
Implementation of the Boneh-Franklin IBE Scheme

Florence Lam∗

Project advisor: Gabriel Dorfsman-Hopkins†

Abstract

In this paper and accompanying software, we give a fully functional implementation of the Boneh-
Franklin Identity-Based Encryption (IBE) scheme using the Weil pairing, which runs efficiently even with
primes of cryptographic size. We describe the conceptual framework of the IBE, give background on the
Weil pairing. Further, we discuss the challenges in the process of creating a functional implementation,
and how we overcame them. The reader is encouraged to experiment with the accompanying software,
which is written in SageMath.

1 Introduction

Elliptic curve cryptography was invented independently by Miller [6] in 1985 and Koblitz [4] in 1987. Koblitz
developed elliptic curve cryptosystems because they rely on the hardness of the elliptic curve discrete loga-
rithm problem (ECDLP), which is likely harder than the traditional discrete logarithm problem (DLP) [4].
In addition to increased security, elliptic curve systems are more efficient than Diffie-Hellman schemes over
finite fields [6].

Typical cryptographic schemes require Alice and Bob to exchange either public or private keys. However,
Identity-Based Encryption (IBE) schemes, proposed by Shamir [7] in 1984, do not require key exchange.
Alice can use any combination of information that pertains to Bob’s identity (such as his birthdate, name,
or email address) to encrypt her message. Once Bob receives Alice’s ciphertext, he decrypts the ciphertext
with the private key that the Public Key Generator (PKG) computes using his information. It was an open
problem until Boneh and Franklin [1] proposed a pairing-based scheme and Cocks proposed a scheme based
on quadratic reciprocity [2]. In this article, we implement the Boneh-Franklin scheme using Sage and discuss
the challenges we faced while implementing this scheme. A complete implementation written in Sage is
available in GitHub [5].

2 Background

In this section, we first discuss the Weil pairing, a pairing on m-torsion points in an elliptic curve E. Next,
we introduce an algorithm to efficiently compute the Weil pairing. And finally, we explain the algorithms
involved in the Boneh-Franklin IBE scheme, and why we must use a modified Weil pairing for this scheme.

2.1 Bilinear Pairings, Rational Functions, and Divisors

Before introducing the Weil pairing, we need to understand what bilinear pairings, rational functions, and
divisors are.

∗University of California, Berkeley, Department of Mathematics, florencelam@berkeley.edu
†Saint Lawrence University, Department of Mathematics, Statistics and Computer Science, gdhopkins@stlawu.edu

Copyright © SIAM

Unauthorized reproduction of this article is prohibited

 271

mailto:florencelam@berkeley.edu
mailto:gdhopkins@stlawu.edu

Definition 2.1. Let K be a field and V be a vector space over K. A bilinear pairing is a function β : V ×V →
K that satisfies the following:

1. β(c1u + c2v,w) = c1β(u,w) + c2β(v,w)

2. β(u, c1v + c2w) = c1β(u,v) + c2β(u,w),

where c1, c2 ∈ K, and u,v,w ∈ V .

Definition 2.2. A rational function is a ratio of polynomials

f(x) =
a0 + a1x+ · · ·+ anx

n

b0 + b1x+ · · ·+ bmxm
(1)

over a field K.

From the fundamental theorem of algebra, any nontrivial polynomial can be completely factored over an
algebraic closure, which means that we can write any rational function as

f(x) =
a(x− α1)e1(x− α2)e2 · · · (x− αs)es
b(x− β1)d1(x− β2)d2 · · · (x− βr)dr

, (2)

where
∑
ti = n and

∑
dj = m, and we cancel and combine like terms so that every ai and bi is unique.

We call ai, the roots of the polynomial on the numerator, the roots of the rational function f(x), and we
call bj , the roots of the polynomial on the denominator, the poles of f(x). The exponents ek and d` are the
multiplicities. Zeros, poles, and multiplicities are all properties of f(x), and we can tally up these values
using a divisor.

Definition 2.3. Let f(x) be the rational function in 2. The divisor of f(x) is the formal sum

div(f) = e1[α1] + e2[α2] + · · ·+ es[αs]− d1[β1]− d2[β2] · · · − dr[βr]. (3)

Note that this formal sum is simply a convenient way to say that f(x) has a zero of multiplicity e1 at α1, a
zero of multiplicity e2 at α2, etc.

The definitions above apply to a rational function with only one variable. However, the Weil pairing
works with rational functions on elliptic curves that have two variables x, y. For example, suppose we have
a nontrivial rational function f(x, y) on an elliptic curve E : y2 = x3 + Ax + B. A point P ∈ E has the
form P = (x, y), so we can write f(x, y) as f(P). Like any rational function, f(P) may have zeros or poles
at certain points in E. We can again use the divisor to note whether or not a point in E is a zero or pole
counting multiplicity.

Definition 2.4. Let f be a rational function on an elliptic curve E. For each point P ∈ E, let nP be the
multiplicity of the vanishing of f at P , where we write −nP to denote the multiplicities of poles. The divisor
of f is

div(f) =
∑
P∈E

nP [P].

Since f has finitely many zeros and poles, only finitely many of the coefficients nP are nonzero. While we
expanded our definition of the divisor to make sense for rational functions on E, we can further generalize
the definition which does not require a function.

Definition 2.5. A divisor D on an elliptic curve E is a formal sum of the form

D =
∑
P∈E

nP [P].

272

Definition 2.6. The degree of a divisor is the sum of the coefficients nP

deg(D) =
∑
P∈E

nP ,

and the sum of a divisor simply adds up multiples of points using the group law on E

sum(D) =
∑
P∈E

nPP .

Since this definition does not even require a function, we might be curious whether we can determine
whether a divisor is the divisor of some function, and in our case, a rational function. Luckily, there is a
theorem that tells us a way to determine whether a divisor is the divisor of a rational function.

Theorem 2.1. Let E be an elliptic curve, and let D be a divisor on E.

1. Let f and g be nontrivial rational functions on E. Then div(f) = div(g) (i.e. f and g share the same
zeros, poles, and associated multiplicities) if and only if there is a constant c such that f = cg.

2. D is the divisor of a rational function on E if and only if deg(D) = 0 and sum(D) = O, where O is
the point of infinity.

Proof. Please refer to Propositions III.3.1 and III.3.4 in pages 59 and 61 of [8].

Part 1 of Theorem 2.1 tells us that a rational function with a given divisor is unique up to some constant.
Part 2 is an interesting result because we can determine the existence of a rational function by adding points
and adding multiplicities. However, it does not find us an exact rational function corresponding to a divisor.

2.2 A Special Divisor and Miller’s Algorithm

For the Weil pairing, we are primarily concerned with a special type of divisor that has the form D =
m[P] −m[O], where P ∈ E[m] (note: E[m] is the set of m-torsion points on E) is a point with order m.
From Theorem 2.1, we know that D is the divisor of some rational function since deg(D) = m−m = 0 and
sum(D) = mP − O = O. The problem that arises is whether we can concretely find a rational function
fP such that div(fP) = m[P] − m[O]. It turns out Miller’s Algorithm is a fast algorithm that can find
rational functions with divisors of the form m[P] − [mP] − (m − 1)[O], where P ∈ E is not necessarily
an m-torsion point. In particular, if P ∈ E[m], Miller’s algorithm will return a rational function fP with
div(fP) = m[P]−m[O], since m[P]− [mP]− (m− 1)[O] = m[P]−m[O].

Theorem 2.2. Let E be an elliptic curve and let P = (xP , yP) and Q = (xQ, yQ) be nonzero points in E
[3].

1. Suppose λ is the slope of the line that passes through P and Q (if Q = P , let λ be the slope tangent
to E at P , and if the line is vertical, let λ =∞). Let the function gP,Q be the following:

gP,Q =

y − yP − λ(x− xP)

x+ xP + xQ − λ2
if λ 6=∞,

x− xP ifλ =∞.

Then
div(gP,Q) = [P] + [Q]− [P +Q]− [O].

2. Let m ≥ 1 have the following binary expansion:

m = m0 +m1 · 21 +m2 · 22 + · · ·+mn−1 · 2n−1,

where mi ∈ 0, 1 and mn−1 = 1. Miller’s Algorithm returns a rational function fP with divisor

div(fP) = m[P]− [mP]− (m− 1)[O].

Proof. Please refer to Section XI.8 of [8] for a complete proof of correctness.

273

Algorithm 1: Miller’s Algorithm (from [3] page 344)

Input: P,E, n
Output: the value f

1 Set T = P and f = 1
2 for i← n− 2 to 0 do
3 Set f = f2 · gT,T
4 Set T = 2T
5 if mi = 1 then
6 Set f = f · gT,P
7 Set T = T + P

8 end

2.3 The Weil Pairing and its Special Properties

Definition 2.7. Let P,Q ∈ E[m], and let fP and fQ be rational functions on E with divisors div(fP) =
m[P]−m[O] and div(fQ) = m[Q]−m[O], respectively. The Weil pairing em of P and Q is

em(P,Q) =
fP (Q+S)

fP (S) /
fQ(P−S)

fQ(−S)
, (4)

where S ∈ E is a point such that S 6∈ {O, P,−Q,P −Q}.

To compute the Weil pairing, we simply use Miller’s Algorithm to find the rational functions fP and fQ,
then evaluate the functions. The Weil pairing does not appear to be well-defined because we are choosing
the functions fP and fQ and the point S. However, Theorem 2.3 shows that the Weil pairing is well-defined
and does not depend on the choice of S.

Theorem 2.3. Let em be a Weil pairing. Then we have the following:

1. The value of the Weil pairing does not depend on the choice of fP , fQ, and S.

2. The value of the Weil pairing is an mth root of unity, that is, it satisfies em(P,Q)m = 1 for every
P,Q ∈ E[m].

3. The Weil pairing is a billinear pairing:

em(P1 + P2, Q) = em(P1, Q)em(P2, Q) for all P1, P2, Q ∈ E[m] (5)

and
em(P,Q1 +Q2) = em(P,Q1)em(P,Q2) for all P,Q1, Q2 ∈ E[m]. (6)

4. The Weil pairing is alternating: em(P, P) = 1 for all P ∈ E[m].

5. The Weil pairing is nondegenerate: if em(P,Q) = 1 for all Q ∈ E[m], then P = O.

Proof. For a complete proof of the five parts, see [8] Section III.8.

One thing to note is that the Weil pairing is a bilinear pairing, but instead of addition on the right hand
side of (4), we have multiplication. In particular, if we have an integer a, then

em(aP,Q) = em(P,Q) · . . . · em(P,Q)︸ ︷︷ ︸
a times

= em(P,Q)a.

So, instead of multiplying integers with the bilinear pairing, we exponentiate. Bilinearity is important in the
IBE scheme because it allows Bob to decrypt Alice’s ciphertext.

274

2.4 A General IBE Scheme

Here we describe a general IBE Scheme called BasicIdent. We can categorize BasicIdent into four parts:
Setup, Extract, Encrypt, Decrypt. Let k ≥ 2 ∈ Z be a security parameter input for the Setup algorithm, and
let G be a BDH parameter generator as described in [1].

Setup: Choose a security parameter k ≥ 2 ∈ Z. The Setup algorithm does the following:

1. Choose some k and input into G to generate primes p, q, two different groups G1,G2 both with order
q, and a bilinear pairing ê : G1 ×G1 → G2. Also, choose a generator P ∈ G1.

2. Choose a random s ∈ Z∗q and set Ppub = sP .

3. Choose two hash functions H1 and H2, letM be the message space, and let C be the ciphertext space.

4. The output is the system parameters params = 〈q,G1,G2, ê, n, P, Ppub, H1, H2〉. Note that s is the
master key, which only the PKG knows.

Extract: Given a string ID that pertains to Bob’s identity, this algorithm does the following:

1. Compute QID = H1(ID) ∈ G1

2. Compute the private key dID = sQID. Bob will use dID to decrypt Alice’s ciphertext.

Encrypt: Using QID to encrypt a message M ∈M, this algorithm does the following:

1. Choose a random r ∈ Z∗q
2. Compute gID = ê(QID, Ppub) ∈ G2

3. Compute the ciphertext C = 〈rP,M ⊕H2(grID)〉.

Decrypt: Let C = 〈U, V 〉 ∈ C be the ciphertext generated by Encrypt. We can use the private key dID to
decrypt C by computing V ⊕H2(ê(dID, U)) = M .

Proof. Here, we prove that the Decrypt algorithm is correct. Because of bilinearity and the fact that Ppub =
sP , the pairing gives us ê(dID, U) = ê(sQID, rP) = ê(QID, P)rs = ê(QID, Ppub)

r = grID. Decrypt computes
V ⊕H2(ê(dID, U)) = M ⊕H2(grID)⊕H2(ê(dID, U)) = M ⊕H2(grID)⊕H2(grID) = M .

2.5 The Boneh-Franklin Scheme

In the previous section, we mentioned the groups G1 and G2. But what are G1 and G2, and what pairing
will we use? It will turn out that G1 will be q-torsion points on a specially chosen elliptic curve for a specific
prime value of q, and the pairing will be a modified form of the Weil pairing. As we saw in Theorem 2.3.2,
this takes values in qth roots of unity, so this will be G2. How do we map messages to q-torsion points of
an elliptic curve? How do we modify the Weil pairing, and why do we have to do this? We will discuss the
concrete IBE scheme in this section, and answer the questions we have posed above.

The first part of BasicIdent is the Setup algorithm. This algorithm generates the primes, groups, and
public keys that form the basis of the three later algorithms. In the concrete IBE scheme, the BDH parameter
G1 is the Setup algorithm, while the composition of a hash function and the MapToPoint function forms the
Extract algorithm. Both Encrypt and Decrypt in the concrete IBE scheme are same as the ones in BasicIdent.
Below is a summary of the algorithms unique to the Boneh-Franklin scheme:

BDH Parameter Generator G1: We input a security parameter 2 < k ∈ Z+ which determines the size
of the keys. The generator G1 picks a k-bit prime q and the smallest prime p satisfying (1) p = 2 mod 3,
(2) q | p + 1, and (3) q2 - p + 1. With the two primes, we can generate the two groups. The group G1 =
E[q](Fp) = 〈P 〉 is a subgroup of order q generated by the point P on the elliptic curve E(Fp) : y2 = x3 + 1.
The group G2 is a subgroup of F∗p2 with order q, and the modified Weil pairing is the map ê : G1×G1 → G2

defined below.

275

Definition 2.8. Let 1 6= ζ ∈ Fp be a solution of x3−1 = 0 in Fp2 . The modified Weil pairing ê : G1×G1 → G2

is a map that does the following:
ê(P,Q) = e(P, φ(Q)),

where φ(Q) = φ(xQ, yQ) = (ζxQ, yQ).

Hash Function H1 and MapToPoint: Suppose we have the primes p satisfying the three properties
above and q. Let p = `q + 1 for some ` ∈ Z, and choose a string ID which pertains to Bob’s identity. Let
y0 = H1(ID) ∈ Fp be the output of H1 and the input of MapToPoint. The MapToPoint algorithm does the
following:

1. Find x0 = (y20 − 1)1/3 ∈ Fp

2. Let Q = (x0, y0) ∈ E(Fp)

3. Return QID = `Q ∈ G1.

The two algorithms seem fairly simple; however, there are some questions that arise:

(i) Can we always find a subgroup G1 of order q?

(ii) Why is it necessary to use the modified Weil pairing?

(iii) Is there always a solution to x0 = (y20 − 1)1/3 mod p for any y0 ∈ Fp? If so, is it unique?

We answer these three questions now, beginning with the first:

Can we always find a subgroup G1 of order q? From Exercise 10.19 of [8], the order of E : y2 = x3 + 1
over Fp is p+ 1. And since q | p+ 1, Cauchy’s Theorem tells us that E(Fp) must have a subgroup of order
q. Thus, the generator G1 will always find such a subgroup.

Why is it necessary to use the modified Weil pairing? If we use the usual Weil pairing in the BDH
Generator, then we have e : E[q]×E[q]→ G2. Say we have two points R,S ∈ E[q]. Since E[q] = 〈P 〉, there
are two integers r, s such that R = rP and S = sP . Because the pairing is bilinear and alternating, we get
e(R,S) = e(rP, sP) = e(P, P)rs = 1. This means that the regular pairing is degenerate on E[q]. This field
extension is very important because it ensures that φ(Q) 6∈ E(Fp).

Is there always a solution to x0 = (y20 − 1)1/3 mod p in MapToPoint? If so, is x0 unique? It turns out
that the answer to both questions is yes, according to Exercise 3.41 of [3].

3 Implementing the Boneh-Franklin Scheme

In this section, we describe how to implement the Boneh-Franklin IBE Scheme and the modified Weil
pairing using Sage. We discuss some challenges we had while implementing. Finally, we ask and answer
some questions related to these algorithms.

A general identity-based encryption scheme has four algorithms:

1. Setup

2. Extract

3. Encrypt

4. Decrypt

As we have mentioned in the previous section, the BDH parameter generator G1 is the Setup algorithm,
while the Extract function is MapToPoint composed with H1, a hash function.

276

3.1 The BDH parameter generator G1

The goal of the BDH parameter generator G1 (algorithm shown below) is to find primes p, q, generate an
elliptic curve over Fp, and find a point P with order q. These outputs are important because they allow for
encryption and decryption.

Algorithm 2: BDH parameter generator G1
Input: 2 < k ∈ Z+

Output: params, s
1 Find a random k-bit prime q
2 Set p = q /* Find prime p using Lines 2-11 */

3 Set ` = 1
4 Set `q = q
5 while true do
6 repeat
7 Set ` = `+ 1
8 Set `q = `q + q
9 Set p = `q − 1

10 until p ≡ 2 mod 3, q | p+ 1, q2 - p+ 1, and p is prime.

11 end
12 Set E : y2 = x3 + 1 mod p
13 Set P = O /* Find point P with order q using Lines 12-20 */

14 while P = O do
15 Set Q to be a random point in E
16 while Q = O do
17 Set Q to be a random point in E
18 end

19 Set h = p+1
q

20 Set P = hQ

21 end
22 Set s to be a random number in Z∗q /* s is the master key */

23 Set Ppub = sP
24 Set params = 〈p, q, `, E, P, Ppub〉

For the first step, we found the random k-bit prime q using a built-in pseudo-random integer generator
from Sage; however, we struggled finding a prime p satisfying (1) p ≡ 2 mod 3, (2) q | p + 1, and (3)
q2 - p+ 1. We first tried by using the random prime function to find random primes between q and q2, and
checked if the prime satisfied all three properties. This method successfully found a prime p, but in practice,
it was slow. For our second try, instead of testing random primes, we noticed that property (2) would be
useful for finding p. Since q | p + 1, there is some ` ∈ Z such that p + 1 = `q. We started with ˜̀ = 2 and
calculated ˜̀q, subtracted it by 1 to get p̃ = ˜̀q− 1, a candidate for p, and then tested whether p̃ satisfied (1)
to (3). If p̃ did not satisfy the three properties, we increased ˜̀by 1 until we found a p̃ that satisfied the three
properties, and set p = p̃. From our experience, the second method found p faster than the first method,
but why exactly is the second method faster? We will show why the second method is faster by calculating
expected numbers, but before we explain this, here is a useful theorem:

Theorem 3.1. If p is the probability of success on each trial, then the expected number of trials until the
first success is 1/p.

The first method finds a random prime p̃ between q and q2, and checks whether p̃ satisfies (1) and (2).
To find the expected number, let us consider two events A and B:

277

A = {n : n ≡ 2 mod 3}
B = {n : q | n+ 1}.

Any prime p̃ 6= 3 must satisfy p̃ ≡ 1, 2 mod 3, so P (A) = 1/2. Additionally, P (B) = 1/q. Combining
these two probabilities gives us the probability that p̃ satisfies (1) and (2), which is

P (A ∩B) = P (A)× P (B) (7)

=
1

2q
. (8)

Thus by Theorem 3.1, the expected number of trials until finding p with the first method is E1 = 1
P (A∩B) =

2q.

On the other hand, the second method finds a multiple q ˜̀ of q between q and q2, and checks whether
q ˜̀− 1 is prime and whether it satisfies (1). Consider two events A and C:

A = {n : n ≡ 2 mod 3}
C = {q < n < q2 : n is prime}.

To estimate P (C), we use the prime number theorem to estimate the number of primes between q ˜̀− 1 and
q(˜̀+ 1)− 1:

π(q(˜̀+ 1)− 1)− π(q ˜̀− 1) ≈ π(q(˜̀+ 1))− π(q ˜̀) (9)

≈ q(˜̀+ 1)

log q(˜̀+ 1)
− q ˜̀

log q ˜̀
. (10)

Since log q(˜̀+ 1) ≈ log q(˜̀), we have

q(˜̀+ 1)

log q(˜̀+ 1)
− q ˜̀

log q ˜̀
≈ q(˜̀+ 1)− q ˜̀

log q ˜̀
(11)

=
q

log q ˜̀
(12)

� 1 (13)

whenever ˜̀� eq

q . This tells us that if ˜̀� eq

q , the number of primes between consecutive multiples of q is

much greater than 1. Thus, the approximate probability that a random number between q and q2 is prime
is P (C) ≈ 1

log ql̃
. In general, we can assume l̃ � q since primes are quite common, so P (C) ≈ 1

log q . The

probability that we find a prime p using the second method is

P (A ∩ C) = P (C)× P (A | C) (14)

≈ 1

log q
× 1

2
(15)

=
1

2 log q
. (16)

Theorem 3.1 tells us that the expected number of trials until finding p with the second method is E2 =
1

P (A∩C) = 2 log q. If we compare E1 and E2, it is clear that E2 � E1, which means that in general, the

second method is much faster than the first.

The last section of Algorithm 2 finds a point P ∈ E[q](Fp). It starts by randomly selecting a point
Q ∈ E \ {O}, and then setting P = hQ, where h = p+1

q . This generates a point P with order q as long as
P 6= O by Lemma 3.1.

278

Lemma 3.1. Let E(Fp) be an elliptic curve over Fp, and let O 6= Q ∈ E(Fp). If P 6= O and P = hQ, where
h = p+1

q , then P is a point of order q.

Proof. Let E be the elliptic curve y2 = x3 + 1 mod p and let p be the prime satisfying conditions in line 10
of Algorithm 2. By Exercise 10.19 of [8], the number of points in E is p + 1. Suppose we have two points

P,Q ∈ E as above. Then qP = q(hQ) = q
(
p+1
q P

)
= (p+ 1)P = O, since #E(Fp) = p+ 1. By Lagrange’s

Theorem, the order of P divides q, which means we have two possibilities:

|P | =

{
1 if Q = O,
q otherwise.

However, the point Q 6= O, so |P | = q.

3.2 MapToPoint: An algorithm mapping strings to points

The input of the MapToPoint algorithm is the output of the hash algorithm H1. Using both H1 and
MapToPoint, we can map the string ID to a point on the elliptic curve generated by Algorithm 2. Here is an
outline of the algorithm:

Algorithm 3: MapToPoint

Input: params and y0 ∈ Fp, where y0 is an output of the hash algorithm H1

Output: dID, QID ∈ G∗1
1 Set p, q, `, E, P, Ppub = params

2 Set x0 = (y20 − 1)
2p−1

3 mod p
3 Set Q = (x0, y0) ∈ E(Fp)
4 Set QID = `Q
5 Set dID = sQID

Recall from Section 2.5 that MapToPoint computes x0 = (y20 − 1)1/3. In the algorithm above, we instead

set x0 = (y20 − 1)
2p−1

3 . This works because of Euler’s theorem:

(y20 − 1)
2p−1

3 = (y20 − 1)
2(p−1)+1

3

= (y20 − 1)
2(p−1)

3 (y20 − 1)
1
3

=
(
(y20 − 1)p−1

) 2
3 (y20 − 1)

1
3

=
(

(y20 − 1)φ(p)
) 2

3

(y20 − 1)
1
3

= (y20 − 1)
1
3

= x0.

We compute (y20 − 1)
2p−1

3 because p = 2 mod 3. This means that 3 | (2p − 1), and we can compute x0
efficiently using the fast powering algorithm in Exercise 1.25 of [3].

For the Encrypt and Decrypt algorithms, we had to create a function that computes the modified Weil
pairing. The key part to this function is ζ 6= 1 ∈ Fp, which is a solution of x3 − 1 = 0 in Fp2 . Note that
the polynomial x3 − 1 = (x− 1)(x2 + x+ 1), and since 1 is a root of x− 1, ζ must be a root of x2 + x+ 1.
More precisely, the field Fp2 ∼= Fp[x]/〈x2 + x+ 1〉. Other than defining ζ in the modified Weil pairing, both
algorithms are relatively simple and we followed the steps in BasicIdent.

279

3.3 Acknowledgement

I would like to thank my mentor, Professor Gabriel Dorfsman-Hopkins, for his support throughout this
project. He is the one who introduced me to cryptography, encouraged me when I doubted myself, and
reached out when I felt like I did not belong in math. Without him, I would not have been able to explore
my interests.

I would also like to thank my former classmates, Jennifer Buettner and Toren Warady, for helping me
learn how to code. They guided me when I struggled and gave me new perspectives on solving problems. It
is because of them that I learned the joy of collaboration.

References

[1] Dan Boneh and Matthew Franklin. Identity-based encryption from the Weil pairing. SIAM J. Comput.,
32(3):586–615, 2003.

[2] Clifford Cocks. An identity based encryption scheme based on quadratic residues. In Cryptography and
coding, volume 2260 of Lecture Notes in Comput. Sci., pages 360–363. Springer, Berlin, 2001.

[3] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. An introduction to mathematical cryptography.
Undergraduate Texts in Mathematics. Springer, New York, second edition, 2014.

[4] Neal Koblitz. Elliptic curve cryptosystems. Math. Comp., 48(177):203–209, 1987.

[5] Florence Lam. Boneh-Franklin IBE scheme. https://github.com/gdorfsmanhopkins/

BonehFranklinIBE, 2022.

[6] Victor S. Miller. Use of elliptic curves in cryptography. In Advances in cryptology—CRYPTO ’85 (Santa
Barbara, Calif., 1985), volume 218 of Lecture Notes in Comput. Sci., pages 417–426. Springer, Berlin,
1986.

[7] Adi Shamir. Identity-based cryptosystems and signature schemes. In Advances in cryptology (Santa
Barbara, Calif., 1984), volume 196 of Lecture Notes in Comput. Sci., pages 47–53. Springer, Berlin,
1985.

[8] Joseph H. Silverman. The arithmetic of elliptic curves, volume 106 of Graduate Texts in Mathematics.
Springer-Verlag, New York, 1986.

280

https://github.com/gdorfsmanhopkins/BonehFranklinIBE
https://github.com/gdorfsmanhopkins/BonehFranklinIBE

	Introduction
	Background
	Bilinear Pairings, Rational Functions, and Divisors
	A Special Divisor and Miller's Algorithm
	The Weil Pairing and its Special Properties
	A General IBE Scheme
	The Boneh-Franklin Scheme

	Implementing the Boneh-Franklin Scheme
	The BDH parameter generator G1
	MapToPoint: An algorithm mapping strings to points
	Acknowledgement

