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Abstract

Introduced here are examples of what we call “vector voting rules”: social preference 
orderings deduced from vectors naturally associated with the group preference matrix. 
These include higher-order Borda Rules, Bp, p = 1, 2, ..., and the Perron Rule (P). We 
study the properties of these transitive rules and compare them with Simple Majority 
Voting (SMV). Even when SMV is transitive, it can yield results different from B1, B2, ... 
and P, and through simulation, we compile statistics about how often these differ. We also 
give a new condition (2/3+ majorities) that is (just) sufficient for SMV to be transitive 
and then quantify the frequency of transitivity for graded failures of this hypothesis.
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1 Introduction

We consider many voters, each of whom has a strictly transitive preference ordering over
several alternatives. These may be summarized in a group preference matrix with nonnegative
integer entries. The outcome of most traditional voting rules may be deduced from this matrix,
and some (weakly) transitive ones result from vectors linear algebraically calculated from it
(“vector voting rules”). For example, the classic Borda rule, B1, is just the ordering consistent
with its row sum vector. Here, we first introduce some natural additional vector voting rules
Bp, consistent with the row sum vector of the p-th power, p = 2, 3,...., “the higher order Borda
rules”, and Perron (P), the positive right eigenvector associated with the spectral radius. The
former encode information about individual preferences over alternatives highly ranked by
other voters, and P is a limiting case. (See also some work of D. Saari [13][14][15] that may
be viewed linear algebraically.) In Section 2, we give some necessary background, formal
definitions, and examples. In Section 3, we study some properties of Bp, p= 1, 2, ...., and P
and examine how frequently, and at which powers, different Bp and P yield different results
from the same data. There is remarkable stability. In Section 4, we give a new numerical
condition (2/3+ majorities, first noticed by Johnson some time ago) under which simple
majority voting (SMV, also deduced from the group preference matrix, but not a vector
voting rule) yields transitive results and quantify the number of group preference matrices
that give intransitive results when the condition fails. This condition is quite distinct from
single-peaked preferences [2]. In Section 5, SMV is compared with B1, B2, and P. Surprisingly,
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our simulation shows that SMV, even when transitive, can give different results from B1, B2,
and P.

2 Background

Each of our individuals is assumed to have a transitive individual preference ordering (IPO),
without indifference between any two alternatives.

For a set of k alternatives A={a1, a2, ..., ak}, an IPO can be any permutation of A. The
order of alternatives in an IPO gives the preference of the individual from the most preferred
to the least.

For a set of k alternatives A={a1, a2, ..., ak}, an individual v’s preference matrix on A,
denoted as Iv(A), has entries rij ∈ {0,1}, i ∈ {1, .., k}, j ∈ {1, .., k}, rij + rji = 1. rij takes
values: 

1 ⇐⇒ aiPvaj , i ̸= j

0 ⇐⇒ ajPvai, i ̸= j

0, if i = j

This notation, aiPvaj , is read as ai is preferred to aj by individual v. Iv(A) contains
exactly the same information as v’s IPO. The IPO can be deduced from Iv(A).

This 0,1 individual preference matrix is referred to as the fuzzy preference relations in the
literature. The fuzzy preference relation was first proposed by Blin (1974) to use fuzzy theory
in group decision-making and was further discussed by Tanino (1988), among many others
[3][16].

Example 1. A={a1, a2, a3}. The IPO for individual v on A=

a1
a3
a2

. By definition, a1Pva3,

a1Pva2, and a3Pva2. So the Iv(A)=

0 1 1
0 0 0
0 1 0

.

If there are m individuals, the group preference matrix on A is G(A)=
m∑
v=1

Iv(A). It has

entries nij ∈ Z, indicating the number of voters in this group who prefers ai to aj . Given a
G(A), we can read the group’s preference between any two alternatives right off the matrix.
aiPaj ⇐⇒ (nij > nji), i ̸= j. The two statements equivalently mean the group prefers ai to
aj . aiIaj ⇐⇒ (nij = nji =

m
2 ), which means the group is indifferent between alternative ai

and aj .

Definition 1. G(A) is transitive if for ∀i, j, k, (aiPaj and ajPak) implies (aiPak), and for
∀i, j, k, (aiIaj and ajIak) implies (aiIak).

Definition 2. G(A) satisfies hypothesis Ht, t ∈ [12 , 1], if min
i,j∈{1,...,k},i̸=j

[
max{nij , nji}

m
] = t.

Thus, t is determined by the “minimum majority” presented in G(A).

Minimum majority will be an important parameter in our SMV transitivity condition
(section 4).

Below we define voting rules considered in this work. We see them as functions that take
a set of IPO’s via the group matrix G(A) to a social preference relation.
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Voting Rule 1. : Simple Majority Voting (Condorcet Method)
A winner under Simple Majority Voting is an alternative that has a majority of votes under
pairwise comparison with each of the other alternatives. That is, with some G(A), ai is the
simple majority winner if nij > nji, for ∀ j ̸= i.

There are IPO’s for which a Simple Majority winner (also may be called a Condorcet
winner) does not exist. It is possible that the group has a cyclic preference so that no
alternative wins the majority votes under all pairwise comparisons. This situation is referred
to as the Condorcet Paradox[5][4].

Even if there is a Condorcet winner, SMV may also yield intransitive results. Transitivity
is one of the many focuses of studies of SMV. Black (1948) proposed and used the concept
of single-peaked preference as a condition (“Black’s condition”) for transitivity[2]. This con-
dition was also generalized later by Arrow to the “single-peakedness condition”, also referred
to as the “Arrow–Black’s condition”[1]. Jamison (1975) studied transitivity empirically by
surveying students on real-world subjects[9]. Gehrlein (1990) calculated the probability of
transitivity given the impartial anonymous culture condition (IAC) with a small number of
voters and four alternatives[7]. Raffaelli and Marsili (2005) calculated the probability of tran-
sitivity with an infinite number of voters given both non-interacting population and interacting
population assumptions[11]. Durand (2003) compared the restrictiveness of three conditions
for transitivity in Simple Majority Voting, including Black’s condition, single-peakedness con-
dition, and Ward’s condition[6]. It concluded that under three alternatives, Ward’s condition
is less restrictive.

Different from the SMV, the following three voting rules are what we called the vector
voting rules. They map G(A) to the social order using magnitudes of the entries of a positive
vector deduced in a natural linear algebraic way from G(A).

First, for convenience, we denote the i-th row sum of G(A) as RSi =

k∑
j=1

nij .

Voting Rule 2. : Borda’s Rule
For an individual, each alternative is assigned a number of counts equal to the number of
alternatives it is preferred to. The winner is the alternative with the largest total counts
of points summing over all individuals. That is, ai is the Borda winner for some G(A) if
RSi ≥ RSq, for all q ∈ {1, ..., k}. aiPBordaaj ⇐⇒ RSi > RSj; aiIBordaaj ⇐⇒ RSi = RSj.
aiPBordaaj means, under Borda’s Rule, ai is ranked higher than aj in the social preference
ordering. aiIBordaaj means Borda gives a tie between ai and aj in the social preference
ordering.

In a matrix transformation context, Borda’s rule right multiplies G(A) with a vector of
ones and uses the entries’ magnitudes of the resulting positive vector to determine the social
preference ordering.

Voting Rule 3. : p-th Higher-order Borda
First order Borda (B1) refers to the classic Borda Rule in which the group preference ordering
depends on the row sums of G(A). p-th order Borda (Bp) takes the row sums of (G(A))p.
That is, ai is the Bp winner if the row sum of the i-th row of (G(A))p is the greatest among
all row sums of (G(A))p.

B1 only counts the number of times alternative i is preferred to other alternatives in
individual preference orderings. B2 weights the counts by first-order row sums of the other
alternatives, so beating more popular alternatives counts for more.
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Now, we extend the previous row sum notation and denote the i-th row sum of the p-th

order Borda as RSp
i . RS1

i =
k∑

j=1

nij.

By matrix multiplication, RS2
i =

k∑
j=1

nij ∗RS1
j ; RSp

i =

k∑
j=1

nij ∗RSp−1
j .

Similarly, Bp right multiplies (G(A))p with a vector of ones to produce a positive vector,
which entries are used to determine the social order.

Voting Rule 4. : Perron Rule
Under the Perron voting rule, the group preference ordering is determined by the magnitudes
of the entries of the right Perron vector of G(A). If the i-th entry of the Perron vector has
the greatest magnitude, ai is the winner. Since G(A) is nonnegative by definition, entries of
its Perron vector are all nonnegative.

The row sum vector of (G(A))p, with increasing power p, converges to the Perron vector of
G(A). So, the group preference ordering under higher-order Borda converges to that under the
Perron voting rule. Increasing order Borda is equivalent to the process of the Power Method
used to approximate Perron using [1]k−by−1 as the initial approximation [8] [10] [12] . Perron
can therefore be considered as the Borda of infinite order.

3 Different order Borda Rules and the Perron Rule

We look at Borda and Perron together because of their intrinsic convergence relationship.
We are curious about how frequently B1 would be the same as Perron, so looking at only B1

suffices; and if not, the ordering would converge at which power.
In the following simulation, we fix the number of alternatives at five and generate prefer-

ence orderings for each of the m number of voters. So, in each simulation, we have m zero-one
matrices IA representing m individual preference orderings on A = [a1, a2, a3, a4, a5]. When
we sum them, we have a group preference matrix G(A). We calculate B1, B2, ..., B10, and
Perron based on G(A) and observe their group preference orderings sequentially.

A flip at power p refers to an ordering change comparing Bp with B(p−1). The power of
the last flip, pfinal, means that the last change of ordering occurs from B(pfinal−1) to Bpfinal

,
and Bf ordering is the same ordering as Perron for all f ≥ pfinal.

For each m, we ran 1000 simulations each as described above.
Each individual preference is generated as follows:

1. For four of the five alternatives, we draw a number from normal distribution N (µ = 1, σ2 =
4). For the other alternative, we draw from N (µ = 1.5, σ2 = 4).
2. Based on the magnitude of the number sampled for each alternative, we construct the
preference ordering of the five alternatives.
This construction allows uncertainty among the alternatives with some intrinsic advantage
added to one of them so that individuals wouldn’t be indifferent between all alternatives.

3.1 Flips in the order of Borda

For our 99000 simulated cases over varying number of voters from 10 to 990, we observed
that flips, if there are any, all start at power=2. This suggests that if B1 and B2 yield the
same ordering, it is highly likely that B1, B2, B3, and up to Perron would all yield the same
ordering. In this case, looking at only the B1 and B2 would be sufficient. Another thing to
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Figure 1: pfinal distribution over cases with varying number of voters from 10-990

notice is that all flips observed happen consecutively. This suggests that if flips stop at some
power p, we can boldly assume that all the following Bq, where q ≥ p, would all yield the
same ordering as the Perron ordering. In other words, the ordering converges to Perron at
power p.

When powering, most matrices have Bp ordering converges to Perron ordering fairly
quickly. Out of all the cases with pfinal ≥ 2, the percentage of cases with pfinal = n is
plotted in Fig. 1. Greater the pfinal, slower Bp converges to Perron. The %pfinal ≥ 7 is only
0.33%. The observed highest flip occurs at power=9 (pfinal = 9, see example 2).

Example 2. Consider G(A)=


0 76 73 68 71
84 0 71 65 69
87 89 0 83 78
92 95 77 0 77
89 91 82 83 0

. Its B1,...,B10, and Perron orderings

are:
B1 : [1, 2, 3, 4, 5], B2 : [2, 1, 3, 4, 5], B3 : [1, 2, 3, 4, 5], B4 : [2, 1, 3, 4, 5],
B5 : [1, 2, 3, 4, 5], B6 : [2, 1, 3, 4, 5], B7 : [1, 2, 3, 4, 5], B8 : [2, 1, 3, 4, 5],
B9 : [1, 2, 3, 4, 5], B10: [1, 2, 3, 4, 5], Perron : [1, 2, 3, 4, 5], where “5” indicates the
alternative is most preferred, and “1” indicates the alternative is the least preferred by the
group. Position i corresponds to alternative i. There are flips in powers [2, 3, 4, 5, 6, 7, 8,
9]. The positions of the a1 and a2 oscillate.

3.2 Flip Occurrences and the number of voters

Here, we extend the range of the number of voters to 10-99000. It is typical not to have flips
when the number of voters (m) is not too small (≥ 20). Starting from m = 20, the percentage
of having no flips, %Fnone, is already greater than 60% and continues to increase at a high
rate. When m reaches 170, %Fnone reaches 88%, while its increase rate drops significantly.
Then, the percentage of having no flips converges to 93% with slight fluctuations when m
passes 9000. The percentage of having no or only one flip converges to 96%. This result
means that with many voters, classic Borda Rule suffices at 93% of the time, and B2 suffices
at 96%, which means B2 captures almost all the information of the individual preferences.

Since having only one flip is the second most frequent case besides having no flip, we study
its change with varying numbers of voters as well.
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Figure 2: One-flip cases frequency at varying m

Fig. 2 shows the frequency of having only one flip drop exponentially when the number
of voters increases. This can be explained. By simulation, the primary reason for having
one flip is the presence of tie(s) between two or more row sums in B1. Once a tie occurs in
B1, it is hard to preserve it after powering, thus, causing the ordering to flip from B1 to B2.
When the number of voters increases, it is less likely to have identical row sums between rows,
making the probability of having one ordering flip drop. Fig. 3 shows the high portion of the
one-flip cases caused by tie(s) in B1. We can see that when the number of voters is small,
the percentage is close to 1, which means row sum ties cause almost all cases of a single flip.
When the number of voters increases to 1000, the percentage is still above 0.5.

Another thing to notice is that when the number of voters increases, the number of one-
flip cases not due to ties in B1 increases. However, this increase does not compensate for the
decrease in tie occurrence, resulting in the overall decreasing trend of one-flip cases out of all
the simulations.

4 Simple Majority Voting (SMV)

The several Borda Rules and the Perron rule use magnitude of entries to determine group
preference order, so by design, they naturally yield transitive orderings. However, for Simple
Majority Voting, transitivity may not hold.

Thus, we propose a condition under which Simple Majority Voting would yield transitive
results.

Theorem 1. For a G(A)=

m∑
v=1

Iv(A), such that:

1) G(A) satisfies H 2
3
;

2) for each triple ai, aj, al with relationship nij ≥ 2
3m and njl ≥ 2

3m, either nij > 2
3m or

njl >
2
3m;
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Figure 3: Portion of one-flip cases cause by tie in B1

3) Iv(A) is transitive, for ∀ v ∈ {1, ...,m};
G(A) is transitive.

Proof. In the preference relation given by G(A) on A, consider three distinct alternatives
ai,aj ,al. Suppose aiPaj and ajPal. Per hypothesis, nij ≥ 2

3m and njl ≥ 2
3m, with at least

one inequality strict. Intersection of these 2 sets of voters implies that nil > 1
3 . But the

prevailing hypothesis then insures that nil ≥ 2
3m on that the relation G(A) is transitive on

ai,aj , and al, since G(A) is transitive on any triple, it follows that G(A) is transitive.

Notice that we have proved if the minimum majority of some group preference matrix,
G(A), is at least 2

3 , transitivity under SMV follows (assuming other conditions are satisfied).
We call this the “2/3+ majorities” condition.

Now we prove the necessity of 2
3 to ensure transitivity:

We replace the 2
3 in the statement with x and prove by contradiction.

Consider an arbitrary triple ai, aj , ak with nij ≥ xm and njk ≥ xm. 1
2 < x < 2

3 , so that
nij > nji and njk > nkj , so aiPaj and ajPak. Suppose nij > xm, then, more than (2x− 1)m
of IA have rij = 1 = rjk and rij = 0 = rkj . By transitivity of individual, more than (2x−1)m
of IA have rik > rki.

That is, nik > (2x − 1)m, nki < m − (2x − 1)m = 2m − 2xm. We can find a nki ∈ N+,
such that xm ≤ nki < m− (2x− 1)m. By definition, xm ∈ Z, and so is m− (2x− 1)m. Thus,
m− (2x− 1)m ≥ xm+ 1.
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MM [.50,.52) [.52,.54) [.54,.56) [.56,.58) [.58,.60) [.62,.64) [.64,.66)

Transitivity Freq. 0.76530004 0.94875158 0.99401423 0.99965243 1 1 1

Table 1: SMV Transitivity Frequency with Minimum Majority in each interval

That is,

m− 2xm+m ≥ xm+ 1 (1)

2

3
− x ≥ 1

3m
(2)

Since 1
2 ≤ x < 2

3 , let ϵ =
2
3 − x, ϵ > 0. By Archimedian Property, there exists an N ∈ N,

such that 1
N < ϵ. Thus, we can always find such m so that nki can be greater than xm, and

akPai, making G(A) intransitive.
Thus, for 1

2 ≤ x < 2
3 , if some m and x satisfy m− (2x− 1)m ≥ xm+ 1, group preference

ordering can intransitive. 2
3 in the statement is therefore necessary to ensure transitivity in

any case of m. If x= 2
3 , the left-hand side of (2) equals zero, and (2) cannot be satisfied for

any m ∈ N+.
For a fixed pair of m and x, the number of cases of intransitivity for an arbitrary triple

depends on how many cases of nki ∈ N+ we can find, such that xm ≤ nki < m− (2x− 1)m.
Set k∈ N+,

xm+ k = m− (2x− 1)m (3)

k = 2m− 3xm (4)

Thus, there are (2m − 3xm) possible intransitive cases for an arbitrary triple. There are(
k
3

)
triples in total. Therefore, given m and x, we can find

(
k
3

)
× (2m− 3xm) G(A)’s that give

intransitive group orderings.
With simulation, we found that the frequency of SMV yielding transitive results increases

with the minimum majority (MM) when fixing the number of voters m. This result is in line
with the previous representation of the number of possible intransitive cases.

We consider five alternatives, each assigned to a uniform distribution U(0+i,10+i). We
sample from each distribution and order alternatives based on the magnitude of sampled
values. Minimum majority levels are controlled by changing the values of i. An alternative
with a bigger i would have a higher probability to be the choice of majority. A greater
difference in i between alternatives would result in a higher MM.

Table 1 gives results for m = 51. Odd numbers avoid ties between two alternatives. When
MM falls in the interval [.50, .52), the transitivity frequency is 0.765. This number increases
to 1 when MM gets closer to 2

3 .

5 Comparison of Bp, Perron, and SMV

As mentioned above, transitivity is an intrinsic property of Bp’s and Perron but not of SMV.
So, we are curious, under cases where SMV yields transitive ordering, whether this order
would be the same as that under Bp’s or the Perron.

It is not frequent that SMV yields transitive outcomes based on previous simulation setups
where we generate individual preferences and sum them into a G(A). Thus, We directly
generate G(A) here for simulation efficiency.

We fix the number of alternatives at 5. Each nij , j > i, is sampled from a uniform
distribution U(lower bound × #voters, #voters). Here, we introduce a parameter - majority
lower bound (lb) - for the uniform distribution. Each nji = #voters-nij . For 1 > lb > 0.5, each
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entry in the upper triangle of G(A) would be greater than its corresponding entry in the lower
triangle. By definition, the SMV ordering would be a1Pa2Pa3Pa4Pa5, which is transitive.
This ordering is equivalent to the other possible orderings, so we do not lose generality by
fixing the ordering to a1Pa2Pa3Pa4Pa5 and simulating in percentage (%).

Fig.4 graphs the frequency of occurrence of each event over increasing lb from 0.5 to 0.98.
For each lb, we run 105 trials. We observe that even if SMV gives a transitive result, the result
may still differ from B1, B2, or Perron. A lower bound around 0.68 seems to be a turning
point for all the curves to be flatter.

The percentage of (%) B1, B2, and Perron all different from SMV is zero over all simulation
trials, so at least one of the three agrees with SMV. However, B1, Perron, and transitive SMV
can all yield different results from each other.

With an increasing majority lower bound, Perron, B1, and SMV gradually converge to
yield the same result. However, B2 seems to be different at 20% from all the others, even
when lb passes 0.9. The inclusion of row sums RS1 as weights in B2 is what leads to this
divergence (see example 3).

Example 3. Consider G(A)=


0 91 99 94 91
9 0 93 97 91
1 7 0 93 90
6 3 7 0 98
9 9 10 2 0

. Its Perron vector is


0.81
0.49
0.26
0.17
0.12

.

B1 vector=


375
290
191
114
30

. B2 vector=


58745
34926
15707
7397
8123

. The minimum majority is 91. There is a clear

preference of a1Pa2Pa3Pa4Pa5 under SMV, B1, and Perron. However, under B2, a5Pa4.
The lower triangle entries in the 5th row have greater values than those in the 4th. With the
other alternatives having large majority values, alternative 5 beats 4 via significant weights
even when 98 out of 100 voters prefer alternative 4 to 5.

This example suggests we must be cautious in choosing B2 as a voting rule when the
minimum majority value is large.

6 Conclusion

We expand the classic Borda Rule into a series of vector voting rules. In such a series, by
running experiments, we found that Bp ordering converges to the limit–Perron ordering– very
quickly. We also notice that all changes in ordering happen consecutively and start at B2.
This provides guidance for how many Bp’s we need to look at to know the orderings of the
entire series of Borda. When the number of voters is large, the series converges at the start
93% of the time and converges no later than B2 at 96% of the time. In other words, when
there are many voters, looking at the classic Borda (B1) and the B2 is generally enough.
We then compared Simple Majority Voting (SMV) with B1, B2, and Perron. When SMV is
forced to be transitive (via 2/3+ majority), it could still give different orderings and winners
from B1, B2, or Perron. We also noticed that when there is a significant majority (minimum
majority > 0.92), B1, Perron, and SMV will agree. However, B2 would still disagree around
20% of the time.
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Figure 4: Compare B1, B2, Perron to SMV
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