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Abstract. In recent decades, scientists have observed that the mortality rate of some competing species
increases superlinearly as populations grow to unsustainable levels. This is modeled by terms representing
crowding effects in a system of nonlinear differential equations that describes population growth of two
species competing for resources under the effects of crowding. After applying nondimensionalization to
reduce parameters in the system, the stability of the steady state solutions of the system is examined. A
semi-implicit numerical scheme is proposed which guarantees the positivity of the solutions. The long term
behavior of the numerical solutions is studied. The error estimate between the numerical solution and the
true solution is given.
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1 Introduction

Competition is a fundamental component of interaction between species. Species survival in a bounded
ecological system is influenced by limited resources and the ensuing competition for them [3]. Many models
in differential equations for either competing species or even cooperating species use as a reference point the
classical Lotka-Volterra (LV) system [4, 5, 6], which has been referred to as the basic equation of ecology [7].
The LV system is a widely studied model of competition between species, but requires variation to account
for many other factors observed in nature, such as seasonal reproduction, seasonal food availability, and
density and crowding. For a general overview of these scenarios and multiple references in which they have
been considered, see [8] and [9] and the excellent references therein related to LV limitations and uses related
to capelin in the Barents Sea. In these references, density or crowding are considered and shown to have
significant impact on survival.

Crowding effects, or high density counts of species are considered here separately with a standard LV
model as a factor that can drive species to additional competition for resources, in this case intra-specific
competition. This crowding effect can take several different forms, such as the consumption of resources that
are available to the members of the ecosystem, or possibly an adverse affect of two members of the species
encountering each other [10]. While these crowding effects have been studied by applying numerical methods
[11], very little has been done to analyze the stability of steady states of these systems. That is the purpose
of this paper, to present a method to approximate a solution to the LV model with competition and study
under what conditions coexistence is predicted based on stability of the numerical scheme.

This paper will proceed as follows: In Section 2, we introduce the LV system, modified to include
crowding effects, and reduce its parameters to prepare for numerical approximation. In Section 3 we investi-
gate stability of its steady states. In Section 4 we introduce a nonstandard numerical scheme to approximate
solutions to the system and prove stability of the numerical scheme. In Section 5 we show that the numer-
ical scheme converges to the true, theoretical solution of the system. Finally, we present some numerical
experiments in Section 6.
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2 LV Model with Crowding Effects

The modified LV model we use as given in [11] is{
x′ = β1x(1− x− α12y)− (m10 + d1x

δ)x,

y′ = β2y(1− y − α21x)− (m20 + d2y
δ)y.

(1)

In this model, note that both population densities will be represented by numbers between zero and one,
and that the carrying capacities of both species have been set to 1. Here, the variables and constants are
interpreted as follows. In the system, each is nonnegative.

x population density/biomass of Species 1,
y population density/biomass of Species 2,
βi birth rate of Species i,
mi0 death rate of Species i,
di density-dependent factor for the death rate of Species i,
αij the effect of Species j on Species i,
δ a measure of the degree of species crowding,

and where, as per [11], mi0 + di ∈ [0, 1].
We apply the nondimensionalization [14] to system (1) to significantly reduce the number of parameters.

This is accomplished by first assuming that β1 > m10 and β2 > m20 and setting c1 = β1 − m10 and
c2 = β2 −m20, giving {

x′ = c1x− β1x
2 − α12β1xy − d1x

δ+1,

y′ = c2y − β2y
2 − α21β2xy − d2y

δ+1.

Setting β1 = c1
e1

and β2 = c2
e2
, {

x′ = c1
e1
x(e1 − x− α12y − d1

e1
c1
xδ),

y′ = c2
e2
y(e2 − y − α21x− d2

e2
c2
yδ).

Then if u = x
e1

and v = y
e2

is followed by x = e1u, x
′ = e1u

′, y = e2v, y
′ = e2v

′, τ = c1t, and u′(t) =

u′(τ)dτdt = u′(τ) · c1, we arrive at {
u′ = u(1− u− α12e2

e1
v − d1

eδ1
c1
uδ),

v′ = c2
c1
v(1− v − α21e1

e2
v − d2

eδ2
c2
vδ).

Finally, renaming α12e2
e1

= a1, d1
eδ1
c1

= b1,
α21e1
e2

= a2, d2
eδ2
c2

= b2, and ρ = c2
c1
, followed by τ being replaced

again by t, we have the nonparametrized version of the LV system with crowding effects{
u′ = u(1− u− a1v − b1u

δ),

v′ = ρv(1− v − a2u− b2v
δ).

Even with the reduction from eight to five parameters, detailed study of the stability of steady states
and applying a numerical method to this system for general δ > 1 is highly technical and will be saved for
future work. In fact, since our goal is to show a stable and convergent numerical scheme for a particular LV
system with crowding, we will choose δ = 2. Therefore, the specific case that will be studied throughout this
paper is {

u′ = u(1− u− a1v − b1u
2),

v′ = ρv(1− v − a2u− b2v
2).

(2)
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3 Steady States and Stability

In the analysis of Sections 4-5, we show that numerical solutions using the nonstandard discretization pro-
posed reflects the same behavior as true solutions to (2); for this purpose, in this section we will consider
the stability of its steady state solutions. This will show that when convergence behavior of the numerical
scheme is discussed under appropriate conditions on the parameters, we can be sure it accurately reflects
convergence of true solutions to these steady states. The system of interest (2) has four steady state solutions,
clearly, (u1, v1) = (0, 0) is a steady state. The other three steady states are given by{

u2 = 0

1− v2 − a2u2 − b2v
2
2 = 0

(3){
1− u3 − a1v3 − b1u

2
3 = 0

v3 = 0
(4){

1− u4 − a1v4 − b1u
2
4 = 0

1− v4 − a2u4 − b2v
2
4 = 0.

(5)

For the second steady state (u2, v2) in (3), we set u2 = 0 and find the positive solution of 0 = 1−v2−a2u2−
b2v

2
2 = 1− v2 − b2v

2
2 , which is

v2 =

√
1 + 4b2 − 1

2b2
.

Similarly, for the third steady state (u3, v3) in (4), we set v3 = 0 and find the positive solution of 0 =
1− u3 − a1v3 − b1u

2
3 = 1− u3 − b1u

2
3, which is

u3 =

√
1 + 4b1 − 1

2b1
.

The final steady state (u4, v4) in (5) is complicated due to the large number of parameters. However, if we
make the choice a1 = b1 = a2 = b2 = 1, then we have the unique positive solution u4 = v4 =

√
2− 1. Thus

the steady states of (2) are given by

(u1, v1) = (0, 0) (6)

(u2, v2) =

(
0,

√
1 + 4b2 − 1

2b2

)
(7)

(u3, v3) =

(√
1 + 4b1 − 1

2b1
, 0

)
(8)

(u4, v4) = (
√
2− 1,

√
2− 1) (9)

where (9) holds if a1 = b1 = a2 = b2 = 1. We will now analyze the stability of these steady states. To do
this, we set

f(u, v) = u(1− u− a1v − b1u
2) and g(u, v) = ρv(1− v − a2u− b2v

2)

and compute the Jacobian, which yields

J(u, v) =

(
∂f
∂u

∂f
∂v

∂g
∂u

∂g
∂v

)
=

(
1− 2u− a1v − 3b1u

2 −a1u
−a2ρv ρ− 2ρv − ρa2u− 3b2ρv

2

)
. (10)

Evaluating J at any of the steady states from (6)-(9), we have that each steady state is stable if and only if
the determinant det(J(ui, vi)) is positive and its trace tr(J(ui, vi)) is negative. We will now determine the
stability of each steady state by analyzing the determinant and trace of the above matrix.

For the zero steady state (u1, v1) = (0, 0),

J(u1, v1) = J(0, 0) =

[
1 0
0 ρ

]
,
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for which det(J(u1, v1)) = ρ > 0 and tr(J(u1, v1)) = ρ + 1 > 0, so the zero steady state is unstable. This
agrees with expectation in that if either species has a nonzero population or biomass initially, it will exhibit
growth on some level under nonzero conditions for the constant coefficients in (2). So we investigate next
what happens to a species’ biomass when there is indeed nonzero population of at least one species as the
more important cases.

For the second steady state (u2, v2) in (7), analyzing signs of det(J(u2, v2)) and tr(J(u2, v2)) to ensure
stability, after a considerable amount of algebra and given that all constants must be nonnegative, we come
to the condition

(u2, v2) is stable if and only if a1 > 1 and b2 < a21 − a1.

Similarly, for the third steady state (u3, v3) in (8), again analyzing signs of det(J(u3, v3)) and tr(J(u3, v3)),
the condition for (u3, v3) being a stable steady state becomes what we would expect from the symmetry of
the system equations, namely

(u3, v3) is stable if and only if a2 > 1 and b1 < a22 − a2.

The stability of the fourth steady state (9) is easily verified by again analyzing the trace and determinant
of J(u4, v4). Evaluating general conditions on steady states for arbitrary constants is technical and more
than will be treated here, but this positive steady state suggests that there are conditions under which there
is a stable solution with both u, v > 0.

Hence, there are some reasonable conditions that, if enforced and considered together with initial condi-
tions, assure convergence of the true solution of (2) to the three nonzero steady states. These will be applied
and it will be shown numerically, as well as proven, that the method introduced next provides numerical
approximations (u(tk), v(tk)) that converge to the same steady state as k → ∞ obtained for true solutions
as t → ∞.

4 Nonstandard Discretization Scheme

Euler’s method may be used to approximate this system with the following system of equations

un+1 = un +∆tun(1− un − a1vn − b1u
2
n),

vn+1 = vn + ρ∆tvn(1− vn − a2un − b2v
2
n).

However, too large a choice for ∆t may fail to reflect the properties of the true solutions. For example, it is
not difficult to come up with examples where one of the population densities eventually becomes negative.
It is unclear what ∆t should be chosen and, in fact, it cannot be stated how close an Euler solution is to the
true solution depending on the size of ∆t.

Inspired by the methods in [1, 2, 12] and [13], we introduce the nonstandard discretization

un+1 = un +∆tun −∆tunun+1 −∆ta1un+1vn −∆tb1un+1u
2
n

vn+1 = vn + ρ∆tvn − ρ∆tvn+1vn − ρ∆ta2vn+1un − ρ∆tb2vn+1v
2
n

as the numerical scheme and discuss the advantages of using the proposed method. Solving for un+1 and
vn+1, the new iterative scheme becomes

un+1 =
un(1 + ∆t)

1 + ∆t(un + a1vn + b1u2
n)

(11)

vn+1 =
vn(1 + ρ∆t)

1 + ρ∆t(vn + a2un + b2v2n)
. (12)

As stated previously, throughout the following sequence of results related to the system (2) all constant
coefficients a1, a2, b1, b2 and ρ are positive. Inductive reasoning applies directly to show that for initial
conditions u0 > 0 and v0 > 0 in (11)-(12), all iterates remain positive. Hence we have already gained one
advantage over Euler’s method for the system.
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(a) Numerical results under Steady State 2, where a1 = 1.5, a2 = 1, b1 = 0.4, and
b2 = 0.65. These parameters were chosen to ensure convergence of the system to (u2, v2),
which in this case is (0, 0.682).

(b) Numerical results under Steady State 3, where a1 = 1, a2 = 1.5, b1 = 0.7, and
b2 = .3. Parameters where chosen to ensure convergence to (u3, v3), which, under these
parameters, is (0.678, 0).

Figure 1

Together with this positivity of un and vn for all n ∈ N, we claim there are upper bounds on iterates for
the nonstandard method (11)-(12). These will be shown in the following three theorems.

Theorem 4.1 If 0 < u0 < 1 and v0 > 0, then 0 < un < 1 for all n ∈ N ∪ {0}.

Proof. Let 0 < u0 < 1. Then, as observed in previous comments, un > 0 for all n ∈ N ∪ {0}. Now assume
that for some n ∈ N that un < 1. Then

un+1 =
un(1 + ∆t)

1 + ∆t(un + a1vn + b1u2
n)

<
un(1 + ∆t)

1 + ∆tun
<

un(1 + ∆t)

un(1 + ∆t)
= 1.

So by mathematical induction, un < 1 for all n ∈ N∪{0}. Thus we have that 0 < un < 1 for all n ∈ N∪{0}.
A similar result holds for vn. ■
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Theorem 4.2 If 0 < v0 < 1 and u0 > 0, then 0 < vn < 1 for all n ∈ N ∪ {0}.

Proof. Let 0 < v0 < 1. Then it follows that vn > 0 for all n ∈ N ∪ {0}. Now assume that for some n ∈ N
that vn < 1. Then

vn+1 =
vn(1 + ρ∆t)

1 + ρ∆t(vn + a2un + b2v2n)
<

vn(1 + ρ∆t)

1 + ρ∆tvn
<

vn(1 + ∆t)

vn(1 + ∆t)
= 1.

Hence by induction, we conclude that vn < 1 for all n ∈ N ∪ {0}. ■

Under this nonstandard scheme, the desirable property that both un and vn are bounded sequences
follows. We prove this in the next theorem.

Theorem 4.3 If u0, v0 > 0, then un ≤ max{1, u0} and vn ≤ max{1, v0} for all n ∈ N.

Proof. By the previous two theorems, if u0 < 1, then un < 1 for all n ∈ N ∪ {0}, and the result follows.
Similarly, if v0 < 1, then vn < 1 for all n ∈ N ∪ {0}. Now assume that u0 > 1. Since u0 ≤ u0, following
induction we assume that un ≤ u0 for some n ∈ N. Then it is clear that

un +∆tun ≤ u0 +∆tunu0

since u0 > 1. Thus
un(1 + ∆t)

1 + ∆tun
≤ u0.

Consider now un+1. Applying again (11),

un+1 =
un(1 + ∆t)

1 + ∆t(un + a1vn + b1u2
n)

<
un(1 + ∆t)

1 + ∆tun
≤ u0.

Also, since v0 ≤ v0, using the inductive hypothesis again,

vn + ρ∆tvn ≤ v0 + ρ∆tvnv0,

which gives
vn(1 + ρ∆t)

1 + ρ∆tvn
≤ v0.

Therefore,

vn+1 =
vn(1 + ρ∆t)

1 + ρ∆t(vn + a2un + b2v2n)
<

vn(1 + ρ∆t)

1 + ρ∆tvn
≤ v0.

Thus by induction, if u0, v0 > 1, then un ≤ u0, vn ≤ v0. Hence, un ≤ max{1, u0} and vn ≤ max{1, v0} for
all n ∈ N ∪ {0}. ■

We now turn our attention to proving that under certain conditions the nonstandard scheme (11)-(12),
must converge. We have already shown that the sequences {un} and {vn} are bounded, so if it can be shown
also that they are monotonic, the Monotone Sequence Theorem will yield the convergence result for {un}
and {vn} from (11)-(12). First follows a technical lemma necessary for the final result.

Lemma 4.4 If 0 < b1 < 1, a1 = a2 = b2 = 1, 1 − u0 − v0 − b1u
2
0 < 0 and 1 − u0 − v0 − v20 > 0, then

1−un−vn− b1u
2
n < 0 for all n ∈ N. If, in addition, u0+ b1u

2
0 ≤ 1, then 1−un−vn−v2n > 0 for all n ∈ N .

Proof. We will first show under the given conditions that 1− u1 − v1 − v21 > 0. If 1− v0 − v20 − u0 > 0 and
1− u0 − b1u

2
0 − v0 < 0, then applying the definitions (11)-(12),

1− u1 − v1 − v21 =
1− v0 − u0 − v20 +A∆t+B∆t2 + C∆t3

(1 + ∆tu0 +B1u2
0 +∆tv0)(1 + ∆tu0 +∆tv0 +∆tv20)

2
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where

A = (1− u0 − v20 − v0)(3u0 + b1u
2
0 + 2v0)− (u0 − u2

0 − b1u
3
0 − u0v0),

B = (1− u0 − v20 − v0)(2u0 + u2
0 + 2u0v0 + b1u

2
0v0 + u0v

2
0)− (2u0 − 2u2

0 − 2b1u
3
0 − 2u0v0), and

C = (1− u0 − v0 − v20)(u0 − b1u
3
0 − b1u

2
0v

2
0 − v30)− (u0 − u2

0 − b1u
3
0 − u0v0).

By assumption, we know that both 1− v0 − v20 − u0 > 0, and 1− u0 − b1u0 − v0 < 0, and since u0 > 0,

u0 − u2
0 − b1u

3
0 − u0v0 < 0.

Noting also that u0, v0, b1 > 0, it follows that A > 0.
Similarly, since both 1− v0 − v20 − u0 > 0 and 1− u0 − v20 − v0 < 0, and 2u0 > 0, we have that

2u0 − 2u2
0 − 2b1u

3
0 − 2u0v0 < 0.

And thus since u0, v0, b1 > 0, we must have that B > 0.
Finally, since 1− u0 − b1u

2
0 − v0 < 0 and u0 > 0, we must have that

u0 − u2
0 − b1u

3
0 − u0v0 < 0.

We can also see that from 1− u0 − v0 − v20 > 0, that we must have that u0 < 1, then b1 < 1, from which we
obtain

u0 − b1u
2
0 > 0.

By previous result we have that b1u
2
0 > v20 . Then −b1u

2
0v0 < −v30 , and thus

u0 − b1u
3
0 − b1u

2
0v

2
0 − v30 > u0 − b1u

3
0 − b1u

2
0v

2
0 − b1u

2
0v0

= u0 − b1u
2
0 + (b1u

2
0 − b1u

3
0 − b1u

2
0v0 − b1u

2
0v

2
0)

> 0

since 1− u0 − v0 − v20 > 0 and b1u
2
0 > 0. Thus if 0 < b1 < 1, then C > 0, as desired. We conclude that each

coefficient of the expression above is positive, from which

1− u1 − v1 − v21 > 0,

follows, as desired. A similar inductive argument shows that

1− un − vn − v2n > 0

for all n ∈ N.
Now assume that, in addition to the previous conditions, u0 > 0 satisfies u0 + b1u

2
0 ≤ 1. Then it follows

that

1− u1 − b1u
2
1 − v1 =

1− u0 − b1u
2
0 − v0 +A1∆t+B1∆t2 + C1∆t3

(1 + ∆tu0 + b1∆tu2
0 +∆tv0)2(1 + ∆tu0 +∆tv0 +∆tv20)

,

where A1, B1 and C1 are defined by

A1 = 2u0 − 2u2
0 − 2b1u

3
0 + 2v0 − 4u0v0 − 3b1u

2
0v0 − v20 − b1u

2
0v

2
0 − u0v

2
0

B1 = u2
0 − b1u

2
0 − u3

0 + b1u
3
0 − b1u

4
0 + b21u

4
0 + 2u0v0 − 3u2

0v0 − 3b1u
3
0v0 − b21u

4
0v0 + v20

− 2u0v
2
0 − u2

0v
2
0 − 2b1u

2
0v

2
0 − b1u

3
0v

2
0 + v30 − u0v

3
0

C1 = −b1u
3
0 + b1u

4
0 + b21u

5
0 − b1u

2
0v0 + b1u

3
0v0 − b1u

2
0v

2
0 + b1u

3
0v

2
0 + b21u

4
0v

2
0 + u0v

3
0 + 2b1u

2
0v

3
0 + v40 .

We claim that under the given conditions, A1, B1, and C1 are all negative. To this end, we define constants
Dp > 0 and Dn < 0 by

Dp = 1− u0 − v0 − v20 and Dn = 1− u0 − b1u
2
0 − v0.
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Dividing A1, B1 and C1 by DpDn and applying partial fraction decomposition,

A1

DpDn
=

−1 + u0 + b1u
2
0

Dn
+

1 + u0 + 2v0
Dp

, (13)

B1

DpDn
= 1− u0 +

−2 + 2u0 + 2b1u
2
0

Dn
+

1− b1u
2
0 + v0 + u0v0 + b1u

2
0v0

Dp
, (14)

C1

DpDn
= b1u

2
0 + v0 +

−1 + u0 + b1u
2
0

Dn
+

1− u0 − b1u
2
0 − v0 + u0v0 + b1u

2
0v0

Dp
, (15)

since DpDn < 0 by assumption, if we can show that each of the preceding decompositions is positive, we
can conclude that each of A1, B1 and C1 is negative.

For (13), since u0 + b1u
2
0 ≤ 1, the first numerator must be negative, so dividing by Dn < 0 gives us a

positive value for the first fraction in this expression. Since the second fraction is positive, (13) is likewise
positive.

Given that 1 − u0 > 0, applying similar reasoning we know that the first fraction in (14) is positive.
Applying again the additional assumption u0 + b1u

2
0 ≤ 1 to the second fraction, 1 − b1u

2
0 ≥ u0, so the last

fraction is also positive.
Finally, for (15), since

1− b1u
2
0 − u0 + u0v0 + b1u

2
0v0 ≥ u0 − u0 + u0v0 + b1u

2
0v0 = u0v0(1− b1u0) > 0,

all three fractions are positive, establishing the negativity of A1, B1 and C1. This completes the proof that
1− u1 − b1u

2
1 − v1 < 0.

A similar argument gives us that
1− un − b1u

2
n − vn < 0

for all n ∈ N. ■

Theorem 4.5 If 0 < b1 < 1 a1 = a2 = b2 = 1, 1 − u0 − b1u
2
0 − v0 < 0, and 1 − u0 − v0 − v20 > 0, then the

sequence {un} is monotone decreasing. If, in addition, u0 + b1u
2
0 ≤ 1, then {vn} is monotone increasing.

Proof. By the previous theorem, if 0 < b1 < 1 then

1 < un + vn + b1u
2
n

for all n ∈ N, so that

un+1 =
un(1 + ∆t)

1 + ∆t(un + vn + b1u2
n)

≤ un(1 + ∆t)

1 + ∆t
= un.

A similar application of the previous theorem gives that

1 > un + vn + v2n,

from which it follows that

vn+1 =
vn(1 + ρ∆t)

1 + ρ∆t(vn + un + v2n)
≥ vn(1 + ρ∆t)

1 + ρ∆t
= vn,

as desired. ■

The conditions stated in Theorem 4.5 are not without meaning for the biological system introduced in
Section 2. Recalling the definitions of the constants in equations (2), we now analyze what these assumptions
tell us about the constants in (1). We have that

b1 = d1
eδ1
c1

.
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Now, since β1 = c1
e1
, and c1 = β1 −m10, this becomes

b1 = d1β
−1
1 eδ−1

1 .

Since we have assumed that δ = 2, this can be rearranged to become

β1 = d1e1b
−1
1 .

The assumption that 0 < b1 < 1, then permits us to write

β1 = d1e1b
−1
1 > d1e1.

Now, since e1 = c1
β1

= β1−m10

β1
, this becomes

β1 > d1

(
β1 −m10

β1

)
.

Thus the condition that 0 < b1 < 1 becomes this relation between the birth and death rates of species 1, as
well as the density-dependent factor for the death rate of species 1. This can be interpreted as meaning the
density-dependent factor must not be so great that this inequality fails. Now let us consider the condition
a1 = 1. Recall that in section 2, we set

a1 =
α12e2
e1

, e1 =
c1
β1

,

e2 =
c2
β2

, c1 = β1 −m10,

and
c2 = β2 −m20.

This gives us that

1 = a1 =
α12e2
e1

=
α12β1c2
β2c1

=
α12β1(β2 −m20)

β2(β1 −m10)
.

Simlarly, we calculate that

1 = a2 =
α21β2(β1 −m10)

β1(β2 −m20)
.

Finally, let us consider the condition that b2 = 1. Since

1 = b2 =
d2e

δ
2

c2
,

we can use the definitions of e2 and c2 to write this as

1 = b2 = d2(β2 −m20)
δ−1β−δ

2 .

Now, since δ = 2, this can be written as

1 = b2 =
d2(β2 −m20)

β2
2

.

So, the condition that b2 = 1 becomes
d2(β2 −m20)

β2
2

= 1.

These results are summarized in the following table, where the conditions on the parameters of the nondi-
mensionalized system are on the left, and what those conditions imply about the parameters of the original
system are on the right.

a1 = 1 → α12β1(β2 −m20)

β2(β1 −m10)
= 1

a2 = 1 → α21β2(β1 −m10)

β1(β2 −m20)
= 1

b2 = 1 → d2(β2 −m20)

β2
2

= 1.
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Under the assumptions of Theorem 4.5, and applying the Monotone Sequence Theorem, the sequences
{un} and {vn} defined in (11)-(12) converge. We study more about this convergence and its accuracy next.

5 Convergence to the True Solution

Let Un = u(tn) and Vn = v(tn) represent the theoretical solutions to (2). Then it follows that

Un+1 − Un

∆t
= Un(1− Un − a1Vn − b1U

2
n) +O(∆t),

Vn+1 − Vn

∆t
= ρVn(1− Vn − a2Un − b2V

2
n ) +O(∆t).

Define the difference between true solutions to (2) and (11)-(12) by Xn = Un − un and Yn = Vn − vn. Then

|Xn+1 −Xn| = |Un+1 − Un − (un+1 − un)|
= |∆tUn(1− Un − a1Vn − b1U

2
n) +O(∆t2)

−∆t(un − unun+1 − a1vnun+1 − b1u
2
nun+1)|+O(∆t2)

= |∆t(Un − un) + ∆t(unun+1 − U2
n) + ∆tb1(u

2
nun+1 − U3

n) (16)

+∆ta1(vnun+1 − UnVn)|+O(∆t2)

≤ ∆t|Un − un|+∆t|unun+1 − U2
n|+∆tb1|u2

nun+1 − U3
n|

+∆ta1|vnun+1 − UnVn|+O(∆t2).

Now

unun+1 − U2
n = unun+1 − unUn + unUn − U2

n

= un(un+1 − Un) + Un(un − Un)

= un(un+1 − un + un − Un) + Un(un − Un)

= un(O(∆t)−Xn)− UnXn

and

u2
nun+1 − U3

n = u2
nun+1 − unU

2
n + unU

2
n − U3

n

= un(unun+1 − U2
n) + U2

n(un − Un)

= un(unun+1 − un+1Un − U2
n)− U2

nXn

= un(−un+1Xn + Un(un+1 − Un))− U2
nXn

= un(−un+1Xn + Un(O(∆t)−Xn))− U2
nXn.

Finally,

vnun+1 − UnVn = vnun+1 − un+1Vn + un+1Vn − UnVn

= un+1(vn − Vn) + Vn(un+1 − Un)

= −un+1Yn + Vn(O(∆t)−Xn).

These three preceding equalities together with (16) yield the result

|Xn+1 −Xn| ≤ ∆t|Un − un|+∆t|unun+1 − U2
n|

+∆tb1|u2
nun+1 − U3

n|+∆ta1|vnun+1 − UnVn|+O(∆t2)

≤ ∆t|Xn|+∆t|un(O(∆t)−Xn)− UnXn|
+∆tb1|un(−un+1Xn + Un(O(∆t)−Xn))− U2

nXn|
+∆ta1| − un+1Yn + Vn(O(∆t)−Xn)|+O(∆t2).
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Which, after expanding and collecting like terms, gives

|Xn+1 −Xn| ≤ ∆t(1 + |un|+ |Un|+ b1|unun+1|+ b1|unUn|+ b1U
2
n + a1|Vn|)|Xn|

+∆ta1|un+1||Y |+O(∆t2).

Now, since un, vn, Un, and Vn are all bounded above, define constants C1 and C2 by

C1 = 1 + |un|+ |Un|+ b1|unun+1|+ b1|unUn|+ b1U
2
n + a1|Vn|,

C2 = a1un+1.

Then

|Xn+1 −Xn| ≤ ∆tC1|Xn|+∆tC2|Yn|+O(∆t2).

Now, applying the triangle inequality,

|Xn+1| ≤ |Xn+1 −Xn|+ |Xn|
≤ (1 + ∆tC1)|Xn|+∆tC2|Yn|+O(∆t2).

We follow a similar procedure to measure |Yn+1 − Yn|.

|Yn+1 − Yn| = |Vn+1 − Vn − (vn+1 − vn)|
= |ρ∆tVn(1− Vn − a2Un − b2V

2
n ) +O(∆t2)

−∆t(ρvn − ρvnvn+ − ρa2unvn+1 − ρb2v
2
nvn+1)|

= |ρ∆t(Vn − vn) + ρ∆t(vnvn+1 − V 2
n )

+ρ∆ta2(unvn+1 − UnVn) + ρ∆tb2(v
2
nvn+1 − V 3

n )|
≤ ρ∆t|Vn − vn|+ ρ∆t|vnvn+1 − V 2

n |+ ρ∆ta2|unvn+1 − UnVn|
+ρ∆tb2|v2nvn+1 − V 3

n |.

Since

vnvn+1 − V 2
n = vnvn+1 − vn+1Vn + vn+1Vn − V 2

n

= −vn+1Yn + Vn(vn+1 − vn + vn − Vn)

= −vn+1Yn + Vn(O(∆t)− Yn),

unvn+1 − UnVn = unvn+1 − unVn + unVn − UnVn

= un(vn+1 − Vn)− VnXn

= un(O(∆t)− Yn)− VnXn,

and

v2nvn+1 − V 3
n = v2nvn+1 − vnV

2
n + vnV

2
n − V 3

n

= vn(vnvn+1 − V 2
n )− V 2

n Yn

= vn(vnvn+1 − vnVn + vnVn − V 2
n )− V 2

n Yn

= vn(vn(O(∆t)− Yn)− VnYn)− V 2
n Yn,

it follows that

|Yn+1 − Yn| ≤ ρ∆t|Vn − vn|+ ρ∆t|vnvn+1 − V 2
n |+ ρ∆ta2|unvn+1 − UnVn|

+ρ∆tb2|v2nvn+1 − V 3
n |+O(∆t2)

= ρ∆t|Yn|+ ρ∆t| − vn+1Yn + Vn(O(∆t)− Yn)|+ ρ∆ta2|un(O(∆t)− Yn)− VnXn|
+ρ∆tb2|vn(vn(O(∆t)− Yn)− VnYn)− V 2

n Yn|+O(∆t2).
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Expanding and collecting like terms again,

|Yn+1 − Yn| ≤ ρ∆t(1 + |vn+1|+ |Vn|+ a2|un|+ b2|vn|+ b2|Vn|+ b2V
2
n )|Yn|

+ρ∆ta2|Vn||Xn|+O(∆t2).

Similarly, since un, vn, Un, and Vn are all bounded above, define constants C3 and C4 by

C3 = 1 + |vn+1|+ |Vn|+ a2|un|+ b2|vn|+ b2|Vn|+ b2V
2
n

C4 = a2|Vn|.

Then
|Yn+1 − Yn| ≤ ρ∆tC3|Yn|+ ρ∆tC4|Xn|+O(∆t2).

By reasoning to that as for the error term Xn,

|Yn+1| ≤ (1 + ρ∆tC3)|Yn|+ ρ∆tC4|Xn|+O(∆t2).

For the final error terms and analysis, define |Wn| = |Xn|+ |Yn|. Then by the preceding analysis,

|Wn+1| = |Xn+1|+ |Yn+1| ≤ (1 + ∆t(C1 + ρC4))|Xn|+ (1 +∆t(C2 + ρC3))|Yn|+O(∆t2).

Let C = max{C1 + ρC4, C2 + ρC3}, then it follows that

|Wn+1| = |Xn+1|+ |Yn+1| ≤ (1 + ∆tC)|Xn|+ (1 +∆tC)|Yn|+O(∆t2)

= (1 + ∆tC)(|Xn|+ |Yn|) +O(∆t2),

which finally yields
Wn+1 ≤ (1 + ∆tC)Wn +O(∆t2).

This analysis leads to a theorem with a uniform bound on the error term Wn over a finite time interval. The
next result gives us an upper bound for the error at any point in the nonstandard numerical method.

Theorem 5.1 For all n ∈ N ∪ {0},

Wn ≤
n∑

i=0

O(∆t2)(1 + C∆t)i.

Proof. Since W0 = 0, the result is true for n = 0. Now assume that for some k ∈ N ∪ {0}, that

Wk ≤
k∑

i=0

O(∆t2)(1 + C∆t)i.

Then we have that

Wk+1 ≤ (1 + ∆tC)Wn +O(∆t2)

≤ (1 + ∆tC)
k∑

i=0

O(∆t2)(1 + C∆t)i +O(∆t2)

=
k∑

i=0

O(∆t2)(1 + C∆t)i+1 +O(∆t2)

=

k+1∑
i=0

O(∆t2)(1 + C∆t)i.

55



This completes the proof. ■

If we consider the interval [0, T ], where T ∈ R such that T > 0, and let

T

n
= ∆t.

Then we can write

Wn ≤
n∑

i=0

O(∆t2)(1 + C∆t)i

=
n∑

i=0

O(∆t2)

(
1 +

TC

n

)i

=
O(∆t2)

((
1 + TC

n

)n+1 − 1
)

(
1 + TC

n

)
− 1

= O(∆t2)
n

TC

((
1 +

TC

n

)n+1

− 1

)

= O(∆t)

((
1 +

TC

n

)n+1

− 1

)
.

Now, since we have that

lim
n→∞

(
1 +

TC

n

)n+1

− 1 = eTC − 1,

we must have that it is bounded, since the sequence converges. Let M be an upper bound for this sequence,
then we have that

Wn ≤ O(∆t)

((
1 +

TC

n

)n+1

− 1

)
≤ O(∆t)M = O(∆t).

Thus, as we increase the number of subdivisions of the interval [0, T ], our numerical scheme converges
uniformly to the true solution of the differential equations (2). This is summarized in the following theorem.

Theorem 5.2 The numerical scheme given in (11)-(12) converges to the solution of equations (2), uniformly
on the interval [0, T ], as n → ∞.

6 Numerical Experiments

In this section, we present some results of computational experiments to show that the proposed difference
scheme is stable and gives reasonable solutions.

In Figure 2, we have chosen a1 = 4, b1 = 1, a2 = 1, b2 = 2, ρ = 1, ∆t = 0.01, u0 = 0.8, and v0 = 0.9.
These constants yield the steady state (0, 0.5), which is a steady state of type (3). Note that in section 3,
for steady steady state 2, (0, 0.5) is a stable steady state. Convergence is demonstrated in the figure.

For Figure 3, we chose a1 = 1, b1 = 0.85, a2 = 1, b2 = 1, ρ = 1, ∆t = 0.01, u0 = 0.5, and v0 = 0.3. So
that

1− u0 − b1u
2
0 − v0 = −0.0125 < 0 and

1− vu0 − v0 − v20 = 0.11 > 0,

and thus we can use Theorem 4.5, to say that {un} is monotone decreasing. In addition, since u0 + b1u
2
0 =

0.7125 ≤ 1, we also have that {vn} is monotone increasing. The graph in Figure 3 shows the predicted
behaviour of both {un} and {vn}. In this figure, (un, vn) approaches (0.44, 0.4) by Theorem 5.2.
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Figure 2

Figure 3
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