom two panels are the true dynamics (left) and LASSO-predicted trajectory given a new
initial condition. The color bar (from blue to green) represents the start, t = 0, and ending point (displayed as
green dots at the center of each panel), t = Tf , of the trajectory. The black dots indicate the time t = T = 0.5.
One can refer to Table 2 for numerical trajectory prediction errors for three estimators.
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Experiment with a set of noisy data. To see the quality of these approximations in more
practical situations, we add additive noise to the velocity data. Specifically, we chose Z in
(2.6), to be the standard Gaussian vector with the unit variance, and we set σ to be 10−3.
This amount of noise was chosen to have a definite impact on the approximation, but not such
a large noise that no approximation could be made. This experiment was executed for the
same parameters {d,N,M,L}, though different initial conditions were used. This experiment
also uses the same interaction law as in the ideal data capture experiment. We expected the
addition of noise to bring more error into the approximations. Also, the value of λ in SLS is
5× 10−2 for this setting.

Numerical results interpretation. Similar to the noise-free experiment, only LASSO regres-
sion was successful, and the LS and SLS regression methods again included most of the
candidate functions to build the coefficient vector.

However, in calculations, LASSO’s precision was reduced significantly as well. In this
noisy scenario, the LASSO method found an error around 10−5, this approximation is still
considered a success. However, the increasing magnitude of the error suggests that there is a
limit to how much noise can be added to a system before LASSO also fails. LS and SLS also
had an increase in the magnitude of E

β̂
in their systems, though not as sharp an increase as

in the LASSO case. As seen by the Figure 2 plots, there is no improvement in these SLS and
LS approximations of φ(r), and the SLS plot appears to have larger fluctuations in the noisy
case. The LASSO approximation does not visibly appear to have less accuracy. In this noisy
system, LASSO is the superior method of approximation.

3.1.2. Successful Rate of Recovery for Varying M .
Experiments with varying M . We then sought to calculate the success rate of each method

as the size of observational data varies. Now we fix other parameters except for M and run the
experiment for 100 independent trials. We say that a reconstruction of the kernel is successful if
the relative reconstruction error, E

β̂
, is below 10−4. We count how many trials yield successful

reconstructions for three methods and calculate the corresponding probabilities. The results
are summarized in Figure 4: the left panel is for noise-free data and the others are for noisy
data.

Numerical results discussion. In the ideal data scenario, LASSO has a nonzero successful
rate even at M = 1 and reach 100% when M = 15. SLS and LS succeed as the M rise in this
experiment, where SLS succeeds sooner than LS. SLS reaches 100% at M = 25, so LASSO can
provide a certain approximation of the interaction law with 60% of the data. Another notable
difference is that LASSO reaches near certainty while the system is still underdetermined, but
SLS and LS reach near certainty after dNML > 806. In the noisy scenario, for both thresholds
(10−4 and 10−2), LASSO and SLS improve similarly to the ideal data scenario as M increases.
With the standard threshold 10−4, LS is unable to have any success. It begins and ends the
experiment with no successful trials. With a looser threshold 10−2, LS is certainly successful
when M is above 40. We observe that, if the reconstruction error of LS is sufficiently small,
then SLS could produce a very accurate reconstruction.

One thing to note is that LASSO succeeds at M = 15 during the ideal case, but at the
smaller M = 3 with noise σ = 5 ·10−4 under both thresholds. We impute this phenomenon to
the randomness of the data. The existence of noise should enlarge the relative reconstruction
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Figure 4. This graphic displays probability of successful reconstruction by the three regression methods as
M increases. The experiment settings are {d,N,M,L}={2, 10,M, 3}, where 1 ≤ M ≤ 4,M = 5 : 5 : 30. The
training time interval is [0,0.5]. The green dot, purple square, and blue diamond lines are representing the
LASSO, SLS, and LS regression methods respectively. The left graphic is a system where there is no noise, the
following two graphics are systems with noise level σ = 5 · 10−4. In these noisy cases, M has been extended, so
1 ≤ M ≤ 4,M = 5 : 5 : 50. The middle shows the probability of success if the relative reconstruction error is
below 10−4, and the right graph shows the success rate if the error is below 10−2.

error, which means LASSO should need higher M in the noisy case than in the ideal case.
LS and SLS decrease in accuracy with added noise. SLS success rate increases as M rises

and requires a higher M in the noisy case as opposed to the ideal case.

3.1.3. Experiments over Varying d,N,M,L, σ.
Varying Parameters Experiment. In previous sections, LASSO has been shown as a strong

regression method for the interaction law φ(r) = r + 2 sin(r) − 4 cos(2r). To collect more
evidence, we tested in this section with various settings such as more particles, increasing
noise, and increasing quantity of initial conditions. The tables are generated by the method
with the best performance. In this case, it is always LASSO.

In the following Table 3, we display the normalized coefficient vector approximation error
of LASSO regression for the given parameters. The results are the mean and standard devia-
tion of E

β̂
’s calculated by 100 independent trials with i.i.d initial conditions sampled from μ0.

To further test LASSO performance in approximating the interaction law, we calculated the
trajectory prediction error of LASSO over different parameters. The approximation is calcu-
lated within the training window of [0, T ], the prediction is made in the window of [T, Tf ].
This prediction is called the trajectory approximation. Shown in Table 4, the results are the
mean and standard deviation of trajectory prediction errors for the same 100 independent
trials in calculating coefficient approximation error.

Numerical results interpretation. In Table 3, the top 7 lines are for N = 10 and the next
8 lines are for N = 15. In both sections, an increase in M will improve the accuracy of the
approximation E

β̂
. The relative coefficient error drops significantly until it reaches the level

of 10−15. The existence of noise increases the error from 10−15 past 10−4. Considering the
threshold for a successful trial is 10−4, this suggests the noise threshold is below 0.01. Also,
in the N = 15 case, the impact of L on the regression was considered. The increase does force
an improvement in accuracy, as seen by the lowest E

β̂
= 6.4 · 10−16, which can be considered

as zero since machine precision is in 10−16.
In Table 4, the pattern of trajectory error follows the pattern of coefficient error in Table
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Table 3
Means and standard deviations of kernel reconstruction errors for different settings

{d,N,M,L, σ} E
β̂

{2, 10, 1, 3, 0} 9.7 · 10−1 ± 4.3 · 10−1

{2, 10, 2, 3, 0} 4.6 · 10−2 ± 2.0 · 10−1

{2, 10, 3, 3, 0} 4.9 · 10−3 ± 4.9 · 10−2

{2, 10, 5, 3, 0} 8.6 · 10−16 ± 4.7 · 10−16

{2, 10, 5, 3, 0.05} 1.5 · 10−3 ± 9.0 · 10−4

{2, 10, 5, 3, 0.01} 2.9 · 10−4 ± 1.5 · 10−4

{2, 10, 5, 3, 0.005} 1.5 · 10−4 ± 8.2 · 10−5

{2, 15, 1, 3, 0} 3.8 · 10−1 ± 5.6 · 10−1

{2, 15, 2, 3, 0} 1.6 · 10−15 ± 1.8 · 10−15

{2, 15, 3, 3, 0} 1.4 · 10−15 ± 1.4 · 10−15

{2, 15, 5, 3, 0} 1.3 · 10−15 ± 1.1 · 10−15

{2, 15, 5, 3, 0.05} 1.8 · 10−3 ± 9.8 · 10−4

{2, 15, 5, 3, 0.01} 3.4 · 10−4 ± 2.1 · 10−4

{2, 15, 5, 5, 0} 6.8 · 10−16 ± 3.6 · 10−16

{2, 15, 5, 11, 0} 6.4 · 10−16 ± 3.3 · 10−16

3. A similar theme was seen in Table 3, where an increase in noise would decrease the ac-
curacy of the experiment. This sharp rise can be attributed to the magnitude of the noise.
The apparent limits of the accuracy, in this case, were around 10−12. What is shocking is
that there were instances like line 2 and line 9 that had better accuracy in the new initial
conditions than the training initial conditions. However, the standard occurrence was that
the trajectory approximation during the training interval [0, T ] was more accurate than the
trajectory approximation during the prediction interval [T, Tf ]. Also, the trajectory approxi-
mation was more accurate during the original Training IC than the trajectory approximation
for the New IC. However, these differences were not large, almost always within the same
order of magnitude. This performance shows that a LASSO approximation of an interaction
law learned from one set of data then can be used to accurately predict the future of that set
or can be used to describe the evolution of the second set of data.

From these tables, we again conclude that LASSO is the most effective manner of regression
in these underdetermined systems.

3.2. Interaction Law Out of the Dictionary. In this example, we consider the interaction
law given by

(3.4) φ(r) = e−r,
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Table 4
The mean and standard deviations of trajectory prediction errors for selected lines of Table 3

{d,N,M,L, σ} Training IC [0, 1] Training IC [1, 10] New IC [0, 1] New IC [1, 10]

{2, 10, 1, 3, 0} 1.0 · 10−1 ± 8.0 · 10−2 1.1 · 10−1 ± 1.0 · 10−1 2.1 · 10−1 ± 6.1 · 10−2 2.6 · 10−1 ± 7.3 · 10−2

{2, 10, 2, 3, 0} 5.8 · 10−3 ± 2.5 · 10−2 9.0 · 10−3 ± 4.3 · 10−2 3.8 · 10−12 ± 1.8 · 10−11 8.0 · 10−12 ± 5.3 · 10−11

{2, 10, 3, 3, 0} 1.1 · 10−4 ± 1.1 · 10−3 1.3 · 10−4 ± 1.3 · 10−3 2.1 · 10−12 ± 6.4 · 10−12 4.0 · 10−12 ± 1.2 · 10−11

{2, 10, 5, 3, 0} 4.1 · 10−12 ± 2.8 · 10−12 9.8 · 10−12 ± 9.6 · 10−12 5.6 · 10−12 ± 4.3 · 10−12 1.1 · 10−12 ± 6.0 · 10−12

{2, 10, 5, 3, 0.05} 7.6 · 10−4 ± 1.6 · 10−3 4.7 · 10−3 ± 2.5 · 10−2 1.2 · 10−3 ± 2.4 · 10−3 7.5 · 10−3 ± 3.0 · 10−2

{2, 10, 5, 3, 0.01} 3.9 · 10−4 ± 1.0 · 10−3 2.3 · 10−3 ± 1.5 · 10−2 3.2 · 10−4 ± 1.0 · 10−3 2.7 · 10−3 ± 2.0 · 10−2

{2, 10, 5, 3, 0.005} 8.9 · 10−5 ± 2.0 · 10−4 7.2 · 10−5 ± 3.7 · 10−4 5.9 · 10−5 ± 7.3 · 10−5 3.8 · 10−5 ± 1.5 · 10−4

{2, 15, 1, 3, 0} 3.4 · 10−2 ± 5.8 · 10−2 3.7 · 10−2 ± 7.9 · 10−2 9.1 · 10−2 ± 5.0 · 10−2 7.3 · 10−2 ± 6.2 · 10−2

{2, 15, 2, 3, 0} 1.5 · 10−12 ± 3.2 · 10−12 3.6 · 10−12 ± 9.2 · 10−12 1.7 · 10−12 ± 5.6 · 10−12 3.6 · 10−12 ± 8.8 · 10−12

{2, 15, 3, 3, 0} 1.5 · 10−12 ± 3.7 · 10−12 3.2 · 10−12 ± 8.6 · 10−12 2.1 · 10−12 ± 7.7 · 10−12 5.9 · 10−12 ± 4.8 · 10−12

{2, 15, 5, 3, 0} 4.1 · 10−12 ± 3.1 · 10−12 9.8 · 10−12 ± 5.8 · 10−12 9.3 · 10−12 ± 1.1 · 10−12 1.3 · 10−12 ± 1.7 · 10−12

{2, 15, 5, 3, 0.05} 9.5 · 10−4 ± 1.4 · 10−3 1.5 · 10−3 ± 1.1 · 10−2 6.1 · 10−4 ± 1.0 · 10−3 2.5 · 10−4 ± 1.1 · 10−3

{2, 15, 5, 3, 0.01} 1.7 · 10−4 ± 3.6 · 10−4 1.4 · 10−4 ± 6.2 · 10−4 2.4 · 10−5 ± 5.1 · 10−5 9.3 · 10−5 ± 5.0 · 10−4

{2, 15, 5, 5, 0} 1.5 · 10−12 ± 9.5 · 10−12 3.2 · 10−12 ± 2.6 · 10−12 8.0 · 10−12 ± 6.3 · 10−13 1.9 · 10−12 ± 1.9 · 10−12

{2, 15, 5, 11, 0} 8.7 · 10−12 ± 1.2 · 10−12 2.0 · 10−12 ± 2.0 · 10−12 9.1 · 10−12 ± 1.0 · 10−12 9.4 · 10−12 ± 1.9 · 10−11

which models homophilous opinion interactions. That is, each opinion tends to align with
those that are similar. The Taylor series expansion of this interaction law is given as

(3.5) φ(r) = e−r = Σ∞
k=0

(−r)k

k!
.

This infinite series suggests that no finite dictionary can perfectly approximate this function.
We are interested in this example, since φ does not lie in the span of the dictionary. We
investigate this interaction law for two parameters, first {d,N,M,L} = {2, 10, 10, 3} then
{2, 10, 25, 3}. The first case will form an underdetermined matrix for regression, as the prod-
uct dNML is lesser than the number of candidate functions in the functions library. The
second case will provide an overdetermined matrix for regression. We briefly investigate the
performance of the proposed approaches.

Numerical results interpretation. The infinite series of this interaction law is made entirely

of rational terms of the form (−r)k

k! , k ∈ Z. In the candidate function library, there are 6
rational terms and 800 trigonometric functions. In the domain 0 ≤ r ≤ 10, the interaction
law is bound as e−10 ≤ e−r ≤ 1.

In the first case, we have an underdetermined linear system, the two approximated inter-
action laws from both LS and SLS exist beyond the bounds of the true interaction law. In
contrast, the LASSO estimator tended to be zero. The interaction law grows steeper as the
pairwise distance decreases. As the pairwise distance increases, the accuracy of the LASSO
estimator improved.
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Figure 5. This graphic displays reconstructions of the kernels by the three regression methods. We choose
the training time interval [0,0.5].The blue star, red plus and cyan circle lines are representing the LS, SLS,
and LASSO regression methods respectively. Top panel: {d,N,M,L} = {2,10,10,3}. Bottom panel:{d,N,M,L} =
{2,10,25,3}.

In the second case, we have an overdetermined system, and both LS and SLS have a
great improvement in the accuracy of the interaction law approximation. In comparison
to the first case, this is 250% more data in the second case. With this increase in data, the
approximations through the conventional method of matrix division in least-squares find more
success. The two approximations are contained within the bounds of the interaction law, and
also take the shape of the interaction law. The same can be said for LASSO to an extent.
In the underdetermined case, LASSO did not have the upward curve as the pairwise distance
approached zero r → 0. This curve does not take the exact shape very near zero, but it is
closer to true than the SLS approximation.

In the underdetermined case, neither LS nor SLS generated sparse solutions, and the
coefficient vector from LASSO only has a few non-zeros in the polynomial terms. In the
overdetermined case, the coefficient vector from LS is still non-sparse while coefficients from
SLS and LASSO are sparse. In all cases, none of the three methods generated the coefficient

for term rk that was close to (−1)k

k! . This is a bit surprising, as LS provided a very accurate
approximation of the true interaction law as shown in Figure 5.

However, instead of Taylor series, we might use Fourier series to explain the surprising
accurate approximation of LS. The fourier series of e−r consists of a constant term and infinite
sin(nr) and cos(nr) terms. In our library Θ, n ranges from 1 to 400, so it could give us an
approximation of e−r with great accuracy. Also, there are only five terms, r, r2, · · · , r5, that
are not included in the fourier series, which means that the coefficient vector should not be
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sparse. Since there is no sparsity promoting techniques shown in LS, it then could have a
more accurate result than SLS and LASSO.

3.3. Discussion. For the regression problem, we considered three regression techniques:
LS, SLS, and LASSO. In low data systems, only LASSO would provide accurate approxi-
mations of the interaction law, and the LS and SLS approximations were unsatisfactory. In
the experiments where the interaction law was a linear combination of candidate functions
in the library, LASSO would need 4 variables for a 3 term polynomial φ, SLS and LS would
make use of the entire library of 800+ functions. We also found that SLS is always as or
sparser than LS. However, as seen in the case where the interaction law cannot be written as
a linear combination of candidate functions, this sparsity can also reduce the accuracy of the
approximation.

Across these experiments, the LASSO method was superior in the approximation of a
coefficient vector to describe the interaction law in an underdetermined case, or where the size
of the candidate functions library is larger than the product of the parameters dNML. These
underdetermined experiments are important to find a more flexible regression method, as fewer
data given to a regression method means less time for computation. We see that LASSO can
work in a variety of underdetermined systems as in Table 3. As shown in Figure 3, the
approximations calculated by LASSO are successful approximations of an underdetermined
system and also can accurately predict the trajectory with new initial conditions. As such,
we conclude that LASSO is the regression method that can correctly determine an interaction
law in low-data systems.

4. Conclusions. We considered a homogeneous agent system represented by a system of
first-order ODEs. Agents in the system interact with one another through an unknown in-
teraction law φ dependent on pairwise distances. This model has applications from opinion
dynamics in social science. Given the parameters needed to create the system and an in-
teraction law, we generate position data X and its derivative Ẋ, which will then be used to
simulate data collected from a real-world scenario. With only these two matrices, position
and trajectory, we may set up a sparse regression problem to learn φ from a library consisting
of nonlinear candidate functions ϕ.

With the examples examined in this paper, we found that the success rate of the coefficient
approximation increases as the number of sets of initial data increases. Among the three
methods, LASSO performed very well even in the low data regime, while SLS and LS required
more data to be successful. Specifically, when the true kernel does have a sparse representation
in the dictionary, such as φ(r) = r+2 sin(r)−4 cos(r) in the first example, LASSO performed
very well in the underdetermined case while LS and SLS performed very badly. After we
increasedM so the system became overdetermined, LS and SLS performed significantly better.
When the true kernel φ does not have an exact sparse representation in the dictionary, such as
φ(r) = e−r in the second example, all three methods performed poorly in the underdetermined
case, and LS is the only one that performs well in the overdetermined case. One can refer to
Table 5 for a concise summary.
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Table 5
Summary of the performances of three methods for data regimes when kernel is in the library

Regression Method Noise-free and Small M Noise-free and Large M Noisy and Small M Noisy and Large M

LS � okay � okay

SLS � � � okay

LASSO � � � �

We confirm that with large dictionaries and little data, of the choices Least Squares,
Sequential Least-Squares, and Least Absolute Shrinkage and Selection Operator regression
methods, the Least Absolute Shrinkage and Selection Operator regression method performs
the strongest. For an arbitrary first-order homogeneous system, LASSO is likely to have more
successful calculations than the other two methods.

Though not presented in this work, our research has also continued in this subject for
the heterogeneous case by adding a second type of particle with separate interaction laws.
Additionally, we have begun to add particle systems that do not have distinct particles but
instead distribution functions that characterize particle position.
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