
Iterative Methods at Lower Precision

Yizhou Chen,∗ Xiaoyun Gong,† Xiang Ji‡

Project Advisor: James G. Nagy§

Abstract

Since numbers in the computer are represented with a fixed number of bits, loss of accuracy
during calculation is unavoidable. At high precision where more bits (e.g. 64) are allocated
to each number, round-off errors are typically small. On the other hand, calculating at lower
precision, such as half (16 bits), has the advantage of being much faster. This research focuses on
experimenting with arithmetic at different precision levels for large-scale inverse problems, which
are represented by linear systems with ill-conditioned matrices. We modified the Conjugate
Gradient Method for Least Squares (CGLS) and the Chebyshev Semi-Iterative Method (CS)
with Tikhonov regularization to do arithmetic at lower precision using the MATLAB chop
function, and we ran experiments on applications from image processing and compared their
performance at different precision levels. We concluded that CGLS is a more stable algorithm,
but overflows easily due to the computation of inner products, while CS is less likely to overflow
but it has more erratic convergence behavior. When the noise level is high, CS outperforms
CGLS by being able to run more iterations before overflow occurs; when the noise level is close
to zero, CS appears to be more susceptible to accumulation of round-off errors.

1 Introduction

Most computer processors today use double-precision binary floating point arithmetic, which rep-
resents floating point numbers with 64 bits. The convention follows from the IEEE-754 standard
established in 1985, specifying the number of bits for the sign, exponent, and mantissa (fraction)
for various floating-point formats including binary16 (half precision), binary32 (single precision),
and binary64 (double precision). The difference between these formats is illustrated in Figure 1.
Taking a quarter of memory of their traditional 64-bit counterparts, computing with half preci-

sion numbers has attracted interest from researchers and manufacturers because of the potential
for significantly reduced computational time. In both [13] and [6], the authors demonstrated with
numerical experiments that the number of floating point operations per second of half and single
precision is about 4× and 2× that of double precision. The format accelerates deep learning train-
ing, allows larger models, and improves gaming latency, providing players with better experiences

∗Department of Mathematics, Emory University, Atlanta, GA 30322, USA. E-mail: rileychen111@gmail.com
†Department of Mathematics, Emory University, Atlanta, GA 30322, USA. E-mail: kristinagxy51@gmail.com
‡Department of Mathematics, Emory University, Atlanta, GA 30322, USA. Corresponding author. E-mail:

zoejix@outlook.com
§Department of Mathematics, Emory University, Atlanta, GA 30322, USA. E-mail: jnagy@emory.edu

Copyright © SIAM

Unauthorized reproduction of this article is prohibited

 211

Figure 1: The IEEE standard for floating point arithmetic (IEEE 7 54). This diagram was obtained
from [4].

[15]. However, aside from these benefits, half p recision a lso b rings one obvious d isadvantage: de-
creased accuracy in floating p oint number r epresentation. One g oal o f t his r esearch p roject i s to
investigate the impact of transferring from double precision operations to low precision arithmetic
when solving large-scale inverse problems.

Due to their wide variety of applications, we specifically u tilized a nd m odified co des fo r itera-
tive methods in solving inverse problems to evaluate the performance of low precision algorithms.
Inverse problems arise when using outside measurements to acquire information about internal or
hidden data [7]. We operate on known outputs with some errors to compute the true input value.
For example, X-ray computed tomography is a contactless imaging method for reconstructing tar-
get objects, most commonly, pathologies in the human body. Another example is image deblurring
problems, which occur when the true picture is to be reconstructed from its blurry (and sometimes
noisy) version [2]. These cases can be abstracted as linear systems b = Ax + e, where A is a
large-scale, typically ill-conditioned matrix and b is a vector output blended with noise, e.

A naive solution to this problem can be obtained by directly calculating a solution to Ax = b.
However, this naive solution is often corrupted by noise due to the ill-conditioning of matrix A.
Regularization methods are often needed to balance signal and noise. One approach for regular-
ization uses the singular value decomposition of A. However, when the matrix A is large, as is
often the case for many real-life applications (including our test cases), such direct methods may
be difficult to implement, since decomposing the matrix can be very computationally co stly. When
the matrix is sparse, meaning it contains a lot of zero entries, computing matrix-vector products
can be done very efficiently. Therefore, for such problems, implementing iterative methods, which
only require matrix-vector products and vector operations, is a more efficient way to so lve inverse
problems than direct methods, with the former requiring O(n3) work for an n × n matrix A, while
the latter involves significantly less than O(n2) work per iteration [16].

212

2 Simulating Low Precision

2.1 Chop

The MATLAB function chop written by Higham and Pranesh provides users a way to simulate
low precision numbers and arithmetic. The function can simulate precisions, such as fp16, bfloat16,
as well as custom formats where the user is able to choose the number of bits in the significand
and the maximum value of the exponent. The function doesn’t create the new data type; instead,
it keeps numbers in double or single precision and makes sure that they have the right scale as
in lower precision. Therefore, once the rounding meets the bit limit of the corresponding target
precision, the remaining bits are set to zero. Computer operations are also carried out in double
or single precision, and after that, the result is rounded to low precision [12].

Fully simulating computations in low precision requires users to call chop after each arithmetic
operation. For example, for the operation

a = x+ y × z,

the appropriate use of chop is:

a = chop(x+ chop(y × z)).

This is burdensome yet unavoidable, so our modified version of iterative methods using chop, which
only simulates low precision arithmetic, usually takes a long time to run, despite the fact that low
precision arithmetic would run significantly faster with the corresponding hardware. However, for
vector or matrix operations, there are ways to reduce the number of calls to chop, improving the
efficiency of our codes. For example, for the vector inner product between x and y, instead of using
the line:

sum = 0;

for i = 1:vector_length

sum = chop(sum + chop(x(i) * y(i)));

end

we can use an element-wise operation at the beginning:

sum = 0;

z = chop(x.*y)

for i = 1:vector_length

sum = chop(sum + z(i));
end

such that we successfully reduce 2n calls of chop to only n + 1 calls, accelerating our running
process.

2.2 Blocking

Since we are using floating-point a rithmetic, i naccuracy i s i nevitable i n c omputations. However,
blocking can be used to reduce the error bound. The method breaks a large number of operations

213

into several smaller pieces, computes them independently, and sums them up. Consider the inner
product between two vectors:

x = [x1, x2, x3, x4, x5, x6], y = [y1, y2, y3, y4, y5, y6] .

Instead of calculating it directly, we could break it into:

x1 = [x1, x2, x3], x2 = [x4, x5, x6]

y1 = [y1, y2, y3], y2 = [y4, y5, y6] .

Then we calculate xT
1 y1 and xT

2 y2, and add the sum. The result can have less errors than the
direct calculation. The error bound for inner products xTy is [10]:

|xTy − fl(xTy)| ≤ γn|x|T |y|

where γn =
nu

1− nu
and u is the unit round-off of floating point arithmetic (e.g. 9.77 ∗ 10−4 for half

precision, 1.19 ∗ 10−7 for single precision, and 2.22 ∗ 10−16 for double precision). Nonetheless, with
blocking, the error bound is reduced to [10]:

|sn − ŝn| ≤ γ(log2 n)+1|x|T |y|.

sn is the summation of the results for each block using the true value of x and y, whereas ŝn is the
summation of each block’s result using the floating number representation of x and y . The detailed
proof is in [10, Chapter 3]. We plotted the error graph for double, single, and half precision against
block size when computing the inner product of two random vectors in Figure 2. We did inner
products for each precision 20 times and calculated the average error, which is computed as the
difference b etween the r esult f rom our chopped version o f i nner products and MATLAB’s default
double precision computation.

Figure 2 includes all three precision levels. Not surprisingly, we can see that the error for half
precision is the largest, since it has the least bits. Focusing on half precision only, Figure 3 shows
that errors decrease sharply as blocking is introduced. However, the errors increase as the block
size increases, indicating that an appropriate block size needs to be carefully chosen. The reason
behind this increase is that as the block size grows larger, it has the similar effect a s d oing no
blocking; the whole vector or matrix is put into the first b lock, not d ivided i nto smaller sections.
In our modified codes, we chose the block size to be 256, appropriate for the 4096 × 4096 matrices
we used in the test cases. We note that there are many blocking techniques that one can use, or
other approaches, such as Kahan’s compensated summation method [9]. Another approach, which
reduces the number of times to call the chop function, is to do pairwise summations and exploit
the vectorization capability of the chop function.

3 Conjugate Gradient Method for Least Squares

3.1 Method Overview

The Conjugate Gradient (CG) Method was introduced by Hestenes and Stiefel [8]. It is an iterative
method for solving the linear system Ax = b, where A is a symmetric and positive definite matrix.

214

0 100 200 300 400 500

block size

10
-15

10
-10

10
-5

10
0

a
v
e

ra
g

e
 r

e
la

ti
v
e

 e
rr

o
r

error vs block size

fp16

double

single

Figure 2: Relationship between block sizes
and average relative errors for different pre-
cision levels

0 200 400 600 800 1000

block size

10
-3

10
-2

10
-1

a
v
e

ra
g

e
 r

e
la

ti
v
e

 e
rr

o
r

error vs block size at fp16

n = 500

n = 1000

n = 2000

n = 4000

Figure 3: Relationship between block sizes
and average relative errors for different vec-
tor lengths

The CG method can be viewed as an optimization problem of minimizing a convex quadratic
function:

1
ϕ(x) = xT Ax − xT b.

2

The gradient is zero at minimum point, meaning ∇ϕ(x) = Ax − b = 0, which is exactly the linear
system we are trying to solve.

The CG method is a Krylov subspace method, which means its approximated solutions lie in
Krylov subspaces. In each iteration, x is allowed to explore subspaces of increasing dimensions.
An interesting property of CG is that during each iteration, x is updated to the point within the
subspaces where the A-norm of the error is minimized [16]. If we assume zero round-off errors, CG
is guaranteed to converge within a limited number of steps. Specifically, i f A i s an n × n matrix,
the method will find t he s olution i n no g reater t han n s teps. Besides, t he updated x i s c loser to
the true solution than the previous x in each iteration.

The CGLS algorithm is the least squares version of the CG method, applied to the normal equa-
tions AT Ax = AT b. Algorithm 1 describes CGLS [1].

One potential problem with this method for low precision is that the calculation of inner prod-
ucts can easily result in overflow, as i llustrated in the experiment section below.

3.2 Experiments

With the chop function, we modified the CGLS method implemented in the IRtools package, which
offers various iterative methods for large-scale, ill-posed inverse problems and a set of test problems
for these iterative methods [3]. Then we used two large-scale, ill-posed inverse problems from the
same package: image deblurring and tomography reconstruction. The first i s t o r econstruct an
approximation of the true image from the observed blurry version, whereas the second one is to

215

Algorithm 1 Conjugate Gradient Method Least Squares

Let x(0) be an initial approximation, set r(0) = b−Ax(0),p(0) = s(0) = AT r(0), ψ0 = ||s(0)||22
while ψk > tol do
q(k) = Ap(k),
αk = ψk/||q(k)||22,
x(k+1) = x(k) + αkp

(k),
r(k+1) = r(k) + αkq

(k),
s(k+1) = AT r(k+1),
ψk+1 = ||s(k+1)||22,
βk = ψk+1/ψk,
p(k+1) = s(k+1) + βkp

(k).
end while

reconstruct an image from measured projections, which can be obtained, for example, from X-ray
beams. We investigated these two test problems in different sizes, floating-point precision levels,
and noise levels. In each of these examples, the problem is modeled as b = Ax+ e, where A and b
are given.

3.2.1 Image Deblurring

Here we generate an image deblurring test problem using the PRblur function in the IRtools
package. The true image is a picture of the Hubble space telescope, and the observed data is
corrupted by a Gaussian blurring function; for details, see [3]. We first added no noise to b (i.e.
e = 0) to see how our modified CGLS method works. In Figures 4, 5, and 6, we displayed the
computed approximation of x at the best iteration, i.e. where CGLS achieves its minimum rel-
ative error. Note that we could consider displaying all of the images with the same color scale,
but this would be a false color map, and we feel that there is also merit in displaying the images
with the actual computed values. We continue this convention for all of our numerical experiments.

blur double 64 mild 0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4: Double precision, size
64, zero noise.

blur single 64 mild 0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5: Single precision, size
64, zero noise.

blur fp16 64 mild 0

0

0.2

0.4

0.6

0.8

1

Figure 6: Half precision, size 64,
zero noise.

The single-precision result is very similar to that computed in double-precision, but the half-
precision result is more blurry, and the background contains more artifacts. We also plotted the

216

error graphs for all three formats in Figure 7 and the singular values of matrix A ∈ R4096×4096 to
see how ill-conditioned the matrix is in Figure 8. As we can see in Figure 8, the singular values
decay quickly, which is typical in large-scale inverse problems.

Figure 7: The error norm of a size 64 prob-
lem with mild blurring of different precisions.

Figure 8: Singular value of matrix for
the deblurring problem of size 64 with
mild blur.

All three error norms overlap from the beginning until around 20th iteration, where the half-
precision errors begin to deviate from those in single and double precision. The difference is due
to the round-off errors of half precision, which add up and take over. Moreover, the error norms of
half precision terminates at 28th iteration, because overflow of inner products causes NaNs (Not a
Number) to be computed during the iteration.

In real life, the noise-free image, b, is not often obtainable but most likely it is blended with
noise. Therefore, it is imperative to make sure that the chopped CGLS method works effectively
with noisy data as well. We added noise at different levels to b and displayed the computed ap-
proximations of x in the last iteration in half precision Figures 9, 10, and 11.

blur fp16 64 m 0.001

0

0.2

0.4

0.6

0.8

1

Figure 9: Half precision, size 64,
0.1% noise.

blur fp16 64 m 0.01

0

0.2

0.4

0.6

0.8

1

Figure 10: Half precision, size
64, 1% noise.

blur fp16 64 m 0.1

-1

-0.5

0

0.5

1

1.5

Figure 11: Half precision, size
64, 10% noise.

However, the last iteration doesn’t necessarily mean it’s the iteration with the best performance, so
the results generated using x from the best iteration (i.e. the iteration with smallest error norms)
are also shown in Figures 12, 13, and 14. For results in the last iteration, while images obtained

217

blur fp16 64 m 0.001 Best

0

0.2

0.4

0.6

0.8

1

Figure 12: Half precision, prob-
lem size 64 with mild blurring
and 0.1% noise at best iteration.

blur fp16 64 m 0.01 Best

0

0.2

0.4

0.6

0.8

1

Figure 13: Half precision, prob-
lem size 64 with mild blurring
and 1% noise at best iteration.

blur fp16 64 m 0.1 Best

0

0.2

0.4

0.6

0.8

1

Figure 14: Half precision, prob-
lem size 64 with mild blurring
and 10% noise at best iteration.

when using half precision are more distorted than their single counterparts, they follow the same
trend in terms of the impact of noise. 0.1% noise behaves very similarly to the cases with no noise;
however, 1% noise begins to dominate, and the background has substantially more artifacts, while
the object is still identifiable. Eventually, the computed result is horribly corrupted by artifacts in
the 10% noise case; the picture contains very little meaningful information. For all the following
images we show in the paper, we display the reconstructed image from the the best iteration if not
specified.

0 20 40 60 80 100

iteration

0.25

0.3

0.35

0.4

E
n

rm

blur 64 m 0.001

double

fp16

single

Figure 15: Error norm for prob-
lem size 64 with mild blurring
and 0.1% noise.

0 20 40 60 80 100

iteration

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

E
n

rm

blur 64 m 0.01

double

fp16

single

Figure 16: Error norm for prob-
lem size 64 with mild blurring
and 1% noise.

0 20 40 60 80 100

iteration

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
E

n
rm

blur 64 m 0.1

double

fp16

single

Figure 17: Error norm for prob-
lem size 64 with mild blurring
and 10% noise.

An interesting phenomenon emerges if we examine the error norm for each iteration in Figures 15,
16, and 17. While the norm decreases as the iteration continues for the 0.1% noise cases, those
with 1% and 10% noise present a different t rend: t he e rror n orm s tarts t o i ncrease a gain after
certain iterations. The reason for this reversal is that the early iterations reconstruct components
of the solution corresponding to large singular values, and later iterations begin to reconstruct
components corresponding to small singular values. Thus, the early iterations begin to converge to
something that resembles a truncated SVD solution, and the later iterations converge to the inverse
solution, x̂ = A−1b = A−1(Ax + e) = x + A−1e. When A is severely ill-conditioned, the A−1e
term dominates, so the computed solution x̂ is not a good approximation to the true solution. This

218

phenomenon is known as semi-convergence in the inverse problems literature [7]. It is interesting
to observe that the error norms during the early iterations for all precision levels are similar. This
is an important observation that might be worth of exploiting in future work; for example, using
low precision methods for preconditioning.

3.2.2 Tomography Reconstruction

Tomography reconstruction is another type of inverse problem that produces images from X-ray
projection data of various angles. We used it as a test problem since the IRtools software package
includes a simulation in the PRtomo function. In this test problem, matrix A ∈ R16380×4096. It
is not as ill-conditioned as that in the previous problem, as shown by the plot of singular values in
Figure 18. The modified CGLS method works well for double and single precision and generates
nice reconstructions as shown in Figures 19 and 20, but issues arise for half precision because entries
of the solution x are all NaNs. Since half precision formats allocate only 5 bits for the exponent,
overflow easily occurs when the inner product is calculated. NaNs are the results from dividing
infinity by infinity in the CGLS method.

0 1000 2000 3000 4000 5000
10

-1

10
0

10
1

10
2

Figure 18: Singular value of the matrix for the tomography problem.

One of the solutions to the overflow problem i s to r escale the m atrices. After s caling both A and
b by 0.01, we obtain Figure 21. Although the image is still not as clear as those from double and
single precision, the inner products did not overflow and a meaningful p icture was o btained. The
images shown in Figures 19, 20, and 21 are those corresponding to the iteration where the relative
error is minimized.

The noise level affects t he q uality o f t he r econstruction a s w ell. As F igures 2 2, 2 3, 2 4 illustrate,
while random noise does not completely destroy the reconstruction and take over the original in-
formation as is the case for image deblurring, the artifacts caused by the noise make it difficult to
see small objects in the image.

As was the case with the deblurring problem, the error norm begins to increase at some point of
the iteration due to the accumulation of the inverted noise, as shown in Figures 25, 26, and 27. At
half precision, the norm grows after the 11th iteration even without noise in Figure 25. The reason

219

tomo double 64 default 0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 19: Double precision,
size 64, zero noise.

tomo single 64 default 0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 20: Single precision, size
64, zero noise.

tomo fp16 64 default 0

0

0.2

0.4

0.6

0.8

1

Figure 21: Half precision, size
64, zero noise (after rescaling).

tomo fp16 64 default 0

0

0.2

0.4

0.6

0.8

1

Figure 22: Half precision, size
64, zero noise.

tomo fp16 64 default 0.01

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 23: Half precision, size
64, 1% noise.

tomo fp16 64 default 0.1

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 24: Half precision, size
64, 10% noise (after rescaling).

this time is not the attached noise but the truncation errors.

0 20 40 60 80 100

iteration

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

E
n
rm

tomo 64 default 0

double

fp16

single

Figure 25: Error norm for size
64 problem with zero noise.

0 20 40 60 80 100

iteration

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

E
n

rm

tomo 64 default 0.01

double

fp16

single

Figure 26: Error norm for size
64 problem with 1% noise.

0 20 40 60 80 100

iteration

0.2

0.4

0.6

0.8

1

1.2

E
n

rm

tomo 64 default 0.1

double

fp16

single

Figure 27: Error norm for size
64 problem with 10% noise.

220

4 Chebyshev Semi-Iterative Method

4.1 Method Overview

The Chebyshev Semi-Iterative (CS) Method requires no inner product computation, so it is safer
in terms of overflow issues when at low precision. The trade-off here is that the CS method needs
prior knowledge of the range of singular values of the matrix A [17].

As with CG, the CS method is generally derived for symmetric positive definite linear systems,
but there are variations for least squares problems, which are applied to the normal equation
ATAx = ATb. The following algorithm1 describes the implementation of the CS method for least
squares problems that we used in our work [14] [5]:

Algorithm 2 Chebyshev semi-iterative method

Given A ∈ Rm×n, b ∈ Rm, and a tolerance ϵ > 0, choose 0 < σL < σU such that all nonzero
singular values of A in [σL, σU], and let d = σU

2+σL
2

2 and c = σU
2−σL

2

2
Let x = 0, v = 0, and r = b.
for k = 0, 1, . . . , ⌈log ϵ− log 2/log σU−σL

σU+σL
⌉ do

β ←

0, if k = 0
1
2(c/d)

2, if k = 1

(αc/2)2, otherwise,

α←

1/d, if k = 0

1/(d− c2/(2d)), if k = 1

1/(d− αc2/4), otherwise

v ← βv +AT r.
x← x+ αv.
r← r− αAv.

end for

4.2 Experiments

Again, we used image deblurring and tomography reconstruction as two test problems for the CS
method in low precision. At first we ran the image deblurring test problems of size 32 with default
blur and 1% noise in double precision. We got estimations for the bound of singular values of matrix
A with the built-in MATLAB function SVDS. We set the maximum number of iterations to be
500, and we used ϵ to be 0.01, which we chose based on some experiments (we do not know the
optimal way to choose ϵ). We plotted the graph at the first, 5th (where the error norm is smallest),
and last iteration, as shown in Figures 28, 29, and 30.

The reconstruction is doing poorly even at the best iteration (Figure 29). At the last iteration,
it is even worse due to over-fitting. After a closer look, we noticed that the number of iterations
recommended by the algorithm is at order of magnitude of 1012. If we increase the size of the
problem to 64 × 64, the number overflows to -Inf, which results from the tiny estimation of the
lower bound of matrix A’s singular values. The estimation is so close to zero that we suspect
this is actually a result of round-off errors on a zero entry. Therefore, we implemented Tikhonov

1We are using Algorithm 3 from [14], but we remark that there is a typographical error for the α parameter for
the case k = 1. We show the correct formula in our paper.

221

cs noreg blur double 32 d 0.01 First

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Figure 28: Reconstruction at
first iteration.

cs noreg blur double 32 d 0.01 Best

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 29: Reconstruction at
the best iteration.

cs noreg blur double 32 d 0.01 Last

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 30: Reconstruction at
the last iteration.

regularization for two reasons: a) to avoid over-fitting; and b) to obtain a more valid lower bound
of singular values by increasing them to a larger value. Specifically, the singular values for the

matrix A after Tikhonov regularization with regularization parameter λ would be
√
σ2i + λ2. The

technique is discussed in more details in the next section 4.2.1.

4.2.1 Tikhonov Regularization

Tikhonov Regularization includes a regularization term to the original least squares problem:

min
x
{||Ax− b||22 + λ2||x||22},

where the regularization parameter λ balances the residual term ||Ax− b||22 and the regularization
term ||x||22. We can rewrite the Tikhonov problem as a least squares problem

min
x

∥∥∥∥(AλI
)
x−

(
b
0

)∥∥∥∥
2

,

and the solution to this least squares problem is

xλ = (ATA+ λ2I)−1ATb.

To see why Tikhonov regularization is effective, observe that if we substitute the singular value
decomposition, A = UΣV T , into the expression for xλ, and expand the matrix multiplication
column-wise, we would get

xλ =
n∑

i=1

ϕ
[λ]
i

uT
i b

σi
vi,

where the filter factors ϕ
[λ]
i are

ϕ
[λ]
i =

σ2i
σ2i + λ2

.

Notice that the filter factor ϕ
[λ]
i is approximately equal to 0 for smaller singular values and approx-

imately equal to 1 for larger singular values. It therefore acts like a filter by decreasing the effects

222

of magnifying noise in b when divided by tiny singular values.

With regularization, we are running the CS method with the matrix

(
A
λI

)
instead of A.

Given A = UΣV T , we have
ATA = V ΣTΣV T

and

(
AT λI

)(A
λI

)
= ATA+ λ2I = V ΣTΣV T + V λ2V T = V (ΣTΣ+ λ2)V T .

Therefore, we know the singular values of

(
A
λI

)
are

√
σ2i + λ2, where σi are singular values of A.

When σi is small,
√
σ2i + λ2 ≈ λ, and we can directly use λ as the lower bound of singular values

for the matrix after regularization. With Tikhonov regularization, the singular values are increased
to a more reasonable lower bound.

Choosing a regularization parameter is a challenging topic. To get regularization parameters for our
experiments, we first ran a hybrid LSQR method in double precision, as implemented in [3], which
uses a generalized cross validation method to obtain an estimate for the Tikhonov regularization
parameter.

4.2.2 Image Deblurring

blur double 64 mild 0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 31: Image reconstruc-
tion in double precision of size
64 problem with mild blurring
and no noise.

blur single 64 mild 0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 32: Image reconstruc-
tion in single precision of size 64
problem with mild blurring and
no noise.

blur fp16 64 mild 0

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Figure 33: Image reconstruc-
tion in half precision of size 64
problem with mild blurring and
no noise.

With regularization, we successfully ran 478 iterations in all three precisions, without the occur-
rence of NaNs. We plotted the results in Figures 31, 32, and 33. For half precision, the result is
not clear as expected, and the image seems to be dominated by round-off e rrors. We p lotted the
error norm in Figure 37.

The error norms do not converge to a point like those generated by the CGLS algorithm. In-
stead, they oscillate at the beginning, and then converge for double and single precision. However,

223

for half precision, the error norm increases rapidly, indicating that the round-off errors accumulate
and take over. We suspect this is because the regularization parameter is too small, so we may
need to develop better ways to determine a suitable regularization parameter for half precision.

We then added noise to b and displayed the resulting computed reconstructions in Figures 34,
35, and 36. Here we only showed results with 10% noise; results for other noise levels are consistent

blur double 64 mild 0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 34: Image reconstruc-
tion in double precision of size
64 problem with mild blurring
and 10% noise.

blur single 64 mild 0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 35: Image reconstruc-
tion in single precision of size 64
problem with mild blurring and
10% noise.

blur fp16 64 mild 0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 36: Image reconstruc-
tion in half precision of size 64
problem with mild blurring and
10% noise.

with those shown in previous sections. Because of the large amount of noise, we needed to use
relatively large regularization parameters, and this provides more stability for all precision levels,
including those computed in half precision. It is possible that tuning the regularization parameter
for half precision with no noise will produce a better result, but in our computation, we used a
standard generalized cross validation approach to choose regularization parameters [3], and we did
not attempt to further tune them for the various specific cases.

0 100 200 300 400 500

iteration

0

0.5

1

1.5

2

2.5

E
n

rm

blur 64 mild 0

double

fp16

single

Figure 37: Error norm of a
size 64 problem with mild blur-
ring of different precisions with
0 noise.

0 10 20 30 40 50 60

iteration

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

E
n

rm

blur 64 mild 0.01

double

fp16

single

Figure 38: Error norm of a size
64 problem with mild blurring
of different precisions with 1%
noise.

0 5 10 15

iteration

0.3

0.35

0.4

0.45

0.5

0.55

0.6

E
n

rm

blur 64 mild 0.1

double

fp16

single

Figure 39: Error norm of a size
64 problem with mild blurring
of different precisions with 10%
noise.

By observing the error norm plots in Figure 39, we also see that there seems to be very little

224

tomo fp16 64 default 0.1

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

Figure 40: Half precision, size 64, 10% noise, without rescale.

difference i n the convergence b ehavior o f CS f or the d ifferent precision levels when the no ise level
is high. The more noise we have, the closer are the results between double and half precision.

4.2.3 Tomography Reconstruction

Although CS avoids the computation of inner products, overflow still occurs at half precision during
the calculation of matrix-vector multiplications for the tomography reconstruction problem. NaNs
start to occur at the second iteration. Figure 50 shows the resulting image at the end of the first
iteration at half precision for a problem with 10% noise, which is already reasonably good with
visible shapes and boundaries.

Due to overflow, we r escaled t he p roblem a s f or CGLS s o t hat CS c ould r un more i terations for
half precision. The algorithm successfully runs to the end without occurrences of overflow. In the
figures b elow, we s how t he r esults a t t he l ast i teration f or p roblems w ith d ifferent pr ecision and
noise levels.

After rescaling, when there is noise on the right hand side b of the problem, the resulting image at
low precision is as valid as images produced at high precision. With 10% noise (Figures 43, 46, and
49), the CS algorithm ran 32 iterations, and produced good reconstructions with clear boundaries
and background for all three precision levels.

However, when there is zero noise, the result at half precision is a poor reconstruction. The
background and the object both look blurry and blend together, and the object contents are hardly
visible. We believe the dissatisfying image is a combined result of accumulation of round-off errors
and under-regularization.

After a closer look at the result of each iteration, we noticed that the reconstructions in the first
few iterations look smooth and improved as the iteration moves on, but at some point they start to
become noisy and blurry. Unlike CGLS where the output image at each iteration refines steadily,

225

tomo double 64 default 0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 41: Double precision,
size 64, zero noise.

tomo double 64 default 0.01

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 42: Double precision,
size 64, 1% noise.

tomo double 64 default 0.1

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 43: Double precision,
size 64, 10% noise.

tomo single 64 default 0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 44: Single precision, size
64, zero noise.

tomo single 64 default 0.01

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 45: Single precision, size
64, 1% noise.

tomo single 64 default 0.1

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 46: Single precision, size
64, 10% noise.

tomo fp16 64 default 0

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 47: Half precision, size
64, zero noise (after rescaling).

tomo fp16 64 default 0.01

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 48: Half precision, size
64, 1% noise (after rescaling).

tomo fp16 64 default 0.1

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 49: Half precision, size
64, 10% noise (after rescaling).

the results from CS have more oscillations from iteration to iteration, and it has a general trend
of becoming noisy as the iteration goes on. Below we show the resulting images at the first itera-
tion (Figure 50), the 5th iteration (Figure 51) where the error norm is the smallest, and the 250th

iteration (Figure 52). At the 250th iteration the image is already very noisy as round-off errors

226

accumulated along the way.

tomo fp16 64 default 0

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

Figure 50: Reconstruction at
first iteration, half precision,
zero noise (after rescaling).

tomo fp16 64 default 0

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 51: Reconstruction at
best iteration, half precision,
zero noise (after rescaling).

tomo fp16 64 default 0

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 52: Reconstruction at
250th iteration, half precision,
zero noise (after rescaling).

Figures 53, 54 and 55 present the error norms at different precision levels across different noise
levels. As expected, the error norms overlap for test problems with noise, implying that the quality
of the reconstructions is similar. However, for the noise-free problems, the error norms follow a
decreasing trend for double and single precision and a slightly increasing trend for half precision.
Besides, the norms oscillate more as noise level decreases, which corresponds with our observation
from the resulting images.

0 100 200 300 400 500

iteration

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

E
n

rm

tomo 64 default 0

double

fp16

single

Figure 53: Error norm of a size
64 problem at different preci-
sions with zero noise.

0 50 100 150 200

iteration

0

0.2

0.4

0.6

0.8

1

E
n

rm

tomo 64 default 0.01

double

fp16

single

Figure 54: Error norm of a size
64 problem at different preci-
sions with 1% noise.

0 5 10 15 20 25 30 35

iteration

0.3

0.4

0.5

0.6

0.7

0.8

0.9

E
n

rm

tomo 64 default 0.1

double

fp16

single

Figure 55: Error norm of a size
64 problem at different preci-
sions with 10% noise.

5 Discussion

We incorporated CGLS with regularization to compare its performance with that of CS more fairly.
The effect of regularization is apparent, as the resulting image is less noisy, especially for low preci-
sion. As the noise level increases, the difference between high precision and low precision becomes

227

less significant. Yet still, rescaling is necessary for half precision to avoid overflow for the tomogra-
phy reconstruction problem. Below we showed the result of CGLS with regularization for the two
test problems.

blur double 64 mild 0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 56: CGLS with regular-
ization, double precision, 10%
noise.

blur single 64 mild 0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 57: CGLS with regu-
larization, single precision, 10%
noise.

blur fp16 64 mild 0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 58: CGLS with regu-
larization, half precision, 10%
noise.

tomo double 64 default 0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 59: CGLS with regular-
ization, double precision, zero
noise.

tomo single 64 default 0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 60: CGLS with regu-
larization, single precision, zero
noise.

tomo fp16 64 default 0

0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 61: CGLS with regu-
larization, half precision, zero
noise (after rescaling).

Overall, CGLS is a more stable algorithm than CS and has less oscillations in the solution. The
result given by CGLS is steadily improving in the iterations even with the presence of noise.
Switching to lower precision does not have a large impact on the performance of CGLS, as long
as no overflow o r u nderflow oc curs. An d if th ey do oc cur, we ca n re scale th e pr oblem to delay
the occurrence of overflow and NaNs s o t hat a r elatively good r esult c an s till b e o btained. How-
ever, we do expect there to be still significant problems with overflow and NaNs for larger problems.

The main problem with CGLS at low precision is to find the suitable rescaling parameter, which de-
pends on the matrix A and vector b of each problem. We did not have issues of overflow/underflow
at all for the image deblurring problem, while NaNs started to appear at the first i teration for
the tomography reconstruction problem. We tried several rescaling parameters before we found a

228

tomo double 64 default 0.1

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 62: CGLS with regu-
larization, double precision,10%
noise.

tomo single 64 default 0.1

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 63: CGLS with regu-
larization, single precision,10%
noise.

tomo fp16 64 default 0.1

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 64: CGLS with regular-
ization, half precision,10% noise
(after rescaling).

tomo fp16 32 mild 0

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 65: Half precision, size 32, zero noise.

suitable one, and sometimes it is hard to determine whether a parameter is suitable or not if we do
not have an idea of what the real image looks like. The purpose of rescaling is to avoid NaNs in the
solution, but a solution without NaNs does not imply it has been rescaled properly. For example,
Figure 65 is the result of a size-32 tomography reconstruction test problem given by CGLS after 100
iterations. No NaN occurred during the iteration process, but the resulting image is far from the
true solution. This is because the overflow leads to an underflow of x to zero immediately in the first
iteration. Though it did not result in NaNs, the algorithm did not capture any information about x
in that iteration as well. Therefore, the image is not rescaled properly despite the absence of NaNs.

CS, on the other hand, does not necessarily require rescaling at low precision as it avoids the
calculation of inner products, which is the main source of overflow. The major advantage of CS is
that it is able to run more iterations before the first NaNs occur, so that the resulting images have
more chances to get refined a nd a re l ess l ikely t o b e c ut o ff be fore th e op timal po int. There are
also cases when CGLS overflows at the first iteration and produces anything but NaNs, while CS

229

is able to run several iterations and produce a relatively meaningful image, as for the tomography
reconstruction test problem. In these circumstances, if only a rough estimate of the original image
is desired, CS can be a more convenient choice as it saves the trouble of finding a proper rescaling
parameter.

However, CS requires the user to have an estimate of the bounds of A’s singular values, which
may be hard to estimate. Even with Tikhonov regularization, the resulting bound depends on the
regularization parameter λ, which in turn depends on the noise level and the problem itself. When
λ is small, the computation becomes more risky, especially at low precision. Generally speaking,
when the noise is large, we would need a larger λ to filter out the n oise. Therefore, i t i s not sur-
prising that CS has better performance when the noise level is high. However, when the noise is
negligible, the more stable CGLS is a better choice.

6 Conclusion

In this project, we explored methods for solving inverse problems at low precision. We first mod-
ified s everal MATLAB built-in operations u sing chop f or custom precision l evels and applied the
blocking method to decrease the error bounds of the simulation. Then we ran the modified CGLS
and CS methods on image deblurring and tomography reconstruction tasks to compare their per-
formance across different precision l evels. We added Tikhonov r egularization t o b oth methods to
balance signal and noise.

After comparing results given by the two algorithms, we concluded that CGLS is more stable
than CS. Its output image steadily gets closer to the real image. However, CGLS is likely to suffer
from overflow at low precision as it involves the calculation of inner p roducts. One solution to this
issue is to rescale the problem, but finding a suitable rescaling parameter requires t rial and error.
Moreover, the rescaling is unlikely to be effective f or e xtremely l arge p roblems w hen u sing low
precision. In the future, we hope to find a more direct way that finds a suitable rescaling parameter
given the matrix A, vector b, and precision level. Based on intuition gained from experiments, a
factor that “rescales” the values to O(1) is often a good choice. We would also look at algorithms
for normalizing A as described in the survey by Higham and Mary [11].

The performance of the CS method is less stable and depends more on the noise level of the
problem. It has more oscillations than CGLS during the iterating process. However, CS requires
no calculation of inner products, and it is therefore less likely to overflow. The method avoids the
need of rescaling for some problems; with rescaling, it can refine the result with even more iterations
and often ends up with a better resulting image than CGLS. The price paid here is that CS needs
some prior knowledge of the range of the matrix’s singular values. When the matrix is large and
sparse, for low precision levels, we need a regularization parameter large enough to obtain a valid
lower bound and avoid the accumulation of round-off e rrors. For problems with noise on the right
hand side b, most of the time we would naturally end up with a large enough λ. Therefore, CS
has great performance for noisy problems. However, when the problem is noise-free, the estimated
λ given by the parameter selection methods are often too small, and CS performs poorly. In the
future, we hope to develop better methods for choosing suitable regularization parameters for CS
at low precision.

230

When examining the error norms of the solution at each iteration, we noticed that sometimes
the error norm did not match the so-called “eyeball norm.” An image with clear shape and back-
ground may have a higher error norm than a blurry, noisy image. The latter one, though with a
smaller error norm, is obviously less informative than the former one. Therefore, more research is
needed on ways to take other aspects of the output image into the account of error measurement
so that we could find an image that conveys the most information.

Moreover, we would like to explore more iterative methods other than CGLS and CS and im-
plement them in low precision, as well as mixed precision, which is expected to have both the
accuracy of high precision and the gains of speed from low precision.

Acknowledgements

This work was partially supported by the US National Science Foundation under grants: DMS-
2051019 and DMS-2208294.

References

[1] Å. Björck. Numerical Methods for Least Squares Problems. SIAM, 1996.

[2] C. L. Epstein. Introduction to the Mathematics of Medical Imaging, Second Edition. SIAM,
Philadelphia, PA, 2007.

[3] S. Gazzola, P. C. Hansen, and J. G. Nagy. IR tools: a MATLAB package of iterative regular-
ization methods and large-scale test problems. Numerical Algorithms, 81(3):773–811, 2019.

[4] G. Gupta. Using tensor cores for mixed-precision scientific computing. NVIDIA Technical
Blog, https://developer.nvidia.com/blog/tensor-cores-mixed-precision-scientific-computing/,
Oct-2021.

[5] M. H. Gutknecht and S. Röllin. The Chebyshev iteration revisited. Parallel Computing,
28(2):263–283, 2002.

[6] A. Haidar, P. Wu, S. Tomov, and J. Dongarra. Investigating half precision arithmetic to
accelerate dense linear system solvers. In Proceedings of the 8th workshop on latest advances
in scalable algorithms for large-scale systems, pages 1–8, 2017.

[7] P. C. Hansen. Discrete Inverse Problems: Insight and Algorithms. SIAM, 2010.

[8] M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems.
Journal of research of the National Bureau of Standards, 49(6):409, 1952.

[9] N. J. Higham. The accuracy of floating point summation. SIAM Journal on Scientific Com-
puting, 14(4):783–799, 1993.

[10] N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, 2002.

231

https://developer.nvidia.com/blog/tensor-cores-mixed-precision-scientific-computing/

[11] N. J. Higham and T. Mary. Mixed precision algorithms in numerical linear algebra. Acta
Numerica, 31:347–414, 2022.

[12] N. J. Higham and S. Pranesh. Simulating low precision floating-point arithmetic. SIAM
Journal on Scientific Computing, 41(5):C585–C602, 2019.

[13] P. Luszczek, J. Kurzak, I. Yamazaki, and J. Dongarra. Towards numerical benchmark for
half-precision floating point arithmetic. In 2017 IEEE High Performance Extreme Computing
Conference (HPEC), pages 1–5. IEEE, 2017.

[14] X. Meng, M. A. Saunders, and M. W. Mahoney. LSRN: A parallel iterative solver for strongly
over-or underdetermined systems. SIAM Journal on Scientific Computing, 36(2):C95–C118,
2014.

[15] P. San Juan, R. Rodŕıguez-Sánchez, F. D. Igual, P. Alonso-Jordá, and E. S. Quintana-Ort́ı.
Low precision matrix multiplication for efficient deep learning in nvidia carmel processors. The
Journal of Supercomputing, 77(10):11257–11269, 2021.

[16] L. N. Trefethen and D. Bau III. Numerical Linear Algebra, volume 50. SIAM, 1997.

[17] H. Wang. A Chebyshev semi-iterative approach for accelerating projective and position-based
dynamics. ACM Transactions on Graphics (TOG), 34(6):1–9, 2015.

232

	Introduction
	Simulating Low Precision
	Chop
	Blocking

	Conjugate Gradient Method for Least Squares
	Method Overview
	Experiments
	Image Deblurring
	Tomography Reconstruction

	Chebyshev Semi-Iterative Method
	Method Overview
	Experiments
	Tikhonov Regularization
	Image Deblurring
	Tomography Reconstruction

	Discussion
	Conclusion

