
Adapting Zeroth Order Algorithms for Comparison-Based Optimization

Isha Slavin†

Project advisor: Daniel McKenzie‡

Abstract. Comparison-Based Optimization (CBO) is an optimization paradigm that assumes only very limited
access to the objective function f(x). Despite the growing relevance of CBO to real-world appli-
cations, this field has received little attention as compared to the adjacent field of Zeroth-Order
Optimization (ZOO). In this work we propose a relatively simple method for converting ZOO al-
gorithms to CBO algorithms, thus greatly enlarging the pool of known algorithms for CBO. Via
PyCUTEst, we benchmarked these algorithms against a suite of unconstrained problems. We then
used hyperparameter tuning to determine optimal values of the parameters of certain algorithms,
and utilized visualization tools such as heat maps and line graphs for purposes of interpretation. All
our code is available at https://github.com/ishaslavin/Comparison Based Optimization.

1. Introduction. Zeroth-Order Optimization (ZOO) is a branch of mathematical opti-
mization in which one tries to minimize the objective function:

f : Rn → R.

In this paradigm the gradient ∇f(x) cannot be accessed, and only function evaluations
f(x) are available. Comparison-Based Optimization (CBO), which is the focus of this paper,
further restricts what one can calculate. For this form of optimization, we assume the user
has very limited access to f(x). More explicitly, it is assumed that the only method to obtain
information about the function is to use a Comparison Oracle, which—when given x, y ∈ Rn—
returns a single bit of information representing whether f(x) < f(y) or f(y) < f(x). More
formally:

Definition 1.1 (Comparison Oracle). A Comparison Oracle is a function Cf (•, •) : Rd×Rd →
{−1,+1} defined as

Cf (x, y) = sign (f(y)− f(x)) .

In certain applications it is useful to consider an oracle which occasionally returns the
incorrect answer. So, we also define a noisy comparison oracle:

Definition 1.2 (Noisy Comparison Oracle). A Noisy Comparison Oracle with parameter p ∈
[0.5, 1] is a function Cf (•, •) : Rd × Rd → {−1,+1} defined as

P [Cf (x, y) = sign (f(y)− f(x))] = p.

There are many reasons to consider a comparison oracle and a variety of natural situations
where CBO arises. Consider the case of applying reinforcement learning to real-world tasks,
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in which a real-valued reward seems erroneous to define [ 5]. A dditionally, i n m any real-
world domains numerical feedback signals are either unavailable or are created arbitrarily 
to support conventional reinforcement learning algorithms [9, 25]. In these cases, human 
comparison feedback can be used in comparison oracle form in lieu of a numerical reward 
function. For example, when attempting to optimize exoskeleton gait researchers determined 
that since exoskeleton-walking is non-intuitive, users can provide preference between multiple 
gaits much more reliably than numerically quantifying experience [24]. Another application 
for using CBO involves optimizing information retrieval systems through maximizing user 
utility [26]. In this scenario it is infeasible to assign a numerical utility value to a result served 
to a user, yet simple to obtain judgements of utility by asking a user to compare two results; 
this is a form of comparison oracle. It is important to note that in such situations, CBO is 
the only option. Gradients or even function values are simply not available.

Despite the wealth of potential applications, relatively few algorithms for CBO have been 
proposed [4, 3, 16]. On the other hand, there is a wealth of algorithms available for ZOO, see 
for example the recent survey [18]. We observe that some, but not all, ZOO algorithms can 
be adapted to CBO. The first contribution of this paper i s a  s imple criterion for determining 
when this is the case, and a procedure for doing so (See Section 2).

There is also a lack of clear comparison between CBO algorithms in prior literature. In 
particular, it is not clear how such algorithms perform on large scale continuous optimization 
problems. This makes it difficult for practitioners wishing to use a CBO algorithm in practice 
to select the appropriate algorithm for their problem. As our second main contribution we 
provide a software suite for easy benchmarking of CBO algorithms, using the CuTEST set of 
test functions. We use this to compare five CBO a lgorithms—two native CBO methods and 
three that are converted from ZOO methods using the procedure mentioned above.

Finally, CBO algorithms often have many hyperparameters, and it is not always clear 
from theoretical grounds which hyperparameter settings are optimal. Using the software tools 
mentioned above, we search the hyperparameter space of two CBO algorithms and identify 
values which empirically work well on the CuTEST problem set. These could be used by 
practioners working on similar problems.

The paper is organized as follows. Our main contributions are available in Section 2, 
containing a novel utility we introduce. Pseudocode for our modifications of current algorithms 
are presented in Appendix A and experimental results are presented in Section 4. A discussion 
of those results can be found in Section 5 and Section 6.

2. From ZOO to CBO. The motivation for this work was the observation that many 
ZOO algorithms do not use the function values directly. Rather, such algorithms proceed by 
sampling a small number of points z1, . . . , zm near the current iterate xk and then ranking the 
function evaluations f(z1), . . . , f(zm). The next iterate is then determined using this ranking. 
We note that such a ranking can be done using only a comparison oracle, and formalize this 
as Property 2.1.
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Property 2.1 (The “Comparison Only” property). Suppose A is a ZOO algorithm. We say
A satisfies the “Comparison Only” property if it only uses function values within an argmin
over a finite set, e.g argmini=1,...,m f(zi) or to sort a list z1, . . . , zm according to f(zi) i.e. to
find a permutation π such that f(zπ(i)) ≤ f(zπ(2)) ≤ . . . ≤ f(zπ(m)).

If A satisfies Property 2.1, it can easily be converted to a CBO algorithm using the
utility Algorithm 2.1 (an implementation of Bubble Sort [6, Section 2.3] using the comparison
oracle) or Algorithm 2.2 (an implementation of the Minimum algorithm [6, Section 9.1] using
the comparison oracle). Observe that the above modification only holds when the zeroth order
algorithm finds an argmin over a finite set; otherwise, Property 2.1 will not hold. We illustrate
this with the Stochastic Three Point (STP) method [1], see Algorithm 2.3. For an example
of a ZOO algorithm which does not satisfy our condition, and so cannot be converted into a
CBO algorithm, consider the RSGF algorithm of [11] (see also [21]). Here, at each iteration a
gradient estimator is constructed from function evaluations and used in place of the gradient:

ĝk =
f(xk + δui)− f(xk)

δ
≈ ∇f(xk)(2.1)

xk+1 = xk − αĝk(2.2)

A second example could be any interpolation-based method, e.g. NEWUOA [22], or the recently
introduced HJ-Mad [15]. That CMA-ES (and related algorithms) satisfy the Comparison Only
property appears to be well-known in the evolutionary computing community, where it is
frequently mentioned as a source of robustness [10].

Algorithm 2.1 Comparison-based Sort (CompSort)

Initialization
Take in Comparison Oracle : Cf , lst = [z1, z2, ..., zm] : list of input values
for i = 1, . . . ,m− 1 do

for j = 1, . . . ,m− i− 2 do
if Cf (lst[j + 1], lst[j]) = +1 then

Swap lst[j] and lst[j + 1]
end if

end for
end for
return Sorted list [zπ(1), zπ(2), . . . , zπ(m)].

The two procedures introduced above are used to convert ZOO to CBO algorithms. In-
stead of using direct function evaluations to sort a list (Algorithm 2.1) or find t he argmin 
(Algorithm 2.2), it queries a Comparison Oracle. It then uses the one-bit comparisons out-
putted by the oracle to either return a list of input vectors, arranged by function values in 
ascending order (Algorithm 2.1) or output the input which yields the smallest function value 
(Algorithm 2.2). This is done without ever evaluating the objective function at an input di-
rectly.
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Algorithm 2.2 Comparison-based Min (CompMin)

Initialization
Take in Comparison Oracle : Cf , lst = [z1, z2, ..., zm] : list of input values
z+ = z1
for k = 2, . . . ,m do
if Cf (z+, zk) = +1 then
z+ = z+

else if Cf (z+, zk) = −1 then
z+ = zk

else
z+ = z+ or z+ = zk with equal probability.

end if
end for
return z+

As proof of concept, we identified t hree Z OO a lgorithms s atisfying P roperty 2 .1 and 
transform them to CBO algorithms using Algorithm 2.2 or Algorithm 2.1. The algorithms 
we consider are the Stochastic Three Points Method (STP) [1], Covariance Matrix Adaptation 
Evolutionary Strategies (CMA-ES) [14], and Gradientless Descent (GLD) [12]. For all algorithms 
considered, we have the functionality to generate multiple types of distributions D including 
the Uniform distribution over {e1, . . . , en}, where ei denotes the i-th canonical basis vector, 
Gaussian, Uniform over the unit sphere, and Rademacher (see Appendix A). Note that direct 
search methods such as the Nelder-Mead simplex algorithm [19], Powell’s method [23], and 
various directional direct search algorithms [18] also satisfy Property 2.1 and can thus be 
converted to Comparison-Based algorithms.

Algorithm 2.3 shows how we were able to convert the STP optimization algorithm from 
Zeroth-Order to Comparison-Based. When using step 3a the algorithm uses function evalua-
tions to determine the argmin over a set of three input vectors. When using a modification, 
step 3b, Algorithm 2.2 is employed to find the argmin, thus side-stepping function evaluations 
and using a Comparison Oracle instead. Note that the four distributions mentioned above can 
be used to randomly generate random vectors sk in the algorithm below. For CBO conversion 
of CMA-ES and GLD zeroth-order algorithms see Appendix A.
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Algorithm 2.3 Stochastic Three Point (STP). For original algorithm use 3a. For comparison-
based version, use 3b.

Initialization
Choose x0 ∈ Rn, stepsizes αk > 0, probability distribution D on Rn

for k = 0, 1, 2, .... do
1. Generate a random vector sk ∼ D
2. Let x+ = xk + αksk and x− = xk − αksk
3a. xk+1 = argmin{f(x−), f(x+), f(xk)}
3b. xk+1 = CompMin(x−, x+, xk)

end for

Converting a ZOO algorithm to a CBO one using our utilities changes the query complexity 
of the algorithm, defined a s t he n umber o f f unction e valuations ( resp. c omparison oracle 
queries) required to find a  suitable solution, in a  predictable way:

Theorem 2.2. Suppose A is a ZOO algorithm satisfying Property 2.1 and making m func-
tion evaluations per iteration. Then the associated CBO algorithm constructed using Algo-
rithm 2.1 (resp. Algorithm 2.2) makes at most m2 (resp m − 1) oracle queries per iteration.

Proof. This follows from standard complexity analysis of Bubble Sort and Minimization, 
see [6].

Remark 2.3. When m is large, using Algorithm 2.1 increases the query complexity of an 
algorithm significantly, as it requires m 2 queries per i teration. This could be improved by using 
a more sophisticated sorting algorithm, e.g. QuickSort. Nonetheless, care must be taken when 
adapting ZOO algorithms requiring many sort operations. In particular, we caution against 
naive comparison-based implementations of the Nelder-Mead simplex algorithm [20], as this 
may make as many as O(n2) queries per iteration.

3. A benchmarking utility for CBO algorithms. To the best of our knowledge, there 
does not exist a suite of test problems for benchmarking CBO algorithms. So, we create 
one using the well-known CuTEST package [13] and the PyCUTEst interface [8]. We do 
so by providing a simple wrapper which turns any test function f into a comparison oracle 
Cf ; see Algorithm 3.1. We also provide a wrapper allowing for noisy comparison oracles; see 
Algorithm 3.2. These functions are available at https://github.com/ishaslavin/Comparison 
Based Optimization.

4. Experimental results. We empirically compare five CBO a lgorithms. Two are specifi-
cally designed for CBO problems (SCOBO [3] and SignOPT [4]) while three (GLD, CMA-ES, and 
STP) are adapted from ZOO algorithms using the method of Section 2. See Section 2 for 
further details, and Appendix A for pseudocode. We first b enchmark t hese a lgorithms on 
three simple test problems: Sparse Quadratic, MaxK, and (non-sparse) Quadratic, studied in 
[3, 2].
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Algorithm 3.1 Oracle Utility (Cf )
Initialization
Take in function f : Rn → R, x : first input value, y : second input value
if f(x) < f(y) then
return 1

else if f(y) < f(x) then
return -1

else
return 0

end if

Algorithm 3.2 Noisy Oracle Utility

Initialization
Take in function f : Rn → R, p ∈ [0, 1] : noisy-ness of oracle, x : first input value, y : second
input value
Generate r ∈ [0, 1] randomly
if r < p then

if f(x) < f(y) then
return 1

else if f(y) < f(x) then
return -1

else
return 0

end if
else if r ≥ p then

if f(x) < f(y) then
return -1

else if f(y) < f(x) then
return 1

else
return 0

end if
end if

Definition 4.1 (SparseQuadratic). For fixed parameters n = 200 and k = 20, define

f : Rn → R(4.1)

f(x) =

k∑
i=1

x2i(4.2)

Definition 4.2 (MaxK). Fix the parameters n = 200 and k = 20. For any x ∈ Rn, let π
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denote a permutation such that xπ(1) ≥ xπ(2) ≥ · · · ≥ . Define:

fmax−k : Rn → R(4.3)

fmax−k(x) =
k∑

i=1

x2π(i)(4.4)

By non-sparse quadratic we mean the function

Definition 4.3 (NonSparseQuadratic).

f : R200 → R(4.5)

f(x) =

200∑
i=1

x2i(4.6)

Figure 1. Left: SparseQuadratic. Center: MaxK. Right: NonSparseQuadratic. Graphs display the mean
optimality gap plotted against the cumulative number of comparison oracle queries for CBO algorithms against
the three functions mentioned above.

We test our five algorithms on these three functions. For each problem, we run each
algorithm using the same initial point x0 and repeat this five times. Figure 1 shows the mean
optimality gap (i.e. f(xk) − f(x⋆)) plotted against the cumulative number of comparison
oracle queries. The shading indicates the min–max range. As expected [3] SCOBO optimizes
the fastest on the function MaxK which exhibits gradient sparsity, i.e.

(4.7) ∥∇f(x)∥0 := |{i : ∇if(x) ≠ 0}| ≤ 20 for all x ∈ Rn.

For the function without gradient sparsity (the non-sparse quadratic) as well as Sparse-
Quadratic, GLD (originally zeroth-order but modified here to b e comparison-based) performs 
best. STP, SignOPT, and CMA show similar patterns of minimizing the functions linearly and 
not fast.

4.1. PyCUTEst Results. The functions mentioned above are fairly simple. To bench-
mark against problems that generalize to an overall population of functions we utilized the 
PyCUTEst [8] Python wrapper to the Fortran package CUTEst [13], used to test optimiza-
tion software. Available in this package are 117 unconstrained problems, each varying in
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input vector dimension. We benchmarked our CBO algorithms against 22 of these problems,
ranging in input vector dimension from R10 to R100. The 22 PyCUTEst functions used and
their dimensions are provided in Table 1. To turn these functions into CBO problems we
used the utility described in Section 3. Representative results are shown in Figure 2. To gain
a clearer perspective on how these CBO algorithms compare over the entire benchmark set,
we use performance profiles [7]. As described in [17], performance profiles are constructed as
follows:

Let P denote the set of benchmark problems and S denote the set of algorithms under
consideration. For each p ∈ P and s ∈ S the performance ratio rp,s is defined by

rp,s =
tp,s

mins′∈S tp,s′
,

where tp,s is the number of comparison oracle queries required for algorithm s to solve problem
p (lower is better). So, rp,s represents the performance of s on p relative to the best algorithm
in S for p. The performance profile of s, ρs : [1,∞)→ [0, 1] is

ρs(τ) =
|{p ∈ P : rp,s ≤ τ}|

|P|
.

In other words, ρs(1) is the fraction of problems for which s solves the problem first, so a
higher value of ρs(1) is better. When τ is larger ρs(τ) represents the fraction of problems for
which the performance of algorithm s is at most τ times worse than the performance of the
best algorithm tested on this problem. Again, higher values of ρs(τ) are preferred and indicate
that the algorithm s is robust. Our success condition for performance profiling is determined
by the relative size of either the function values or the gradient. More specifically, we define
two success criterion terms to profile against: one in which the final function evaluation f(xk)
is 0.05 times the initial function evaluation f(x0), and one in which the euclidean norm of
the gradient of the function evaluated at xk is 0.05 times the 2-norm of the gradient of the
function evaluated at the starting input x0. Performance profiles for SignOPT, GLD, CMA-ES,
SCOBO, and STP, tested on the 22 problems in Table 1, are shown in Figure 3.

Table 1
PyCUTEst problems used in benchmarking.

Problem CHNROSNB CHNRSNBM ERRINROS ERRINRSM

Dimension 50 50 50 50

Problem HILBERTB QING LUKSAN11LS LUKSAN12LS

Dimension 10 100 100 98

Problem LUKSAN13LS LUKSAN14LS LUKSAN15LS LUKSAN16LS

Dimension 98 98 100 100

Problem LUKSAN17LS LUKSAN21LS LUKSAN22LS MANCINO

Dimension 100 100 100 100

Problem STRTCHDV SENSORS VANDANMSLS WATSON

Dimension 10 100 22 12

Problem TRIGON1 TRIGON2

Dimension 10 10
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Figure 2. Optimality gap (f(xk) − f(x⋆)) vs number of iterations for three typical PyCUTEst functions.
Left: VAREIGVL. Center: LUKSAN17LS. Right: CHNRSNBM.
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Figure 3. Performance profiles f or G LD, S ignOPT, S TP, C MA-ES, a nd S COBO. Top L eft: A  q uery budget 
of 104 and success criterion f(xk) ≤ 0.05f(x0). Top Right: A query budget of 105 and success criterion 
f(xk) ≤ 0.05f(x0). Bottom Left: A query budget of 104 and success criterion ∥∇f(xk)∥2 ≤ 0.05∥∇f(x0)∥2. 
Bottom Right: A query budget of 105 and success criterion ∥∇f(xk)∥2 ≤ 0.05∥∇f(x0)∥2.

4.2. Noisy Oracle. In practice comparison oracles may occasionally be unreliable. To test 
the robustness of the CBO algorithms to noise, we ran experiments using the SparseQuadratic 
function (see Definition 4.1) with the noisy comparison oracle utility (see Definition 1. 2). The 
noisy oracle takes in a parameter p determining the probability that its output is accurate. 
We ran experiments using p = 0.7 and p = 0.9. The results are shown in Figure 4. Notice 
that SCOBO and GLD show similar trends, while STP, SignOPT, and CMA show similarities as well 
with a greater margin of error. Additionally, we can see that CMA and GLD show low robustness
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Figure 4. Minimizing the SparseQuadratic function using a noisy comparison oracle. Left: p = 0.9 Right:
p = 0.7.

Figure 5. Top Left: ROSENBR (100 queries). Top Center: HILBERTA (100 queries). Top Right: 
WATSON (100 queries). Bottom Left: ROSENBR (5,000 queries). Bottom Center: HILBERTA (5,000 
queries). Bottom Right: WATSON (5,000 queries).

to noise with greater margins of error and a clear struggle to minimize the function, whereas 
SCOBO maintains performance in the presence of noise well.

4.3. Hyperparameter Tuning. To demonstrate how our PyCUTEst utility might be used 
in practice, we tune the hyperparameters for two algorithms, GLD and SCOBO, using three 
PyCUTEst functions: Rosenbrock (ROSENBR), Hilbert (HILBERTA), and Watson (WAT-
SON). For more information on these functions, see [8].

GLD takes in two scalar parameters R and r, representing the upper and lower bounds of 
the search radii, respectively. Figure 5 shows results in the form of heat map visualizations of 
GLD’s performance for 100 and 5000 oracle queries. Darker colors represent higher final func-
tion evaluations and lighter colors represent lower final function evaluations. Thus, pairings of
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Figure 6. Top Left: ROSENBR (1,000 queries). Top Center: HILBERTA (1,000 queries). Top Right:
WATSON (1,000 queries). Bottom Left: ROSENBR (10,000 queries). Bottom Center: HILBERTA
(10,000 queries). Bottom Right: WATSON (10,000 queries).

r, R that are a lighter blue on the heat map represent more optimal parameter value pairings
than those that are purple. We considered r values of 0.001, 0.01, 0.1, 1.0, displayed on the
x-axis, and R values of 10000, 1000, 100, 10, displayed on the y-axis.

SCOBO takes in scalar parameters r, s, and m, see [3] for a discussion on the meaning
of these parameters. Heat maps were generated by varying values of s and r, while keeping
m fixed, and finding the last function evaluation for each of these pairings. The same was
done for s and m, keeping r fixed. Results showing the heat maps for s and r variations are
displayed in Figure 6, and heat maps for s and m variations are shown in Figure 7, containing
graphs for both 1,000 and 10,000 oracle queries. Darker colors represent lower final function
evaluations and greener colors represent higher final function evaluations (notice that this is
a different color scale to Figure 5). Thus, pairings that are dark are better than those that
are light. Values of r range on the x-axis (0.001, 0.01, 0.1, 1.0) and values of s range on the
y-axis (100, 50, 20, 10).

5. Discussion. There are many insights to gather from the results of our experiments.
Firstly, certain CBO algorithms work better than others in various situations. For example, 
notice that SignOPT and CMA tend to consistently lack in ability to optimize the Sparse-
Quadratic, MaxK, and NonSparseQuadratic functions whereas GLD and SCOBO optimize them 
fast and efficiently (F igure 1). However in  No nSparseQuadratic, a fu nction wi thout sparse 
gradients (which SCOBO specializes in), GLD converges the function values faster. Therefore 
in this case it may be in a scientist’s best interest to use GLD. Furthermore we see in Figure 2 
that SCOBO is unable to generalize to problems of higher dimensions whereas GLD and STP 
optimize the functions the best, relatively. Thus in the situation of non-sparse gradients and 
high dimensional input spaces, it may be in the scientist’s favor to choose GLD, STP, or SignOPT 
over SCOBO.
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Figure 7. Top Left: ROSENBR (1,000 queries). Top Center: HILBERTA (1,000 queries). Top Right: 
WATSON (1,000 queries). Bottom Left: ROSENBR (10,000 queries). Bottom Center: HILBERTA 
(10,000 queries). Bottom Right: WATSON (10,000 queries).

Performance profiles p rovide i nformation o n t he f raction o f p roblems f or w hich certain 
algorithms perform the best and on the robustness of each algorithm. Robustness refers to 
the ability of an algorithm to eventually solve hard problem instances. From the performance 
profiles s hown i n F igure 3 , n otice t hat e ach a lgorithm s olves t he s ame f raction o f problems 
given the query budget. When success criterion is set to be f(xk) ≤ 0.05f(x0), we see ap-
proximately a 55% solve rate given a 104 budget and 65% given a 105 budget; when success 
criterion is defined as ∥∇f(xk)∥2 ≤ 0.05∥∇f(x0)∥2, we observe the same solve rates respective 
to query budgets apart from GLD which is able to solve 80% of problems given a 105 query 
budget. Thus, while the robustness of each algorithm is relatively equal, this value is still low. 
However, a low value of robustness is expected as CBO is much harder than ZOO. Notice that 
STP and SignOPT have the highest rate of initial increase, indicating they are able to solve 
easier problems the fastest. SCOBO clearly struggles the most in optimizing CUTEst functions. 
GLD has a slower rate of initial increase yet eventually levels off a t a  h igh r ate, indicating 
that if left with a high-enough query budget it can successfully solve a substantial portion of 
problems.

Focusing on the GLD hyperparameter tuning experiments, we can determine that the best 
values of R and r tested were the smallest combination of each (r = 0.001, R = 10). Observe 
that the top-left of each graph becomes the lightest in the smallest number of queries for each 
of the three PyCUTEst problems we tuned against. This corner of the heat map corresponds 
to the smallest value of each search radii bound (Figure 5).

For SCOBO, we see interesting and perhaps less interpretable results. We first tuned hyper-
parameters s and m to find the best p airing. We found that s had no effect on the performance 
of the pairing, whereas smaller m led to better optimization. Recalling that m denotes the 
number of queries made per iteration (see [3]), this reveals an interesting tradeoff. Although
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higher m means more accurate gradient approximations, it is better to take a smaller m and
hence less accurate gradient approximations, as this allows for more (albeit noisier) iterations
given a fixed query budget. We next tuned s and r with m = 100 fixed. Altering values
for these parameters seemed to make no difference on performance when tuned against the
problem HILBERTA, yet for ROSENBR and WATSON any pairing which had an r value of
0.001, 0.01, or 0.1 minimized the function the best. When r = 1, any value of s yielded poor
performance. For the ROSENBR problem, when r = 0.01 any value of s had a very strong
minimization. For the WATSON problem, r = 0.01 and r = 0.001 were both ideal. This
indicates the best optimization occurs with a small r value (Figure 6).

Finally, our experiments with a noisy oracle reveal some interesting insights into the
robustness of the CBO algorithms considered. When the success rate is p = 0.9, we hardly
see a difference compared to using a normal Comparison Oracle (Figure 4). However, when
the success rate is p = 0.7 the benchmarked algorithms are noticeably more noisy. GLD’s
optimization is considerably changed as it is sensitive to error. This can be explained by the
pseudocode Algorithm 2.3 and Algorithm A.2, as this algorithm takes strides in the direction
of the smaller input value. Thus if the wrong value is being outputted by the oracle 30%
of the time, the algorithm will step in the wrong direction often and considerably diminish
its minimization strength. While SCOBO, SignOPT, and STP also seem to get noisier, they are
much less impacted by the error. These three algorithms are more robust to noise than GLD

or CMA.

6. Conclusions. We have provided a novel utility for converting ZOO algorithms to CBO
algorithms, and showcased how we did so with three state-of-the-art algorithms. We described
our benchmarking experiments across these three converted and two already-existing CBO al-
gorithms and analyzed results extensively. Users now have access to a suite of CBO algorithms
as well as guidance in their application to continuous, large-scale CBO problems.

There is future work to conduct in this area. One idea is to use human comparison rather
than a comparison oracle, so that instead of modeling what a noisy oracle may look like we
establish it with human error. This continuation would tie into Cognitive Science, as we would
work with human participants. Additionally, we can conduct hyperparameter tuning for more
CBO algorithms, as we only covered two (GLD, SCOBO).
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Appendix A. Pseudocode.
This Appendix contains pseudocode for three of the five CBO algorithms (STP, GLD

CMA). The other two algorithms, SCOBO and SignOPT, were originally CBO and not al-
tered; thus, we did not feel the need to provide pseudocode for them as they can be found
in their original respective papers (see references). The Appendix also contains pseudocode
for three test problems (Sparse Quadratic, MaxK, Non-Sparse Quadratic), and four distri-
butions (Uniform distribution of canonical basis vectors, Gaussian, Uniform under Sphere,
Rademacher).

Algorithm A.1 Stochastic Three Point (STP). For the original algorithm use 3a. For the
comparison-based version, use 3b.

Initialization
Choose x0 ∈ Rn, stepsizes αk > 0, probability distribution D on Rn

for k = 0, 1, 2, .... do
1. Generate a random vector sk ∼ D
2. Let x+ = xk + αksk and x− = xk − αksk
3a. xk+1 = argmin{f(x−), f(x+), f(xk)}
3b. xk+1 = CompMin(x−, x+, xk)

end for

Algorithm A.2 Gradientless Descent with Binary Search (GLD). For the original algorithm
use a. For the comparison-based version, use b.

Initialization
Take in function f : Rn → R, T ∈ Z+ : number of iterations, x0 : starting point, D :
sampling distribution, R : maximum search radius, r : minimum search radius
K = log(R/r)
for t = 0, ..., T do
Ball Sampling Trial:
for k = 0, ...,K do

Set rk = 2−kR
Sample vk ∼ rkD

end for
a. Update: xt+1 = argmink{f(y)|y = xt, y = xt + vk}
b. Update: xt+1 = CompMin(xt, xt + vk)

end for
return xt
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Algorithm A.3 Covariance Matrix Adaptation - Evolution Strategy (CMA-ES). For the orig-
inal algorithm use a. For the comparison-based version, use b.

Set parameters
Set parameters λ, wi=1···λ, cσ, dσ, cc, c1, and cµ
Initialization
Set evolution paths pσ = 0, pc = 0, covariance matrix C = I, and g = 0
for k = 1, . . . ,K do
Sample new population of search points, for k = 1, · · · , λ

zk ∼ N (0, I)(A.1)

yk = BDzk ∼ N (0, C)(A.2)

xk = m+ σyk ∼ N (m,σ2C)(A.3)

a. Sort: Find permutation π such that f(xπ(1)) ≤ f(xπ(2)) ≤ . . . ≤ f(xπ(λ))
b. Sort: [xπ(1), xπ(2), . . . , xπ(λ)] = CompSort(x1, . . . , xn)
Recombination

⟨y⟩w =

µ∑
i=1

wiyπ(i)(A.4)

m← m+ cmσ⟨y⟩w(A.5)

Step - size control

pσ ← (1− cσ)pσ +
√
cσ(2− cσ)µeffC−1/2⟨y⟩w(A.6)

σ ← σ × exp(
cσ
dσ

(
||pσ||

E||N (0, I)||
− 1))(A.7)

Covariance matrix adaptation

pc ← (1− cc)pc + hσ

√
cc(2− cc)µeff ⟨y⟩w(A.8)

w◦
i ← wi × (1 if wi ≥ 0 else n/||C− 1

2 yi : λ||2)(A.9)

C ← (1 + c1δ(hσ)− c1 − cµ
∑

wj) C + c1pcp
T
c + cµ

λ∑
i=1

w◦
i yi : λy

T
i : λ(A.10)

end for
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Algorithm A.4 Random Sampling Directions.
Based on type of probability distribution. a: Original (uniform distribution of canonical basis
vectors). b: Gaussian distribution. c: Uniform under Sphere. d: Rademacher distribution.

Initialization
Take in the following inputs: x = number of direction vectors (type=int),
y = length of each direction vector (type=int), z = the type of distribution
(original, gaussian, uniform under sphere, or rademacher)
if a. z = ”Original (uniform distribution of canonical basis vectors)” then
if x = 1 then
randDirection = w ∈ (0, y − 1)
sk = [0, 0, ...., 0] where len(sk) = y
sk[randDirection] = 1

else if x > 1 then
directionVectors = [ ]
for i from 0, . . . , x− 1 do
randDirection = w ∈ (0, y − 1)
sk = [0, 0, . . . , 0] where len(sk) = y
sk[randDirection] = 1
directionVectors.append(sk)

end for
sk ∈ Rx∗y = [ [v1], [v2], . . . , [vx] ] for vi ∈ directionVectors, i ∈ {1 . . . x}, vi ∈ Ry

end if
end if
if b. z = ”Gaussian Distribution” then

if x = 1 then
sk = [d1, d2, ..., dy] where {di} ∈ standard normal distribution; i ∈ {1, . . . , y}

else if x > 1 then
sk ∈ Rx∗y = [ [v1], [v2], . . . , [vx] ] for vi ∈ standard normal distribution ⊂ Ry, i ∈
{1 . . . x}

end if
end if
Continued on next page....
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Algorithm A.5 Random Sampling Directions Cont’d.
. . . .
if c. z = ”Uniform Under Sphere” then
if x = 1 then
sk = [d1, d2, ..., dy] where {di} ∈ standard normal distribution; i ∈ {1, . . . , y}
norm = Frobenius norm of sk
sk = sk / norm

else if x > 1 then
directionVectors = [ ]
for i from 0, . . . , x− 1 do
sk = [d1, d2, ..., dy] where {di} ∈ standard normal distribution; i ∈ {1, . . . , y}
norm = Frobenius norm of sk
sk = sk / norm
directionVectors.append(sk)

end for
sk ∈ Rx∗y = [ [v1], [v2], . . . , [vx] ] for vi ∈ directionVectors, i ∈ {1 . . . x}, vi ∈ Ry

end if
end if
if d. z = ”Rademacher Distribution” then

if x = 1 then
sk = 2 ∗ round([d1, d2, ..., dy]) + 1 where {di} ∈ uniform distribution over [0, 1); i ∈
{1, . . . , y}
sk = sk/

√
y

else if x > 1 then
directionVectors = [ ]
for i from 0, . . . , x− 1 do
sk = 2 ∗ round([d1, d2, ..., dy]) + 1 where {di} ∈ uniform distribution over [0, 1);
i ∈ {1, . . . , y}
sk = sk/

√
y

directionVectors.append(sk)
end for
sk ∈ Rx∗y = [ [v1], [v2], . . . , [vx] ] for vi ∈ directionVectors, i ∈ {1 . . . x}, vi ∈ Ry

end if
end if
return sk

179


	Introduction
	From ZOO to CBO
	A benchmarking utility for CBO algorithms
	Experimental results
	PyCUTEst Results
	Noisy Oracle
	Hyperparameter Tuning

	Discussion
	Conclusions
	Appendix A. Pseudocode

