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Abstract. This paper investigates particle deposition driven by fluid evaporation in a single pore channel rep-5
resentative of those found in porous membranes. A moving boundary problem for the 2D heat6
equation is coupled with an evolution equation for the pore radius, and describes the physical pro-7
cesses of fluid evaporation, diffusion of the particle concentration, and deposition on the pore channel8
wall. Furthermore, a stochastic differential equation (SDE) approach based on a Brownian motion9
particle-level description of diffusion is used as a similar phenomenological representation to the10
partial differential equation (PDE) model. Sensitivity analysis reveals trends in dominant model11
parameters such as evaporation rate, deposition rate, the volume scaling coefficient, and investigates12
the monotonicity of concentration. Evaluations of the asymptotically reduced model and the SDE13
model against the 2D PDE model are done in terms of the pore radius and solute concentration over14
time. For further exploration, we apply the model to a 2D droplet as well with both deterministic15
and stochastic approaches.16

Key words. diffusion, evaporation, particle deposition, stochastic differential equations, partial differential17
equations, moving boundary problem18

1. Introduction. When fluid in an open container evaporates, any non-volatile impurities19

will eventually deposit as residue on the walls of the container. Evaporation of the solvent20

increases particle concentration until a saturation point is reached, where particles then exit21

the solution and adhere to the internal walls. The process leaves a distribution of particle mass22

on dried portions of the container. This phenomenon exists in porous media, which can be23

described as numerous layers of thin filter membranes composed of microscopic pores, where24

invasion of a volatile liquid occurs. The evaporation of the impure fluid leads to accumulation25

of deposited particles such as dirt and dust inside the pore structure. The accumulation of26

these particles has the potential to cause clogging within the pores, leading to contamination27

and overall degradation of the material. The problem is well worth investigating as different28

types of porous media appear in deep filtration and fluid transport problems, occurring natu-29

rally from extracellular space to industrial material structure [2, 6]. Pore structure, transport30

processes, and contaminant deposition all influence the solvent evaporation rate [14]. Thus,31

given the interplay of these processes, understanding the behavior and patterns of particle32

deposition and solvent evaporation can provide helpful information for industrial and medical33

fields to limit contamination and prevent clogging through improved material design.34

Existing models have investigated the evaporation process from different perspectives and35

fields, including factors such as medium properties, internal transport processes, pore geome-36

try, and pore wettability [8, 10]. For this article, the model presented follows along the lines37

of those presented in a series of annual workshops on Mathematical Problems in Industry38
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(MPI) in 2020 and 2021, where several industrial representatives from W. L. Gore & As-39

sociates presented the problem of contamination in porous media or filters. In their work,40

researchers developed a model that describes evaporation and deposition in a single cylin-41

drical pore structure [1], examined the effect of physical parameters such as pore length and42

fluid wetting properties, and observed the response of particle mass distribution to cycles of43

wetting and drying [14]. This paper makes use of similar important physical phenomena such44

as evaporation, deposition, and key model attributes (pore radius, fluid concentration).45

However, the MPI solutions require a limiting case where pores have small aspect ratios46

(i.e. they are long and narrow). This study considers the model for two-dimensional (2D)47

domains (with finite aspect ratios) with two moving boundaries, eliminating those geometric48

assumptions. Additionally, finite difference methods used on irregular boundaries can have49

lowar accuracy due to limited spatial resolution, causing mass to leak from the system. To50

prevent the loss of mass, rather than having irregular domains shrink as boundaries move,51

we instead implement fixed computational domains through a change of variables. Moreover,52

this paper uses stochastic differential equations (SDEs) to model particle behavior in the bulk53

through tracking individual particle trajectories rather than the fluid body as a whole. The54

use of SDEs requires the formulation of boundary conditions at the edges of the pore channel55

and at the fluid-air interface. SDE boundary conditions are still being studied or are very56

complicated [9], so we are interested in creating SDE boundary conditions that are simpler57

and easier to manipulate. If the SDE and PDE models show phenomenological similarity, we58

will have shown the two approaches can describe evaporation and deposition processes in a59

micro-scale pore.60

Other scenarios possessing evaporation-deposition interactions include the case where fluid61

no longer spans the entirety of an open pore channel after evaporation. Surface tension62

causes the remaining fluid to adhere to side walls as droplets. Droplets along a pore channel63

are analogous to liquid spills leaving particle-laden drops on a horizontal surface. Further64

evaporation of fluid in these cases typically results in particles dispersing and leaving unique65

deposition patterns around the perimeter of the droplet or spill. The mechanism behind66

development of these ring-like deposits is commonly attributed to the coffee ring effect, and67

the phenomenon can be detrimental in materials that require uniform deposition [16]. It has68

been shown that the coffee ring effect originates from outward capillary flow and the droplet’s69

surface tension [7]. However, even without these conditions, understanding deposition patterns70

through constructing mathematical models can be helpful for many applications. Thus, to71

conduct a more comprehensive study of particle evaporation and deposition behavior, it is72

also important to investigate how these droplets evolve.73

The outline of this paper begins with the construction of the 2D PDE model, detailed from74

solving the dimensional problem to constructing the non-dimensional model on the computa-75

tional domain. The subsequent section describes the SDE model with a proposed stochastic76

algorithm and boundary conditions. Next, an asymptotically reduced 1D model is derived77

from the 2D model. Results are presented by visual comparison and numerical metrics such78

as mass and pore radius or concentration evolution, and are followed by a systematic summary79

of parameter analyses. Lastly, we apply similar computational methods and PDE vs. SDE80

comparisons to a model of an evaporating droplet.81
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Two Example Particle Trajectories

Figure 1: Left: Schematic of the reduction from the physical pore to the 2D quarter section
described in the PDE model. H and R describe the initial state of the physical pore channel,
whereas R̂(ẑ, t̂) and Ĥ(t̂) represent the evolving dimensions of the pore in the mathematical
model. Ĉ(x̂, ẑ, t̂) describes concentration in the particle-laden fluid, and E0, the evaporation
rate, lowers the fluid height. Circular particles illustrate mass accumulation along the right
wall. Right: Two example particle trajectories in the fluid of the SDE model. Particles move
randomly and are contained in the fluid. If adsorption occurs at the wall, accumulation causes
the pore radius to narrow.

2. Model Formulation. In this section, investigation of the reduced 2D model for a single82

pore filled with fluid is conducted. As shown in Figure 1 (left), the rectangular pore is sectioned83

into symmetrical quarters from the horizontal and vertical center. In the vertical direction,84

evaporation takes place at the upper and lower fluid-air interfaces. As evaporation occurs,85

fluid height decreases and particles in the fluid, represented in Figure 1 (left) in gray, are86

continuously deposited along the internal pore surface in the wet portions of the channel. In87

the dry portions of the pore, particles remain on the wall, forming a fixed distribution mass88

as the interface lowers. In the horizontal direction, the radius of the pore channel narrows89

over time due to particle accumulation on the internal wall. Therefore, the presented problem90

consists of two types of moving boundaries: the uniform air-fluid evaporation interface and the91

nonuniform, shrinking radius for the fluid-solid deposition interface. Instead of the physical92

meniscus shape, we assume the fluid-air interface to be flat and independent of the horizontal93

position x̂. The fluid-air interface lowers according to a constant evaporation rate, denoted94

by E0.95

Figure 1 (left) also shows that the model in this paper only examines the top-right section96

of the channel. The complete behavior of the rectangular pore with suspended liquid can be97

inferred from the quarter section. Gravity is neglected in the model to achieve this vertical98

symmetry between the upper and lower part of the fluid. The 2D diffusion equation is used to99

model the concentration of particles in the fluid body, and is coupled with a PDE describing100

the radius of the pore channel. The solvent evaporation rate, particle deposition rate, fluid101

initial concentration, and the diffusion of the concentration all contribute to the shape of the102

404



J. JIANG, R. ZHANG, D. JEONG

accumulating wall, and thus we closely investigate the effect of these properties in our model.103

Furthermore, since the random motion of particles in the fluid is given by Brownian104

motion, it is of interest to see how an SDE model may perform alongside the PDE model,105

further described in section 3. Concentration can likewise be defined as a probability density106

function of individual particle trajectories [11]. By computationally tracking each particle107

trajectory over time as shown in Figure 1 (right), the SDE model defines concentration as108

the proportion of particles present in a given area to determine levels of saturation at the109

pore wall, from which the probability of local deposition is evaluated. The SDE model gives a110

micro-particle approach rather than illustrating macroscopic behavior. However, it is expected111

to demonstrate a good agreement of behavior with the PDE model.112

The initial pore radius is denoted as R, and the initial height of the fluid surface to the113

vertical center of the pore isH as shown in Figure 1 (left). This model assumes the dilute case;114

therefore, the pore channel is initially completely filled with fluid of low particle concentration.115

The particle concentration is also uniform across the entire fluid body. Adsorption will occur116

on the wall of the channel when local concentration near the boundary exceeds the saturation117

concentration defined in the model. The adsorption process is also irreversible, meaning118

once the particles deposit onto the wall, they do not re-enter the fluid. For computational119

purposes, we ignore the thermodynamic effects to the model including the effect of phase120

changes, temperature variations, or humidity variations. Lastly, we also neglect the net drift121

velocity of particles in the fluid.122

2.1. 2D PDE problem. As shown in Figure 1, a single 2D pore channel is sectioned with123

ẑ = 0 and x̂ = 0 being planes of symmetry horizontally and vertically. A system of partial124

differential equations is used to model the quarter section of the pore where ẑ ≥ 0 and x̂ ≥ 0,125

and t̂ as the time variable. With the assumptions above and for t̂ ≥ 0, Ĥ(t̂) is used to denote126

the height of the top flat surface from the axis x̂ = 0. The radius of the pore is represented127

by128

(2.1) R̂full(ẑ, t̂) =

{
R̂dry(ẑ) Ĥ(t̂) < ẑ ≤ H,

R̂wet(ẑ, t̂) 0 ≤ ẑ ≤ Ĥ(t̂).
129

The region Ĥ(t̂) < ẑ ≤ H, above the fluid, is considered as the ’dry’ region where the radius130

does not further evolve, and we define R̂dry(Ĥ(t̂)) := R̂wet(Ĥ(t̂), t̂) at each time by continuity131

at the interface. For the rest of the paper, the model will focus on R̂wet(ẑ, t̂), simply referred132

to as R̂(ẑ, t̂). To denote the fluid concentration, we use133

(2.2) Ĉ(x̂, ẑ, t̂) defined on the evolving domain

{
0 ≤ x̂ ≤ R̂(ẑ, t̂),

0 ≤ ẑ ≤ Ĥ(t̂).
134

The particle concentration in the pore channel is modeled by the diffusion equation, given by135

136

(2.3)
∂Ĉ

∂t̂
= D

(
∂2Ĉ

∂x̂2
+
∂2Ĉ

∂ẑ2

)
,137
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where D is the diffusion constant. Since the model works upon a quarter section of the entire138

pore channel, the left and bottom boundaries are the planes of symmetry of the fluid body.139

Thus, they are treated as reflecting boundaries, or Neumann symmetry boundary conditions,140

written as141

(2.4)
∂Ĉ

∂ẑ

∣∣∣∣
ẑ=0

= 0,
∂Ĉ

∂x̂

∣∣∣∣
x̂=0

= 0.142

The height of the fluid decreases due to evaporation, rendering the top surface, ẑ = Ĥ, a143

moving boundary. The decreasing height is determined by the constant evaporation rate144

(2.5)
dĤ

dt̂
= −E0,145

and the corresponding no-flux condition at the moving boundary is146

(2.6)

(
−Ĉ ∂Ĥ

∂t̂
−D

∂Ĉ

∂ẑ

)∣∣∣∣
ẑ=Ĥ(t̂)

= 0.147

Additionally, while fluid evaporates, deposition occurs when local concentration near the wall148

exceeds a defined saturation concentration Csat. The resulting precipitation flux is defined by149

Q̂(Ĉ) where150

Q̂(Ĉ) = λmax(Ĉ − Csat, 0),(2.7)151

with λ > 0 as a dimensional deposition rate. Since deposition happens gradually at the right152

wall as time goes by, this side wall is also a moving boundary and could be represented by153

the surface x̂ = R̂(ẑ, t̂). The moving boundary condition describing a narrowing pore radius154

is then represented through a Robin boundary condition as155

(2.8)

(
−Ĉ ∂R̂

∂t̂
−D

∂Ĉ

∂x̂
+D

∂Ĉ

∂ẑ

∂R̂

∂ẑ
− Q̂(Ĉ)

√
1 + R̂2

ẑ

)∣∣∣∣
x̂=R̂(ẑ,t̂)

= 0,156

where the right boundary condition contains a flux term built upon Q̂(Ĉ). Flux exiting the157

fluid body yields particles accumulating on the wall and narrowing the pore radius. Thus, the158

inward-moving wall can be described as159

(2.9)
∂R̂

∂t̂
= −χQ̂(Ĉ)

√
1 + R̂2

ẑ, ẑ ∈ [0, Ĥ(t̂)],160

where χ > 0 is a dimensional volume scaling coefficient [14]. We use χ to describe the161

compression of particles when exiting the solvent and adhering to the wall.162

To derive the boundary conditions for Equations (2.6) and (2.8), we apply the Leibniz163

integral rule to a general expression for the rate of change of mass. The derivation is detailed164

in Appendix A. Equation (A.5), a general moving boundary condition with flux, is applied165

to: (i) the surface x̂ = R̂(ẑ, t̂) at the wall with prescribed flux of particles Q and (ii) the166
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Table 1: Table of Dimensional Parameters. Values displayed comprise an example set of
parameters taken from [14]. The volume scaling coefficient is set to 0.8 as a conversion factor
between fluid concentration and the corresponding deposited volumes on the pore wall, and
the saturation concentration is chosen as 0.5 M as per [4]. These values may represent generic
reference scales that are physically plausible, or re-scaled through non-dimensionalization, as
discussed in Section 2.1.1.

Parameter Symbol Value

Evaporation rate (mm/h) E0 0.5

Diffusion rate (mm2/h) D 1

Precipitation rate coefficient (mm/h) λ 1

Volume scaling coefficient χ 0.8

Saturation concentration (mol/L) Csat 0.5

evaporating surface ẑ = Ĥ(t̂) with no flux to obtain the two Robin boundary conditions in167

this section. Additionally, the initial conditions at t̂ = 0 of the system of PDE describing the168

pore channel is denoted as169

Ĥ(0) = H, R̂(ẑ, 0) = R on 0 ≤ ẑ ≤ H, Ĉ(x̂, ẑ, 0) = C0 on

{
0 ≤ x̂ ≤ R,

0 ≤ ẑ ≤ H.

(2.10)

170

Example choices of the constant parameters used in the PDE system are defined in Table 1.171

With the above initial condition, (2.5) can be solved to give the height as172

(2.11) Ĥ(t̂) = H − E0t̂.173

Then the ultimate ending time equals t̂end = H/E0, where Ĥ(t̂end) = 0 and the model stops174

as the fluid is completely evaporated. However, the model assumes dilute regimes and the175

concentration Ĉ diverges to infinity as time approaches t̂end and as the solvent evaporates.176

Thus, we will stop simulations before reaching t̂end, before the concentration becomes too177

high.178

2.1.1. Non-dimensionalization. In order to have a better understanding of the model’s179

intrinsic behavior, non-dimensionalization is applied to the 2D model with equations (2.3)-180

(2.8) so the influence of parameters does not depend on dimensional values. The results in this181

section are also implemented in the droplet model discussed in a further section. To conduct182

non-dimensionalization, the variables are re-scaled such that183

x̃ = x̂/R, x̂ ∈ [0, R̂(ẑ, t̂)] z̃ = ẑ/H, ẑ ∈ [0, Ĥ(t̂)].184

For further convenience, the timescale T is chosen to be dependent on the rate of diffusion185

and the length of the pore: T = H2/D. Thus, t̂ is re-scaled as186

t̃ = t̂/T.187
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Table 2: Table of Non-dimensional Parameters

Description Symbol Value

Aspect ratio ϵ R
H

Peclet number (evaporation rate) β E0H
D

Damkohler number (deposition rate) ω λH2

DR

Volume scaling fraction γ χCsat

Initial concentration scaling ρ C0/Csat

These re-scales are then applied to concentration, radius, and precipitation flux function of188

the model, generating189

Ĉ(x̂, ẑ, t̂) = CsatC̃(x̃, z̃, t̃), R̂(ẑ, t̂) = RR̃(z̃, t̃), Q̂(Ĉ) = λCsatQ̃(C̃),190

where now the precipitation flux is Q̃(C̃) = max(C̃−1, 0). These scaled variables and functions191

replace the dimensional counterparts in the previous equations. The dimensionless height192

(2.11) is then193

H̃(t̃) = 1− βt̃,(2.12)194

where the Péclet number β is adopted to describe the evaporation rate. Furthermore, other195

dimensional constants are replaced with non-dimensional parameters, where a summary of196

all dimensionless parameters is listed in Table 2. For example, aspect ratio ϵ = R/H is197

used to define the geometry of the pore, and if the pore is long and narrow, ϵ approaches198

zero. That is, the original diffusion equation and boundary conditions are first scaled with199

the scaled coefficients, and then the non-dimensional parameters are substituted. The 2D200

diffusion equation (2.3) becomes201

(2.13) ϵ2C̃t̃ = C̃x̃x̃ + ϵ2C̃z̃z̃.202

The boundary conditions at the bottom and left reflecting surfaces (2.4) remain203

(2.14) C̃z̃ = 0 C̃x̃ = 0.204

The boundary condition for the top surface (2.6) transforms to205

(2.15) βC̃ − C̃z̃ = 0,206

The right boundary condition with flux due to deposition (2.8) is calculated as207

(2.16) ϵ2(C̃z̃R̃z̃ − C̃R̃t̃)− C̃x̃ = ωϵ2Q̃(C̃)

√
1 + ϵ2(R̃z̃)2208
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with ω acting as a deposition rate. The rescaled equation for the evolution of the wall (2.9)209

is now210

(2.17) ϵ2R̃t̃ = −ωγϵ2Q̃(C̃)

√
1 + ϵ2(R̃z̃)2211

with γ incorporated as the non-dimensional volume scaling coefficient. The initial conditions212

for the non-dimensional model becomes213

(2.18) C̃(x̃, z̃, 0) = ρ, R̃(z̃, 0) = 1, H̃(0) = 1.214

In the next section, we execute a change of variables to simplify numerical computation. The215

motivation behind having this nondimensionalized and non-computationally modified version216

of the system as an intermediate step is to use it for asymptotically reducing the model which217

is described later in the paper.218

2.1.2. Computational Method. To produce an accurate study of the particle concen-219

tration in the irregular domain due to the nonuniform pore wall, a numerical approach of220

transforming the physical domain onto a fixed computational domain is applied. This trans-221

formation is necessary because finite difference methods provide limited spatial resolution,222

which cannot fully capture the irregular shape of the boundary over time. Without compu-223

tational scaling, finite difference methods would introduce errors when calculating flux and224

when applying boundary conditions, often causing the system to lose mass. Therefore, the225

moving boundary problem is mapped onto fixed computational domains in both the x̃ and z̃226

direction. This is done by scaling227

x =
x̃

R̃(z̃, t̃)
, z =

z̃

H̃(t̃)
, t = t̃,228

such that x ∈ [0, 1] and z ∈ [0, 1]. To define C(x, z, t) and R(z, t), we apply the following229

change of variables,230

(2.19) C̃(x̃, z̃, t̃) = C

(
x̃

R̃(z̃, t̃)
,

z̃

H̃(t̃)
, t̃

)
, R̃(z̃, t̃ ) = R

(
z̃

H̃(t̃)
, t̃

)
.231

Substituting the scaled variables x and z and the scaled functions C and R into the system232

of non-dimensionalized PDEs describing the simplified 2D pore channel problem, Equation233

(2.13) simulating the main fluid body becomes234

(2.20) ϵ2
(
Ct +

zβ

H
Cz +

(
x

R

zβRz

H
− xRt

R
− 2xR2

z

R2H2
+
xRzz

RH2

)
Cx

)
=235

1

R2
Cxx + ϵ2

(
− 2xRz

RH2
Cxz +

(
xRz

RH

)2

Cxx +
1

H2
Czz

)
.236

The new equation holds on the computational domain [0, 1] × [0, 1] and the four boundary237

conditions are then transformed into238 [
ϵ2
{
−C

(
Rt −

zRz

H2

)
+
Rz

H

(
Cz

H
− CxRz

R2H

)}
− Cx

R

]
x=1

= ωϵ2Q(C)

√
1 + ϵ2

1

H2
R2

z,(2.21)239 [
−Cz

H

]
z=1

= 0,
1

R
Cx

∣∣∣∣
x=0

= 0,
1

H
Cz

∣∣∣∣
z=0

= 0,(2.22)240
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and the deposition equation that describes the evolution of the wall geometry241

(2.23) ϵ2
(
Rt −

βz

H2
Rz

)
= −ωγϵ2Q(C)

√
1 +

ϵ2R2
z

H2
.242

The system of non-dimensionalized PDEs on the computational domain is solved in MATLAB,243

making use of the forward Euler method in time with an upwind scheme for Equation (2.23)244

and a centered finite difference method in space for Equation (2.20). One-sided derivatives245

were used for boundary conditions. Table 1 summarizes parameters like evaporation rate,246

precipitation rate, and other initial conditions used in the model and gives example values247

used in determining a computational solution. We may also use a range of values for each248

parameter that we use to systematically analyze the model’s behavior.249

3. SDE problem. A stochastic representation for the particle concentration will allow for250

simulations of individual particle trajectories and a particle-level understanding of the model.251

In higher dimensions, SDEs can be less computationally demanding than finite difference252

methods for PDEs and can operate on parallel machines [9]. Diffusion of particle concentration253

is inherently stochastic and is described by Brownian motion [11]. Equation (2.3) models 2D254

isotropic diffusion and can be expressed in terms of the SDEs255

(3.1) dX̂t = σ̂xdWt dẐt = σ̂zdWt.256

Here, a standard Wiener process (i.e. Brownian motion) is comprised of dWt ∼ N (0,∆t) and257

σ̂ is found from the diffusion constant D with the relationship σ̂x = σ̂z =
√
2D. However,258

in the nondimensionalized diffusion equation, Equation (2.13), the diffusion coefficient is re-259

scaled in the X̃ and Z̃ directions, and is dependent on the parameter ϵ. Values for σ̃x and σ̃z260

are
√
2/ϵ and

√
2, respectively.261

In the computational version of the problem, additional drift terms µ are generated and262

diffusion σ in the x and z directions also become interdependent. Written in vector form, the263

resultant stochastic process becomes264

dX⃗t = µ⃗(X⃗t, t)dt+ σ(X⃗t, t)dW⃗t,(3.2)265

where µ⃗ is the drift vector, X⃗t = (Xt, Zt), and σ is a 2 by 2 matrix found from the diffusion266

tensor D = 1
2σσ

⊤. The density function for the distribution of X⃗t is governed by the Fokker-267

Planck (FP) equation [11]. In 2D, the FP equation for C(x, z, t) is268

(3.3)
∂C

∂t
+

∂

∂x
(µxC) +

∂

∂z
(µzC) =

∂2

∂x2
(Dxx(x, z, t)C)+269

2
∂2

∂z∂x
(Dxz(x, z, t)C) +

∂2

∂z2
(Dzz(x, z, t)C),270

which comes in similar form as our 2D diffusion equation (2.20) in the computational domain:271

(3.4) Ct +

(
x

R

zβRz

H
− xRt

R
− 2xR2

z

R2H2
+
xRzz

RH2

)
Cx +

zβ

H
Cz =272 (

1

ϵ2R2
+

(
xRz

RH

)2)
Cxx −

2xRz

RH2
Cxz +

1

H2
Czz.273

410



J. JIANG, R. ZHANG, D. JEONG

We proceed with matching terms between Equations (3.3) and (3.4) (i.e. time derivatives274

term, diffusive terms with second partials, advective terms with first partials) to obtain forms275

for the drift and diffusion coefficients, µ(x, z, t) and σ(x, z, t). Then, application of these276

coefficients to Equation (3.2) gives an SDE representation of the 2D scaled model.277

Discretization of the SDE model relies on the Euler-Maruyama method, commonly used278

to simulate SDEs. The numerical approximation of Equation (3.2) becomes X⃗t+∆t − X⃗t =279

µ⃗(X⃗t, t)∆t + σ∆W⃗t. If we let ζi :=
1√
∆t

∆Wi,t ∼ N (0, 1), the step equations that govern all280

numerics for this SDE system are281

Xt+∆t −Xt = µx∆t+ (σxxζX + σxzζZ)
√
∆t(3.5)282

Zt+∆t − Zt = µz∆t+ (σxzζX + σzzζZ)
√
∆t283

with, again, ζX and ζZ composing a 2D standard Wiener process.284

3.1. Boundary Conditions and Deposition Algorithm. The 2D SDE model consists of285

an ensemble of individual particle trajectories over time, where particles move freely in the286

fluid until encountering a boundary. The stochastic models in the previous section do not287

incorporate the influence of any boundary conditions. To supplement the SDE with boundary288

conditions, we have reflective boundary conditions following Erban and Chapman’s algorithm289

for simple reflective boundary conditions [3]. Rather than the approach for Robin boundary290

condition proved in Leimkuhler et al. [9], we instead describe the moving boundary condition291

with flux by probability function (3.6). Particles that hit the wall, Xt = 1, may be deposited292

depending on the local concentration of particles. The concentration will be calculated as the293

number particles in a small area near the wall divided by that area. If concentration near the294

wall is above the threshold C = 1, our approximation is to take the probability that particles295

hitting the wall actually deposit as296

(3.6) P (C) =

{
1− e−k(C−1) C ≥ 1,

0 C < 1.
297

This probability increases to 1 as C becomes large, and also includes the small possibility that298

particles do not deposit despite the concentration being over-saturated. After finding P (C),299

we generate a uniform random number and determine whether it is above P (C), depositing300

the particle if so. This is an empirical approach for describing deposition at the wall and is not301

guaranteed to match with boundary condition (2.21), but it was observed to give reasonable302

agreement.303

A representative step (Xt, Zt) −→ (Xt+∆t, Zt+∆t) with conditions at all four boundaries304

is described by the algorithm in Algorithm 3.1 [3]. All coordinates are scaled to a fixed305

computational domain similar to the PDE model, so particles must stay in the domain [0, 1]×306

[0, 1]. In the algorithm, a uniform random variable, called U with 0 ≤ U ≤ 1, is compared307

against P (C). If U < P (C), the particle trajectory is terminated due to deposition. If308

deposition occurs, the wall inches into the fluid and the radius decreases by a small amount δ,309

set to be around 0.1-1% the width of the pore [12]. Similar to how the volume scaling fraction310

γ in the PDE model accounts for reduction in particle size after deposition, δ is set to be a311
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Algorithm 3.1 Particle Trajectory (Xt, Zt) −→ (Xt+∆t, Zt+∆t)

Given Xt, Zt, t, and C(Xt, Zt, t), compute (Xt+∆t, Zt+∆t) from Equation (3.5). Also,
calculate probability P (Ct) based on an average Ct according to the number of particles in
a small neighborhood of the wall at height Zt.
while Zt+∆t < 0 or Zt+∆t > 1 do

if Zt+∆t < 0 then
Reflect: Zt+∆t = −Zt+∆t

end if
if Zt+∆t > 1 then
Reflect: Zt+∆t = 2− Zt+∆t

end if
end while
while Xt+∆t < 0 or Xt+∆t > 1 do
if Xt+∆t < 0 then

Reflect: Xt+∆t = −Xt+∆t

end if
if Xt+∆t > 1 then
Calculate probability P (Ct) from Equation (3.6) and generate a uniform random num-
ber U from (0,1)
if U < P (Ct) then

Terminate particle trajectory and decrease pore radius by approximated particle size
at height Zt (deposition)

else
Reflect: Xt+∆t = 2−Xt+∆t

end if
end if

end while
return (Xt+∆t, Zt+∆t)

small particle size relative to the pore channel. As evaporation occurs, particles in the main312

fluid body are computationally scaled, but the pore channel radius is not. Thus, in response to313

the fluid level lowering, the number of particles deposited on the walls is distributed according314

to a new partition of the radius in order to preserve mass. In Equation (3.6), the parameter315

k is a constant chosen to minimize mean-squared error (MSE) between the dry deposition316

patterns of the PDE and SDE model. To determine this constant, we found values for k317

across different initial conditions where the MSE is minimized, then the average, k = 0.036,318

is taken as the constant. As MSE is calculated with simulations of PDE model with fixed319

parameters, k has a correspondence with the parameter λ in the PDE model, or ω after non-320

dimensionalization (See Table 1). And so, fitting k = 0.036 only applies for the particular321

values of λ used in the minimization of the MSE, but a relationship between k and λ can be322

determined. While Leimkuhler et al. proposed a sophisticated stochastic approximation for323

Robin boundary conditions, comparisons of (3.6) with the PDE model given in Section 5 show324
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this to be a simpler, yet physically reasonable formulation for deposition. We recognize that325

the choice for (3.6) breaks the mathematical connection between the PDE and SDE boundary326

conditions, but also highlight that even with its simplicity it can capture the physical process327

of deposition and produce comparable deposition results.328

4. 1D Asymptotic problem. Using the same nondimensionalized parameters from Ta-329

ble 2, we now let ϵ→ 0, which implies R/H will approach zero. Recalling that ω, appearing330

in equations (2.8) and (2.9), is defined as λH2

DR , if the other dimensional values are held con-331

stant, ω will approach infinity. But introducing a new parameter ψ such that the relation332

λ = ψϵ holds with ψ held constant will prevent ω from producing singular limits. In Equation333

(2.13), by letting ϵ go to zero, perturbation expansions for both C̃ and R̃ to their second lead-334

ing order terms with respect to ϵ2 are C̃ = C̃0 + ϵ2C̃2 +O(ϵ4), R̃ = R̃0 + ϵ2R̃2 +O(ϵ4)[1]. We335

group by powers of ϵ for the diffusion equation (Equation (2.13)) and each boundary condition336

(Equations (2.14)-(2.17)) at O(ϵ0) and O(ϵ2). Grouped by order, the O(ϵ0) sub-problem can337

be written as338

C̃0x̃x̃ = 0, βC̃0 − C̃0z̃ = 0

∣∣∣∣
z̃=H̃

, C̃0z̃ = 0

∣∣∣∣
z̃=0

, C̃0x̃ = 0

∣∣∣∣
x̃=0,R̃0

In O(ϵ0), C̃0x̃x̃ = 0 is the PDE representing the system, and βC̃0− C̃0z̃ = 0 represents the

top boundary, C̃0z̃ = 0 represents the bottom boundary, and C̃0x̃ = 0|x̃=0,R̃0
represents the

left and right boundaries. The O(ϵ2) sub-problem is

C̃2x̃x̃ + C̃0z̃z̃ − C̃0t̃ = 0, βC̃2 − C̃2z̃ = 0, −C̃2x̃ − Q̃(C̃0)ω − C̃0R̃0t̃ + C̃0z̃R̃0z̃ = 0,

Q̃(C̃0)ωγ + R̃0t̃ = 0.

Solving for C̃0 by integration and using boundary conditions at the top and bottom reveal339

that C̃0 is independent of x̃. Further substitution derives the following asymptotically reduced340

equation for the model:341

(4.1a) −Q̃(C̃0)ω + R̃0(C̃0t̃ − C̃0z̃z̃)− C̃0R̃0z̃ + C̃0z̃R̃0z̃ = 0342

343

(4.1b) R̃0t̃ = −Q̃(C̃0)ωγ344

The simplified equation with its boundary conditions is345

(4.2a) (C̃R̃)t̃ = (C̃z̃R̃)z̃ − ωQ̃(C̃), 0 ≤ z̃ ≤ 1− βt̃346

347

(4.2b)

(
βC̃ − C̃z̃

)∣∣∣∣
z̃=1−βt̃

= 0, C̃z̃

∣∣∣∣
z̃=0

= 0348

with initial conditions H̃(0) = 1, R̃(z̃, 0) = 1, C̃(z̃, 0) = ρ. With the asymptotic model, a349

change in variables was performed similar to that of the computational version of the main350

PDE as seen in Section 2.1.2.351
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Figure 2: Concentration color plot and deposition pattern of the 2D PDE model at t = 0.4
with β = 1, ω = 0.6, and R = 1.

5. Comparison of Results in Pore Channel Geometry. In this section, results from the352

1D asymptotic model and the SDE model are compared against the 2D PDE problem. Pore353

evolution, concentration evolution, and deposition mass are analyzed as a means of determin-354

ing if models corroborate each other.355

5.1. 2D PDE vs. 1D Asymptotic PDE. When the evaporating interface reaches a small356

height, the diminishing fluid volume and the increasing concentration of particles causes the357

model to enter a high concentration regime. Given that the model is dependent upon the358

assumption that particles have negligible volume, we no longer have confidence in the model359

when the concentration is no longer dilute. For all following results, simulations terminate at360

around heights 0.2 or 0.3, chosen from observation based on the combination of parameters361

in Table 1 as an estimation of the margin before the remaining fluid becomes too dense.362

Figure 2 is a color plot of particle concentration when fluid height reaches 0.6 with β = 1.363

The figure is not displayed in the computational domain but in the non-dimensionalized364

physical x̃-z̃ plane. The radius profile is R̃full(z̃, t̃), but plotted with inverted axes to visually365

show how a deposition pattern may appear on a vertical pore channel wall. Greater adsorption366

occurs where local concentration far exceeds saturation (C̃ > 1), which we can see is most367

common near the evaporating surface, where the yellow color demonstrates highest particle368

concentration. Concentration is usually highest at the surface due to evaporation, and thus,369

regardless of different initial conditions, the pore radius at the surface will also be the narrowest370

at the current fluid height. Note that concentration is relatively uniform across x̃, besides371

slightly higher values towards the top center of the pore. Thus, averaging concentration372

values across x̃ will give a representative measurement of particle concentration at a given373

height x̃. In order to reduce the multi-variate function C̃ shown in the color plot to 1D374

414



J. JIANG, R. ZHANG, D. JEONG

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Pore Evolution

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Concentration Evolution

Figure 3: Evolution profiles produced by the 2D PDE model with R = 1 and ρ = 0.8. Left:
Pore Wall Evolution. Dotted lines demonstrate the decreasing fluid surface level at specific
times, and arrows indicate the direction of motion for top and right boundaries. The figure
shows individual pore radius profiles found at separate times that illustrate how the interface
between accumulated particles and the fluid moves into the fluid over time. A solid curve
connecting these profiles shows an interface between accumulated particles and the air as the
fluid level lowers. Right: Concentration Evolution. The arrow shows direction of concentration
evolution over time. Similarly, individual curves are separate concentration profiles at different
times, determined from taking the mean concentration across x̃ for a given z̃. All profiles are
connected by a solid line that demonstrates concentration increasing monotonically.

curves, we find375

(5.1) ⟨C̃⟩ := 1

R̃

∫ R̃

0
C̃(x̃, z̃, t̃) dx̃.376

Figure 3 is an example of a pore radius evolution plot and its corresponding concentration377

evolution plot. In Figure 3 (left), the horizontal arrow indicates the pore radius narrowing378

inward over time due to deposition and the vertical arrow illustrates the fluid height decreasing379

during evaporation. Curves drawn at each 0.1 decrease in fluid height show particle deposition380

adding mass to the changing pore wall. R̃dry(z̃) lies above the fluid-air interface. At t̃ = 0.8,381

the dry region above z̃ = 0.2 (solid black line) is fixed and no longer experiences deposition,382

while anything below the black line is still submerged in fluid. We also plot the lowering383

interface with dashed black lines at each 0.1 increment. It is also noticeable in the figure that384

deposition does not begin immediately. Instead, deposition starts at around z̃ = 0.95 due to385

the fluid starting under-saturated at ρ = 0.8.386

The concentration evolution graph uses Equation (5.1) to find 1D concentration profiles,387

and plots them sideways to match the pore radius evolution graph. The initial profile in388

Figure 3 (right) is vertical line at ρ, with uniform concentration and no change in the system389

yet. Again at every 0.1 decrease in height, we plot the 1D curve at each time step, signified390

by different colors. The concentration is not uniform at each z̃ ̸= 0. The arrow further391
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Figure 4: Pore radius and concentration evolution graphs for different combinations of evapo-
ration (β) and deposition (ω) rates. Top row: low β = 0.3, high ω = 8, ρ = 0.8, and γ = 0.4.
Bottom row: high β = 2, low ω = 1, ρ = 0.8, and γ = 0.4.

demonstrates to read the plot from left to right, since generally, the concentration increases392

as the height of the pore decreases. In both plots, we end the simulation at z̃ = 0.2.393

Deposition coefficient ω and evaporation rate β can be altered to investigate variations in394

the radius and concentration evolution. The radius evolution graph in Figure 4 reveals that395

a higher deposition rate coupled with a lower evaporation rate results in the radius rapidly396

shooting inward after a delayed initiation of deposition at around z̃ = 0.85. For concentration,397

on the other hand, the low β high ω parameter combination leads to a drastic increase in fluid398

concentration towards the beginning but slows down dramatically after the fluid height reaches399

0.7. Where there are high evaporation and low deposition rates instead, we see significantly400

less deposition and a concentration profile with larger concentration values in general. Faster401

evaporation limits the time for particles to accumulate, while a lower deposition rate prevents402

deposition despite a high local concentration.403

Figure 5 displays changes in R̃(z̃, t̃) due to various values for R, the initial pore width, in404

both the PDE 2D model and the asymptotically reduced model. The left graph displays the405

decrease of radius due to deposition from initial radius, that is R̃(z̃, 0.3) − R, with respect406
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Radius with Diff R Proportion of Deposited Mass

10 0.1

Particle Accumulation on Pore Wall with Different Radii

Figure 5: Left: The decrease of pore radius R̃(z̃, 0.3)−R

with different initial radius R = 10, R = 1, R = 0.1 from left to right when t̃ = 0.3.
Right:Mass of deposited particles/total particles with respect to initial radius R, with R on
a logarithmic scale (R = 0.01 to R = 0.1 for asymptotic model (red); R = 0.05 to R = 10

for PDE 2D model (blue)).

to z̃ at different initial radii. At ϵ = 0.1, we only see one profile because the two models407

virtually overlap. The figure supports that as ϵ goes to zero, the results from the scaled408

2D PDE model approach those of the asymptotic PDE model. An examination of deposited409

mass further validates this notion. The right graph in Figure 5 shows deposited mass, scaled410

by initial mass, in both the PDE asymptotic model (red) and the primary PDE 2D model411

(blue). In the range R ∈ [0.05, 0.1], there is a region where the two graphs coincide. Looking412

back at Figure 2, the general uniformity in concentration across x̃ also suggests that the413

1D asymptotically reduced model is a good approximation of the 2D model. In fact, the414

simulation for Figure 2 was not performed with a small aspect ratio, where ϵ = 1. Then,415

Figure 2 and Figure 5 both reveal that the asymptotic model is a reasonable approximation416

of the 2D model, especially at relatively small aspect ratios.417

5.2. Comparing PDE Model and SDE Model. Pore evolution in the SDE 2D model can418

also be graphed with both dry and wet sections shown together at different times, shown in419

Figure 6. As described in Section 3.1, we calculate the probability that particles exit the420

fluid by measuring local concentration at the wall. As fluid evaporates, particles become more421

packed and dense, resulting in higher probability for deposition and thus a gradual decrease in422

pore radius over time. The SDE model was also simulated in MATLAB. Comparing the SDE423

and PDE models on the same graph in Figure 6 shows that the dry portions of the deposited424

pattern agree, even more so at earlier times. Deposition patterns in the wet sections are425

dissimilar; however, we observe that when more fluid evaporates, the accumulated dry patterns426

still match up well. Differences in the PDE and SDE models appear to emerge towards the427
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Figure 6: Left: Pore radius evolution of SDE model up until t = 0.8 and with ρ = 1, D = 1,
and E = 1. Like previous figures, each colored, solid curve is a separate pore radius profile
found at separate time points, with a black, solid line demonstrating the narrowing of the
pore as time passes.

Right: Pore radius evolution of SDE (dotted) compared with the PDE (solid) 2D model at t
= 0.8 with ρ = 1 or C0 = 0.5, D = 1, and β = 1. The horizontal lines show the decreasing

surface level of the evaporating fluid column.

end of the simulation, but at that time, both models may be inaccurate from failure in holding428

the dilute assumption.429

In both models, accumulation on the walls shows a concave-up pattern, with the peak430

height of accumulation at the fluid-air interface. Figure 7 (left) is a graph of the maximum431

accumulation (1− R̃) over time for one set of parameters, giving a percent error of 16.7% with432

the PDE model as the theoretical result. The right graph shows total dry mass over time,433

or total accumulation in R̃dry(z̃). There is close agreement between the two models, with a434

percent error of 5.4%.435

We have observed general similarities between the SDE and PDE results, but we believe436

that differences appear from how boundary conditions are treated, particularly in the presence437

of flux or partial adsorption. Leimkuhler et al. [9] derived accurate stochastic Robin boundary438

conditions to approximate reflected stochastic differential equations, but to our knowledge,439

how to properly treat boundary conditions with flux, like Equation (2.21), has not been440

resolved. Our proposed probabilistic boundary condition in Algorithm 3.1 can at least produce441

comparable results for the dry portion of the deposition pattern in the dilute case.442

6. Parameter Analysis in the 2D Model. This section explores how some of the param-443

eters listed in Table 2 influence model attributes, such as the pore radius at a given height444

or the monotonicity of the concentration evolution. Deposition and evaporation are noted as445

opposite processes, where the former decreases particle concentration within the fluid and the446

latter increases it. The combined mechanism is analyzed at different degrees by varying their447

rates.448
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Figure 7: Left: Comparison of SDE and PDE maximum accumulation over time. R̃ rep-
resents the minimal radius found in the pore radius profile, so with the pore radius non-
dimensionalized to 1, 1 − R̃ represents the maximum accumulation along the wall at each
time.

Right: Comparison of SDE and PDE dry mass over time. Dry mass is calculated as the total
accumulation at each time, integrating over the particle deposition pattern above the

fluid-air interface. Both plots have simulations running until t = 0.8, with D = 1, ρ = 1 or
C0 = 0.5, and β = 1.

6.1. Effects of Parameters. Highlighting specific characteristics of the model by per-449

forming sensitivity analyses on model parameters can provide critical information to improve450

industrial design. For example, the distinction between brine water and pure water (differ-451

ences in concentration, evaporation rate, and concentration evolution) is crucial for designing452

anti-fouling/anti-salt accumulation solar evaporator technology for desalination [15].453

For the following results, the system consistently evaporates to half height, or to 0.5 (with454

initial height of 1). First, we observe the relationship between pore radius at half height and455

parameters of interest. As expected, the radius decreases as the rate of deposition increases,456

though the negative relationship is not dramatic. We expect deposition and evaporation to457

work as opposing processes, where the former decreases particle concentration in the fluid458

and the latter increases concentration. Even when particles deposit from the fluid quickly,459

the rapid rate at which concentration is expected to change may be mitigated by a lower460

evaporation rate. Furthermore, the resulting radius at half height and evaporation rate have461

a positive relationship. Again, the rate at which the concentration changes is mitigated due462

to a higher evaporation rate and a relatively lower deposition rate, leading to a positive slope463

with small magnitude. In both cases, the concentration would fluctuate between being under464

and above saturation levels.465

Other observations show that decreasing the initial concentration, ρ, results in pore radii466

that are significantly larger. The converse is also true: when ρ is higher, particle deposition467

is expected to occur earlier because ρ is initially closer to the saturation concentration. Ad-468
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Figure 8: Left: ∂R/∂β (change in radius with respect to evaporation rate) at height 0.5
against varying values of β demonstrating a point of stability where the curve peaks. Right:
Non-monotone concentration evolution with overlapping concentration curves in the over-
saturated regime. Black arrows indicate that concentration at the fluid-air interface increases
up to around height 0.85, decreases up to around height 0.45, and proceeds to increase again.
This pattern is also shown by the curve connecting maximal concentration values for each
concentration profile as the fluid-air interface lowers.

Simulations were performed with parameters β = 1, γ = 0.4, ω = 10, and ρ = 1.2.

ditionally, an inverse relationship is observed between the pore radius and the volume scaling469

coefficient, γ. If γ is low, then there is less accumulation of particles inside of the pore. A470

higher value for γ implies that the pore would clog earlier. Thus, with increasing γ, the radius471

decreases continuously until it hits 0, since a radius cannot be negative.472

In our investigation of these parameter properties, we are most interested how the system473

behaves when the evaporation rate β changes. It is not immediately obvious when exactly474

concentration reaches its saturation point. Figure 8 (left) displays results from a sensitivity475

analysis test of β and shows a curve is almost parabolic in a certain region. Therefore, there476

exists a point of stability at the critical point, where changes in β cause minimal changes477

in dR
dβ . Labeling these points β∗, we seek to understand how stability changes when system478

parameters are altered. Relationships between β∗ and both γ (volume scaling fraction) and ω479

(deposition rate) are found to be positive and monotonically increasing. This is because the480

system constantly seeks stability, correspondingly shifting the point of stability after changing481

some parameter. In other words, one can infer the influence of a balancing force; modifying482

γ and ω require corresponding changes in the point of stability.483

6.2. Analyzing Monotonicity of Concentration. Again, due to assumptions, the radius484

must be monotonically decreasing; however, this is not the case for concentration. For ex-485

ample, Figure 8 (right) shows that in the heavily over-saturated regime, the concentration486

evolution is not monotonically increasing. This can be shown by the concentration increasing,487

then decreasing, and then increasing for parts of the profiles. Furthermore, this can be more488
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Figure 9: Regions of monotone vs. non-monotone concentration evolution according to vari-
ations in γ and ρ. Dark blue: non-monotone concentration evolution. Light blue: monotone
concentration evolution.

easily identified by the fact that the concentration curves overlap, signifying a lack of mono-489

tonicity. To determine the criteria condition for non-monotone concentration evolution, the490

relationship between monotonicity of concentration evolution, ρ (scaled initial concentration),491

and γ is investigated. The result is demonstrated in the heat map Figure 9, where dark blue492

represents non-monotone concentration evolution and light blue represents monotone concen-493

tration evolution, γ is the horizontal axis and ρ is the vertical axis. Concentration appears to494

be non-monotone for large ρ. However, some points beyond Csat (i.e. ρ = 2) contain initial495

conditions that still produce a monotone concentration evolution, possibly due to model as-496

sumptions creating close relations between local concentration and concentration in the rest497

of the fluid. Model assumptions also neglect that drift velocity (assumed to be zero) within498

the fluid which can contribute to imbalances in concentration in the fluid.499

7. Droplet Model. Previously, we discussed models in which it was assumed that fluids500

reached from end of the wall to the other. However, in events in which this may not occur,501

droplets may potentially form. With this in mind, the two most prevalent scenarios for502

modeling a droplet is fixing either the radius of the droplet or the contact angle [17]. This503

paper will work with the former, and models the droplet surface with the parabolic equation504

(7.1) H̃(x̃, t̃) = h̃(t̃)

(
1−

(
x̃

R

)2
)
,505
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where h̃(t̃) = 1−βt̃ is the maximum height and R is the fixed contact radius, set to 1. Again,506

only a half section of the 2D droplet is considered, drawn as a 2D parabola with an axis of507

symmetry at x̃ = 0. In the PDE droplet model, the 2D nondimensionalized diffusion equation508

(2.13) is used to describe concentration within the droplet.509

Discretizing the evolution of curved boundaries is more complex, so the top boundary510

of the droplet is approximated in a way that conserves particle mass. After evaporation,511

particles above the fluid-air interface are redistributed normal to the boundary, back into the512

computational domain. A fully absorbing boundary condition is chosen for the floor. Again,513

one-sided derivatives are implemented for the PDE boundary conditions.514

The SDE algorithm is similar to the 2D model, where particles are reflected from the515

left and bottoms walls according to Algorithm 3.1; but, particles are reflected according to516

the normal vector at the boundary. Computational scaling for the droplet model in the SDE517

version of the droplet model similarly consists of bridging the scaled diffusion equation with518

the 2D FP equation, given by519

(7.2)
∂C

∂t
− ∂C

∂z

∂H

∂t

z

H
=520

D

(
∂2C

∂x2
− ∂2C

∂x∂z

∂H

∂x

z

H
+

(
∂H

∂t

)2∂2C

∂z2

(
z

H

)2

+2
∂C

∂z

(
∂H

∂x

)2 z

H2
− ∂C

∂z

∂2H

∂x2
z

H
+
∂2C

∂z2
1

H2

)
521

for 0 ≤ z ≤ 1. Matching the velocity terms and the scaled diffusion coefficients, again the 2522

by 2 matrix σ(x⃗, t) and the 2D vector µ⃗ are solved for to write step equations just like (3.5).523

7.1. Droplet Results. As previously mentioned, the PDE droplet has boundary condi-524

tions that match those of the SDE droplet in 1D. For the left boundary, one-sided Neumann525

boundaries are used in the PDE model and particles are reflected in the SDE model. At the526

floor, we implement a fully absorbing Dirichlet boundary for the PDE model and eliminate527

any trajectories that cross the floor for the SDE model. Unlike the 2D model, the droplet528

contains a non-flat surface, thus each surface grid point is given an averaged corner boundary,529

with one-sided derivatives following the equation DCx +
∂H(x,t)

∂t C = 0. We compare the SDE530

and PDE model with a fully absorbing floor in Figure 10. The highest concentration of par-531

ticles occurs at the top center of the droplet and disperses as they reach the floor, where they532

are 100% absorbed. However, due to the curved surface, the gradient is not uniform across533

the horizontal, leaving the corner with the least amount of particles. This pattern can be seen534

in both cases.535

The sparsity of particles at the corner of the droplet may be attributed to 1) a lower number536

of particles reaching the corner or 2) more immediate absorption due to closer proximity to537

the floor. To determine which reason is more dominant, flux out of bottom of the droplet is538

observed for the PDE and SDE cases. For the PDE, flux is calculated at z = 0 using −D ∂C
∂z ,539

whereas its SDE counterpart simply counts the number of particle trajectories eliminated from540

the fluid after touching the floor. In Figure 11, both measurements of flux display similarly-541

shaped monotone decreasing curves, describing higher flux near the center of the droplet and542

less at the corner. If the sparsity of particles were attributed to faster adsorption (from a lower543

droplet height), the curves would be monotone increasing. Low flux at the corner indicates a544
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Figure 10: Particle distribution within a droplet with a fully absorbing floor. Parameters are
H0 = 0.5, Hend = 0.4, D = 1, N = 40000. Left: PDE with approximated boundary conditions.
Middle: SDE with approximated boundary conditions. Right: SDE on a fixed computational
domain with a partially absorbing floor.
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Figure 11: Flux distribution of a droplet with H0 = 0.5, Hend = 0.3, D = 1, n = 40000
particles. Left: PDE, Right: SDE.

lower number of particles reaching the droplet corner. For that reason, we expect no coffee545

ring effect [5]. This corroborates with assumptions because the model neglects surface tension546

properties needed to precipitate a ring of particles at the edge of the droplet.547

The rightmost graph in Figure 10 is a heat map of particle concentration in a compu-548

tationally scaled version of the SDE modeled droplet. Again, the Euler-Maruyama Method549

was used to approximate the SDEs found from Equation (7.2) for particles within the fluid550

body. A partially absorbing boundary is set at the floor, using the algorithm and probability551

function described in Section 3.1 and Equation (3.6). Similar patterns can be observed, where552

highest concentration exists at the peak of the droplet and the lowest concentration is found553

in the corner of the droplet. We also observed that accumulating floor deposition patterns554

indeed do not show a coffee ring effect, confirming conclusions made from graphing flux from555

a fully absorbing floor.556
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8. Conclusion. Greater understanding of particle deposition in porous material resulting557

from the evaporation of impure fluids can help mitigate long-term contamination or clogging,558

optimizing membrane performance in various industrial applications, such as fabrics and other559

filtration systems. This study provides a comprehensive study and parameter analysis on560

particle behavior in pores with a 2D model that does not rely on a small aspect ratio. Vi-561

sualizations of particle concentration give insight to particle distribution throughout a fluid,562

as well as pore radius and averaged concentration evolution patterns over time. Results show563

that particle deposition must accumulate given the assumption that deposition is irreversible,564

whereas concentration evolution is not necessarily monotonically increasing. The 2D PDE565

model produces steady results with initial radii between 0.05 to 10, where smaller radii begin566

exhibiting a small aspect ratio and give way to the asymptotically-reduced 2D PDE model.567

The asymptotic model is more computationally efficient for small initial radius (< 0.1).568

Furthermore, the PDE model is compared with a stochastic interpretation that originates569

from leveraging connections between the 2D scaled diffusion equation and the 2D Fokker-570

Planck equation. A new algorithm for a partially absorbing SDE boundary is proposed.571

While there are some discrepancies in the behaviors of the PDE and SDE models, there572

are noticeable similarities between the models that allow for both a macro- and micro-scale573

understanding of physical phenomena in a fluid-filled pore channel. In particular, the SDE574

model is simpler when exploring different wall geometries, altering boundary conditions, and575

adding variation to particle-specific behaviors.576

Since the PDE 2D model allows us to accommodate curved surfaces, the last part of577

the study investigates the behavior of a parabolic fluid-air interface through modeling the578

evaporation and deposition in a droplet. Concentration of particles and flux are visually579

comparable, exhibiting similar patterns. The SDE model, scaled or unscaled, is easier to580

manipulate and account for complex boundary conditions.581

9. Future Work. Throughout this paper, we assume that the particle-laden fluids are582

originally dilute. In each simulation, we terminate the model before the evaporating surface583

reaches small ẑ, at which particles become too condensed [18, 13]. The model also assumes that584

particles are non-interacting and have negligible volume. This could be corrected using multi-585

phase mixture models that deal with higher particle density by incorporating non-constant586

diffusion. The nonlinear diffusion equation would then be587

∂ϕ

∂t
= ∇2(D(ϕ)ϕ).588

Utilizing the nonlinear diffusion equation and PDE-related numerical methods, we can both589

validate existing assumptions with constant diffusion and dilute regimes, and generalize initial590

conditions to non-dilute solutions.591

Additionally, we only consider a 2D quarter of the pore channel symmetric along the x̂592

and ẑ axes. A more realistic geometry would be a 3D circular cylinder; the axi-symmetric593

version was done in [14]. Other physical considerations include curved interfaces due to594

surface tension, making the height Ĥ(x̂, t̂). Depending on the mixture and the material of595

the walls, the fluid may have inward or outward curved surfaces instead, forming menisci that596
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evolves over time. In our model, local concentration also has a strong correlation with the597

concentration in the whole solution. As fluid evaporates and particle concentration increases,598

local concentration near the wall becomes greater than Csat and yields deposition. We may599

also want to consider coupling the particle concentration to fluid dynamics for convection in600

the bulk. Ultimately, there is still much to be explored and expanded upon as we aim for a601

more comprehensive and thorough framework for fluid-filter phenomena.602

Acknowledgments. This article would not have been possible without the exceptional603

support of our faculty supervisor, Dr. Thomas Witelski, and our graduate student supervi-604

sor, Yuqing Dai. We give credit to the study group report written during the 37th Annual605

Workshop on Mathematical Problems in Industry (MPI) in 2021, published in Mathemat-606

ics in Industry Reports, for proposing the topics discussed in this paper and for laying the607

foundation for our research. We would also like to show our gratitude to Dr. Vasu Venkatesh-608

waran from W. L. Gore & Associates, a material science company, who gave an industrial609

perspective to our work. An additional acknowledgement goes to Dr. Jonathan Mattingly for610

providing insight to stochastic boundary conditions. Lastly, we are also immensely grateful611

to Dr. Heekyoung Hahn and Dr. Lenhard Ng, co-directors for the DOmath program, for pro-612

viding us with this opportunity. Some support for our project was provided by Dr. Witelski’s613

grant, NSF DMS 2008255.614

Appendix A. Derivation of Moving Boundary Condition. Here we derive the form

of a prescribed-flux moving boundary condition (with prescribed normal flux J(x, t)); this is

needed on two boundaries of our model. Let C(x, z, t) be particle concentration defined on

the region 0 < x < L, 0 < z < G(x, t), and evolving according to the diffusion equation

Ct = D(Cxx + Czz).

Let F (x, z, t) := z − G(x, t) be the level set function defining the moving (top) boundary as615

F = 0. Assume there is no flux out through the left (x = 0), right (x = L), and bottom616

(z = 0) boundaries. Define M(t) :=
∫ L
0

∫ G(x,t)
0 C(x, z, t) dzdx to be the total mass of particles617

in the domain at time t. Then, there is only flux through the top (z = G) boundary, and we618

have619

dM

dt
= −

∫
F=0

J(x, t)ds = −
∫ L

0
J(x, t)|∇F |dx(A.1)620

because the line integral can be represented as a single integral with respect to x, where the621

arclength ds is given by |∇F | dx. From another perspective, the rate of change in mass can622

also be expressed as623

(A.2)
dM

dt
=

∫ L

0

(∫ G(x,t)

0

∂C

∂t
dz + C(x,G(x, t), t)

∂G

∂t

)
dx624

by the Leibniz integral rule. Using the diffusion equation then gives625

dM

dt
= D

∫ L

0

∫ G(x,t)

0
∇ · ∇Cdzdx+

∫ L

0
C(x,G(x, t), t)

∂G

∂t
dx.(A.3)626

425



EVAPORATION AND PARTICLE DEPOSITION BEHAVIOR IN MEMBRANE PORES AND DROPLETS

The double integral can be written as a line integral using the 2D Divergence Theorem,627

resulting in628

dM

dt
= D

∫
{F=0}

∇C · ∇F
|∇F |

ds−
∫ L

0
C
∂F

∂t
dx.(A.4)629

Again, rewriting the line integral gives630

dM

dt
= D

∫ L

0
∇C · ∇Fdx−

∫ L

0
C
∂F

∂t
dx.631

Equating Equation A.1 and Equation A.4 gives632

D∇C · ∇F − C
∂F

∂t
= −|∇F |J633

and finally, using ∇F = (−Gx, 1),634

DCxGx −DCz − CGt =
√

1 +G2
x J(A.5)635

which is then applied to the top and right boundaries in Section 2.1.636
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