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Abstract. With the prevalence of big data in recent years, the importance of modeling high dimensional data
and selecting important features has increased greatly. High dimensional data is common in many
fields such as genome decoding, rare disease identification, and environmental modeling. However,
most traditional regression machine learning models are not designed to handle high dimensional data
or conduct variable selection. In this paper, we investigate the use of penalized regression meth-
ods such as ridge, least absolute shrinkage and selection operation, elastic net, smoothly clipped
absolute deviation, and minimax concave penalty compared to traditional machine learning models
such as random forest, XGBoost, and support vector machines. We compare these models using
factorial design methods for Monte Carlo simulations in 540 environments, with factors being the
response variable, number of predictors, number of samples, signal to noise ratio, covariance matrix,
and correlation strength. We also compare different models using empirical data to evaluate their
viability in real-world scenarios. We evaluate the models using the training and test mean squared
error, variable selection accuracy, β-sensitivity, and β-specificity. We found that the performance
of penalized regression models is comparable with traditional machine learning algorithms in most
high-dimensional situations. The analysis helps to create a greater understanding of the strengths
and weaknesses of each model type and provide a reference for other researchers on which machine
learning techniques they should use, depending on a range of factors and data environments. Our
study shows that penalized regression techniques should be included in predictive modelers’ toolbox.
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1. Introduction. In the modern world, machine learning techniques such as random forest, 
gradient boosting, and support vector machines are often touted as versatile one-size-fits-
all solutions when it comes to modeling big data [30]. This is due in part to tree based 
models such as XGBoost winning numerous machine learning competitions [30]. While this 
versatility is frequently the case, an increasingly common type of data set where there are 
more predictors than observations can pose challenges for these machine learning algorithms. 
Statistical methods lesser used by the machine learning community are sometimes able to 
perform equivalently or even better than more popular methods [24, 28]. However, there is a 
distinct lack of academia focusing on comparing these statistical, variable selection techniques 
with the increasingly popular machine learning techniques on a broad variety of data sets. 
This paper serves to help bridge that gap and promote the use of variable selection techniques 
within the greater machine learning community.

In these situations where there are more predictors, p, than observations, n, many tradi-
tional machine learning techniques either become infeasible to use or fail to give good pre-
dictions. The large number of predictors and small number of observations make it easy for 
such models to overfit, m eaning t hat t he m odels b ecome fi ne tu ned to  th e ex act training 
data; instead of finding generalized patterns for a  population of data, they memorize specific 
occurrences in the training data [22, 16]. Because of this, overfitted models a re s ensitive to 
new data which causes them to perform extremely well on the training data, but poorly on 
testing data or when deployed in the real world. Because a model’s predictions in real world 
scenarios and on new data is the entire purpose of a model, it is very important to reduce 
overfitting so that predictive accuracy in these scenarios i s maximized.

This paper investigates several methods to handle high-dimensional data, including the 
large p, small n problem. Variable selection techniques overcome this issue by using only a 
subset of the available predictors. There are many ways to implement variable selection in 
models. We studied penalized regression models, such as ridge regression [21], least abso-
lute shrinkage and selection operation (lasso) [34], elastic-net (e-net) [46], smoothly clipped 
absolute deviation (SCAD) [14], and minimax concave penalty (MCP) [43]. Besides ridge 
regression, these models simultaneously select important predictors and fit a  l inear model. 
Models that perform variable selection are suitable for applications such as genomics, where 
there are hundreds or thousands of predictors; see, for example, [36, 25].

We also evaluated the performance of several machine learning models: random forests 
(RF) [5], gradient boosting in the form of XGBoost [7], and support vector machine (SVM) 
models [8]. These types of models do not assume a linear relationship between a response and 
its predictors. This allows the machine learning models to have better predictive performance 
on data sets where the relationship between the response and its predictors is non-linear; on 
the other hand, this also makes the machine learning models more susceptible to overfitting. 
In some applications, a combination of machine learning and variable selection is employed 
[38]. For example, machine learning models often measure feature importance, which can be 
used to determine the variables that are most important for making predictions. However, 
feature importance scores are relative to each other and variable selection is not intrinsic to 
these models.
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To compare these different techniques, models were trained and evaluated using both
Monte Carlo simulations and empirical genomic data. We are particularly interested in un-
derstanding in the predictive performance of these models, so we evaluated the models using
the mean squared error (MSE) on both training and test data. For the linear models fitted on
simulated data, we also measured the β-sensitivity and β-specificity metrics, which evaluate
the ability for these models to identify important predictors [27].

Section 2 contains details about each model and details the implementation of these models
for our study. Section 3 describes our simulation study design and results, while Section 4
explains our empirical data analysis and results. Section 5 is a discussion of our results and
Section 6 is the conclusion.

2. Methodology.

2.1. Modeling Background. Consider a random variable Y and p predictor variables
X1, X2, . . . , Xp. This study focuses on regression modeling, where the response Y is a number
on a continuous interval. We will assume that Y depends on some (or all) of the predictors;
more specifically, we assume that

(2.1) Y = f(X1, X2, . . . , Xp) + ϵ

where f is a function and ϵ is an independent random error with mean zero. The goal of
supervised modeling is to find a function f̂ that is a suitable approximation for f .

To compute f̂ , we use a training set of data. Suppose that we have a data set containing
n observations of our p random variables. We will let xij denote the i-th observation of the
j-th predictor variable, and we let yi represent the i-th observation of the response.

In practice, the function f that relates the predictors to the response is complex. Most
statistical models assume that f takes some particular form and estimates a function f̂ of
that form. For example, many regression models assume that f is a linear function of the
predictors; that is, linear models assume that

(2.2) f(X1, X2, . . . , Xp) = β0 + β1X1 + β2X2 + · · ·+ βpXp

where β0, β1, β2, . . . , βp are coefficients that the models attempt to estimate.

The most common method to estimate the coefficients in a linear model is with ordinary
least squares (OLS), which selects the values β0, β1, . . . , βp that minimize the residual sum of
squares

(2.3) RSS =

n∑
i=1

[
yi − (β̂0 + β̂1xi1 + β̂2xi2 + · · ·+ β̂pxip)

]2
OLS is common because it is the best linear unbiased estimator; that is, OLS has a 

lower variance than any other linear unbiased estimator [19, 16]. However, if the number of 
predictors p is large compared to the number of observations n, OLS will overfit to the training
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data. Furthermore, if p exceeds n, then the OLS has infinitely many solutions that simply
interpolate the training data. In these cases, OLS becomes unreliable for making predictions
on test data.

Other types of linear models can overcome this large p small n problem by introducing a
small amount of bias. In many cases, these models can perform variable selection by setting the
coefficients of unimportant predictors to zero. There are several ways to implement variable
selection into a linear model. Filter methods work by evaluating the ability for each individual
predictors to predict the response; then, a model is fit using the predictors selected [32, 11].
Wrapper methods fit models using different subsets of predictors and choose the model that
has the best performance [20, 27]. Finally, embedded methods perform variable selection during
the model training process [20, 27]. This paper focuses on embedded methods. In addition,
we considered several non-linear machine learning methods to draw a comparison between
linear regression models and machine learning models.

2.2. Penalized Regression. In general, penalized regression works by fitting a model that
punishes large coefficient estimates. By forcing coefficient values to shrink, the resulting model
will have relatively low variance at the cost of introducing bias to the system. Most, but not
all, of these methods can perform variable selection during the fitting process, making them
a type of embedded method.

Almost all of the penalized regression methods in this paper solve an optimization problem
of the form

(2.4) β̂ = arg min
β


n∑

i=1

[
yi − (β0 + β1xi1 + β2xi2 + · · ·+ βpxip)

]2
+

p∑
j=1

P (βj)


where the first summation is the usual residual sum of squares and P (β) is a  penalty function 
that is applied to each coefficient (n ot in cluding th e in tercept β0 ). Th is pe nalty usually 
depends on at least one tuning parameter (commonly denoted by λ) that controls how strong 
the penalty is. A suitable choice for the tuning parameter(s) will lead to a well-performing 
model.

Ridge regression is a penalized linear regression model that uses the penalty function 
P (β) = λβ2, where λ > 0 is a tuning parameter [21]. Ridge regression benefits f rom having 
a closed-form solution that is easy to compute; it is also known for its ability to handle 
collinearity. However, unlike other models in this section, ridge regression is unable to perform 
variable selection.

The least absolute shrinkage and selection operation (lasso) is a shrinkage method with a 
very similar form to ridge regression [34, 22]. The penalty function for lasso is P (β) = λ|β|, 
where λ > 0. Like ridge regression, the lasso is a biased estimator. One significant advantage 
of lasso is that it can perform variable selection by setting coefficient estimates to  zero.

Elastic-net (E-net) regression use the penalties of both ridge regression and the lasso [46]. 
Its penalty function is P (β) = λ1|β| + λ2β

2, where λ1, λ2 > 0 are separate tuning parameters. 
An equivalent way to express this penalty function is with P (β) = λ((1 − α)β2 + α|β|), where
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λ > 0 and α ∈ [0, 1] are tuning parameters. Note that if α = 0, then the resulting model
is just ridge regression, while using α = 1 gives the lasso. The resulting model gains the
advantages of both ridge regression and the lasso in that it can handle collinearity well while
also performing variable selection.

The last two penalized linear models that we considered are Smoothly-Clipped Absolute
Deviation (SCAD) and Minimax Concave Penalty (MCP) [14, 39, 43]. SCAD uses the penalty
function

(2.5) P (β) =


λ|β|, |β| ≤ λ
2aλ|β|−β2−λ2

(a−1) , λ ≤ |β| < aλ
λ2(a+1)

2 , aλ < |β|

while MCP uses

(2.6) P (β) =

{
λ|β| − β2

2a , |β| ≤ aλ
1
2aλ

2, aλ < |β|

These methods use piecewise penalty functions that punish larger coefficients le ss severely. 
The resulting models are consequently the least biased methods among penalized regression 
models. Another feature of SCAD and MCP is their oracle-like properties [14, 43]. This means 
that as n → ∞, SCAD and MCP will correctly identify exactly which predictors should have 
non-zero coefficients, and that their coefficient estimates will be normally distributed with the 
mean estimate being the true coefficient value [45].

2.3. Non-linear models. We next discuss several non-linear methods for regression: ran-
dom forests, gradient boosting, and support vector machines.

Both random forest and gradient boosting models use decision trees to make predictions. 
A decision tree is a binary tree where each non-leaf node represents a condition and each leaf 
node represents a prediction value. To make a prediction, start at the root node and check 
whether the condition at that node is true or false. If true, move down to the node’s first 
child; if false, move to the second child. This process is repeated until a leaf node is reached, 
which will give the value that the decision tree predicts. Although decision trees can be used 
as machine learning models on their own, it is more common to use decision trees in ensemble 
methods, which combine many different decision t rees i nto a  s ingle m odel. This i s b ecause a 
single decision tree will usually have high variance; a small change in the training set can lead 
to a completely different decision tree [22].

A random forest model combines many independent decision trees to make one unified 
prediction [5]. Each tree is fitted independently using a  random subset of observations chosen 
with replacement in a process called bootstrapping [13]. To make predictions using a random 
forest, the predictions for each individual decision tree are first c omputed. Then, t he s et of 
predictions are aggregated to give one final p rediction. For r egression, o ne s uitable way to 
aggregate individual predictions is to use the mean.

Boosting is the technique of sequentially improving a weak learner until it becomes a 
strong learner [33]. Boosting is commonly used with decision trees. Unlike random forest
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models, where each tree is independent of one another, the trees in a boosting model are
fitted sequentially to correct the mistakes made by the previous tree. A gradient boosting
machine (GBM) is a boosting technique that uses gradient descent to minimize error in a
model and correct the shortcomings of previous iterations of the model [17].

The final non-linear model that we considered is the support vector machine (SVM) [8, 12].
Support vector machines find a hyperplane that closely fits the data. Data observations
that are close to this hyperplane are called support vectors, and they have the strongest
influence on the model. Unlike linear regression, support vector machines can address non-
linear relationships between the response and its predictors.

2.4. Implementation. This section gives the specific details of how we fit each model for
both the simulated data and the empirical data. Everything in our study was run on version
4.1.0 of R [31]. Table 1 summarizes the packages used for each model.

Table 1: R Libraries used and the models used from each library

Library Models used Version

stats [31] Ordinary least squares 4.1.0
glmnet [15] Ridge, lasso, elastic-net 4.1-1
ncvreg [3] SCAD and MCP 3.13.0
xgboost [7] Gradient boosting 1.4.1.1
ranger [40] Random forest (simulations) 0.12.1
randomForest [26] Random forest (empirical data) 4.6-14
e1071 [29] Support vector machine 1.7-7

Ordinary least squares models were fitted using the lm f unction f rom the stats package 
in base R.

Ridge, lasso, and elastic-net models were fitted u sing g lmnet. We u sed t he cv.glmnet 
function, which uses cross validation grid search to optimize the penalty scalar λ. Cross 
validation helps generate a model that performs well on both training and testing data. We 
used the default value of 10 folds. For elastic-net regression, we found that the hyperparameter 
α = 0.8 worked well in our simulation study and α = 0.5 worked best in the empirical study. 
This means that the elastic-net model emphasizes the variable selection provided by lasso in 
the simulations. The remaining hyperparameters were given their default values.

We used the cv.ncvreg function from the ncvreg library for SCAD and MCP. Both SCAD 
and MCP depend on an additional hyperparameter a. We used the default values of a for 
both models: 3 for MCP and 3.7 for SCAD (the ncvreg documentation calls this parameter 
γ). All other arguments were given their default values.

For gradient boosting and support vector machines, we used cross validation and grid 
search to find suitable hyperparameters, and then fit a model using the full training set using 
the hyperparameters selected. Because many of the data sets used had large values of n and 
p, only a few hyperparameters were tuned. This ensured that the models could be fit within
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a reasonable amount of time. All other hyperparameters were given their default values.

For gradient boosting with xgboost, we varied the learning rate (0.1, 0.3, and 0.5) and
maximum tree depth (1, 3, and 7). A maximum of 1000 trees were generated, with an early
stopping condition if the model failed to improve for 10 iterations in a row. We used five folds
in the cross validation. For support vector machines using e1071, we varied ϵ (0.1, 0.5, 2),
which affects the model’s sensitivity to small errors. We also controlled the cost value C (0.5,
1, 2), which affects how much the model punishes wrong predictions.

With random forests, we used ranger for the simulated data. For the empirical data, we
instead used randomForest because ranger could not handle the large number of predictors,
resulting in stack overflow errors. For both ranger and randomForest, we tuned the number
of predictors considered per split in the learning process (⌊√p⌋, ⌊p/3⌋, and ⌊p/2⌋) and the
number of trees (300, 400, 500 and 600). The minimum node size for each tree is 5. The best
model was selected based on the out-of-bag error, which represents the average error for each
observation using only the trees that did not include that observation.

Some models used could only be used for certain values of n and p. This is because either
the runtime becomes infeasible when n or p are large, or the model simply cannot be used
when p is too large. Ordinary least squares was only used when p ≤ n, since it cannot be
used at all when p > n. Lasso, SCAD, MCP, GBM, and random forest models were used for
all data sets. Support vector machine models were made for all of the simulated data but was
not used for the empirical data because support vector machine models could not handle such
a high number of predictors in our empirical data.

3. Monte Carlo Simulations. Monte Carlo simulations use randomly generated data to
fit and test regression models. There are several benefits to using simulated data rather than
experimental data. For one, the true relationship between the predictor variables and the
response is known. Simulations can also be iterated many times, giving sturdier results about
the effectiveness of each model. Finally, Monte Carlo simulations give us full control over how
our data is distributed. This enables us to evaluate the models under various conditions.

3.1. Simulation Design. Our simulation study used two different functions for the re-
sponse variable Y . Our first function assumed a linear relationship between the response and
its predictors X1, X2, . . . , Xp, while the second response used a non-linear relationship. By
considering both additive linear and non-linear response functions, we obtain a more thorough
understanding of how each model performs in different situations.

The additive linear response function assumes that

(3.1) Y = 1 + 2X1 − 2X2 + 0.5X5 + 3X6 + ϵ

where ϵ is an independent random error with mean 0 and constant variance. We refer to this
linear response function as Model 1. Our additive non-linear response function uses

(3.2) Y = 6× 1X1>0 +X2
2 + 0.5X6 + 3X7 + 2× 1X8>0 × 1X9>0 + ϵ
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where 1Xi>0 is the index function given by

(3.3) 1Xi>0 =

{
0, Xi ≤ 0
1, Xi > 0

.

Note that the non-linear response still includes linear terms. We refer to this non-linear
response function as Model 2.

For each simulation, we generated a random n× p matrix X ∼ Np(0,Σ), where Np(0,Σ)
is the multivariate normal distribution with p-dimensional mean vector 0 and p×p covariance
matrix Σ. The n-dimensional response vector y was then computed using one of the response
functions described in Equations 3.1 and 3.2. Finally, the error term ϵ was generated from a
normal distribution with mean 0 and variance σ2, denoted as ϵ ∼ N (0, σ2).

We assumed that the variance for each predictor was 1, meaning that the covariance
matrix Σ is actually a correlation matrix. For every i ≠ j, the entry Σij ∈ [0, 1] represents
the correlation between predictors i and j. The diagonal entries are all equal to 1, indicating
that each predictor has variance 1. Correlation between predictors can affect the ability for
models to identify important predictors and make accurate predictions.

We considered the following correlation structures for our simulation study:

• Independent correlation, where Σij = 0 for all i ≠ j;
• Symmetric compound correlation, where Σij = ρ ∈ (0, 1) for all i ≠ j;
• Autoregressive correlation, where Σij = ρ|i−j|, where ρ ∈ (0, 1); and
• Blockwise correlation, where Σ is block diagonal with each block having symmetric
compound structure (also, each block uses the same value for ρ)

Our simulation study uses a factorial design, meaning that we ran simulations using every
possible combination of different factors. The factors that we varied in our simulation study
are

• The choice of response function (Model 1 or Model 2);
• n, the number of observations (50, 200, and 1000);
• p, the number of predictors (10, 100, and 2000);
• σ, the standard deviation of the random error (1, 3, and 6);
• The correlation matrix structure (independent, symmetric compound, autoregressive,
and blockwise); and

• ρ, the correlation between predictors (0.2, 0.5, and 0.9)

By taking every possible combination of these factors, we obtain 2×3×3×3×4×3 = 648 
different s ettings f or t he s imulations. H owever, b ecause a n i ndependent c orrelation matrix 
does not have any correlation between predictors, the value of ρ is not needed. Hence, we only 
needed to run 540 different s ettings. For each combination of factors, we ran 100 simulations. 
Each simulation randomly generated two data sets: one to train the various models, and 
one to test the models and evaluate performance. Both data sets contained n observations, 
meaning that a total of 2n observations were generated for each simulation.
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3.2. Evaluating Model Performance. We used four metrics to evaluate the performance
of each model on the simulated data: train mean squared error, test mean squared error,
β-sensitivity and β-specificity. The mean squared error (MSE) is computed using

(3.4) MSE =
1

n

n∑
i=1

(yi − ŷi)
2

where yi is the value of the response and ŷi is the predicted response value for observation
i. In other words, the mean squared error is the average of the squared errors. The mean
squared error was computed on both the n observations used to train the models and the n
observations that were not used for training, giving us both a training error and a test error.

Because we are using simulated data, where the true response function is known, we can
measure the β-sensitivity and β-specificity for each penalized linear regression model that
performs variable selection [27]. A coefficient estimate is a true positive (TP) if the coefficient
is predicted to be non-zero when that predictor is actually related to the response value. The
estimate is a true negative (TN) if the coefficient was correctly predicted to be zero when that
predictor is not related to the response. A false positive (FP) happens when an important
coefficient is incorrectly predicted to be non-zero. Finally, a coefficient estimate is a false
negative (FN) if it was estimated to be zero but that predictor is actually related to the
response. A model that perfectly identifies the important and unimportant predictors will
have only true positives and true negatives.

The β-sensitivity of a model is given by

(3.5) β-sensitivity =
TP

TP + FN

while the β-specificity is given by

(3.6) β-specificity =
TN

TN+ FP

The β-sensitivity is a measure of a model’s ability to correctly identify predictors that are 
related to the response. If the β-sensitivity is close to 1, then the model assigns non-zero 
coefficients to  al l th e im portant pr edictors; if  in stead th e β- sensitivity is  cl ose to  0,  then 
the model cannot identify important predictors well. Similarly, the β-specificity o f a  model 
measures how well it can identify unimportant predictors (i.e. predictors that should be given 
a coefficient of  zero).

3.3. Linear Simulation Results. Because we ran simulations using 540 different combina-
tions of factors, we only show the results for n = 50 and p = 2000 in this report (representing 
the largest ratio between p and n). Results for other combinations of n and p are included in 
a supplementary document. We note that all results for ordinary least squares are shown in 
the supplementary document since we do not consider them when p > n.

Each plot measures the average value for one of the four metrics discussed above over 100 
simulations. Each row of the plots represents a different value of σ, the standard deviation of
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the random error. Each column represents a correlation structure. The different shapes and
colors for each point represent the strength of the correlation between predictors.

We begin by presenting the results from our simulations for Model 1 (linear function),
followed by the results from Model 2 (non-linear function).

Figure 1 shows the average MSE for the simulated models on both training data and test
data. Figure 2 displays the β-sensitivity and β-specificity for the linear models that perform
variable selection.

We see that the mean squared error for lasso and elastic-net are generally larger than
SCAD and MCP for both the training data and test data. XGBoost has almost zero training
mean squared error under all conditions, but has a relatively large test error. Random forest
and support vector machine models have a moderate training error but a large test error.
Interestingly, we see that the non-linear models all perform better when there is a strong
correlation between predictors. On the other hand, the linear models are somewhat less
affected by the correlation.

Looking at Figure 2a, we see that all of the models predict most of the non-zero coefficients
when the correlation is low. When the correlation is high, all of the models struggle to
identify the correct predictors. SCAD and MCP perform the best when the correlation is low
but perform the worst when the correlation is high. Elastic-net performs particularly well
compared to the other models when the correlation is high, especially when the correlation
structure is autoregressive. The sensitivity of these models varies in importance depending
on the situation where these models are utilized. In scenarios such as cancer detection where
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(a) Training data.
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Figure 1: Average mean squared error for linear simulations when n = 50 and p = 2000. 
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(b) β-specificity.

Figure 2: Average β-sensitivity and β-specificity for l inear s imulations when n = 50 and p = 2000.

the consequences of false negatives are large, a highly sensitive model is desired to reduce the 
amount of patients with cancer that are missed by an initial screening.

Now, consider the results for β-specificity f rom F igure 2 b. MCP a ppears t o m ake the 
fewest mistakes when choosing zero coefficients. The performance of the other models depends 
heavily on the type of correlation and the correlation strength. Lasso and elastic-net perform 
the worst when the correlation structure is symmetric compound, whereas SCAD performs 
poorly when the correlation structure is autoregressive or blockwise. We also see that the 
models correctly identify more coefficients as being zero as the correlation in creases. Consider 
a similar scenario where models are used for diagnosing cancer patients. The specificity o f a 
model proves much more useful in confirming r esults. Due to a high sensitivity model, patients 
can likely be falsely diagnosed positive, a highly specific model that then diagnoses this patient 
as positive can confirm the i nitial s creening r esult. Thus, the specificity and sensitivity of  a 
model are desired depending on the scenario they are applied to.

3.4. Non-linear Simulation Results. Now, we will highlight some results from the simu-
lations for Model 2 given by Equation 3.2.

Figure 3 shows the average mean square errors on both the training data and test data. 
We see that the linear and non-linear models have similar test mean squared errors at medium 
levels of noise and correlation. Among the linear models, SCAD and MCP penalized regression 
techniques perform best, and at medium and low correlation levels perform better than non-
linear models such as random forest and XGBoost. The non-linear models all have a noticeably 
lower test mean squared error when the correlation between predictors is high and perform

200



G. ACKALL AND C. SHRADER

Independent Symmetric Autoregressive Blockwise

σ
=

1
σ

=
3

σ
=

6

R
id

g
e

L
a
s
s
o

E
−

n
e
t

S
C

A
D

M
C

P
X

G
B

o
o
s
t

R
F

S
V

M

R
id

g
e

L
a
s
s
o

E
−

n
e
t

S
C

A
D

M
C

P
X

G
B

o
o
s
t

R
F

S
V

M

R
id

g
e

L
a
s
s
o

E
−

n
e
t

S
C

A
D

M
C

P
X

G
B

o
o
s
t

R
F

S
V

M

R
id

g
e

L
a
s
s
o

E
−

n
e
t

S
C

A
D

M
C

P
X

G
B

o
o
s
t

R
F

S
V

M

0

10

20

30

40

0

100

200

300

0

1000

2000

3000

Model

M
e

a
n

 T
ra

in
in

g
 M

S
E

Correlation 0 0.2 0.5 0.9

(a) Training data.

Independent Symmetric Autoregressive Blockwise
σ

=
1

σ
=

3
σ

=
6

R
id

g
e

L
a
s
s
o

E
−

n
e
t

S
C

A
D

M
C

P
X

G
B

o
o
s
t

R
F

S
V

M

R
id

g
e

L
a
s
s
o

E
−

n
e
t

S
C

A
D

M
C

P
X

G
B

o
o
s
t

R
F

S
V

M

R
id

g
e

L
a
s
s
o

E
−

n
e
t

S
C

A
D

M
C

P
X

G
B

o
o
s
t

R
F

S
V

M

R
id

g
e

L
a
s
s
o

E
−

n
e
t

S
C

A
D

M
C

P
X

G
B

o
o
s
t

R
F

S
V

M

0

10

20

30

40

0

100

200

300

0

1000

2000

3000

Model

M
e

a
n

 T
e

s
t 

M
S

E
Correlation 0 0.2 0.5 0.9

(b) Test data.

Figure 3: Average mean squared error for non-linear simulations when n = 50 and p = 2000.

better than any of the linear models at these high correlations. The non-linear models perform
significantly better on training data than on test data. This is indicative of overfitting and
on more complex data or variable scenarios this could decrease the accuracy of the non-linear
models.

Figure 4 shows the results for the β-sensitivity and β-specificity for the non-linear simu-
lations. We see that all of the linear models estimate almost all of the coefficients as being
equal to zero! SCAD and MCP were slightly more likely to correctly estimate non-zero coef-
ficients as being non-zero, but they were also more likely to incorrectly identify unimportant
predictors as having non-zero coefficients. These results identify a key weakness of penalized
regression methods, for more complex, non-linear simulations, the sensitivity of penalized re-
gression models are very low, meaning they miss many significant predictors. On the other
hand, the specificity of penalized regression models is very high, indicating that predictors
that chosen by the models are very likely due to be significant. While it may be possible
to increase the sensitivity of penalized regression models, this will likely come at the cost of
specificity. Depending on the scenario, sensitivity may be more desired and thus this is a
acceptable tradeoff.

4. Empirical Data Analysis.

4.1. Details of Empirical Data. For empirical data, we used the Breast Cancer database 
from The Cancer Genome Atlas (bcTCGA). A cleaned version of the data is provided by the 
biglasso R package [42]. This data set contains the gene expression data of 17323 genes from
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(b) β-specificity.

Figure 4: Average β-sensitivity and β-specificity for non-linear simulations when
n = 50 and p = 2000.

536 patients. One of these genes is the BRCA1 gene which is among the first genes discovered 
that can increase the risk of breast cancer [23, 1]. Mutations in BRCA 1 and BRCA 2, another 
gene discovered 1 year after BRCA1, are responsible for two-thirds of breast cancer cases in 
women [10]. Because the BRCA1 gene interacts with other genes, it is useful to find genes 
that interact with BRCA1 to test in further studies [10]. The variable selection capabilities 
of penalized regression techniques prove very useful in this application for narrowing large 
number of possible genes to more manageable numbers of genes more significant t o cancer 
development that can be studied in a laboratory and targeted to create cancer treatments. 
The BRCA1 gene expression level will act as the output value in our regression analysis and 
the other 17322 genes will serve as predictor values.

This data is a prime example of the large p small n problem where there are many more 
predictors than data samples. Because of this, only penalized regression and machine learning 
techniques can be used. This is because there are more predictors than samples which makes 
least squares linear regression impossible. Additionally, support vector machines struggle at 
such a high number of predictors and resulted in stack overflow e rrors w hich m ade fitting 
support vector machines on this data impossible. It is also important to note that we do not 
know whether the response variable is related linearly or non-linearly to the gene expression 
data. This is why it is important to analyze real, empirical data when comparing machine 
learning techniques since we cannot know the functional form of the data.

To evaluate the models, we used nested cross validation. We first split the data into five 
folds. For each of these folds, we used the selected fold as a test set while the other four folds
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were used as a training set. We then fitted the models using cross validation on this training
set, where one interior fold was used as a validation set while the other folds were used to
train a model. The role of the validation set in the interior cross validation is different from
the test set used in the exterior cross validation. In the interior cross validation, the validation
set is used to tune hyperparameters; the model that performs best against the validation set
is then chosen. On the other hand, the test set in the exterior cross validation is not used to
tune hyperparameters; its only purpose is to evaluate the performance of the models chosen
in the inner cross validation. Because the outer test set is not used in the model fitting or
selection process, it gives an unbiased evaluation of each model’s performance.

We chose to use nested cross validation because it produces five models that were fitted
using different subsets of the data for training and testing. If we had only fit one model, the
subset of the data we choose for training and testing can have a huge impact on our findings.
By using five models that are fit with different subsets of the data, we get a more accurate
view of how each model performs in general. Cross validation also allows us to get an idea of
how much variance each of these models has by comparing the results between different folds.

The hyperparameters tuned in each of the models were the same as those tuned in the
Monte Carlo simulations. For ridge, lasso, elastic-net, SCAD, and MCP, we tuned the penalty
strength λ; for elastic-net, we used the hyperparameter α = 0.5, meaning that the penalty is
in between that of lasso and ridge.

4.2. Empirical Data Results. Recall that we used nested cross validation when fitting
models on the bcTCGA data set. This means that we fitted five models using different
subsets of the data for training and testing. Figure 5 below shows a plot with the training
and test mean squared error for every fold of every model. The bars show the average mean
squared error for the five folds. In addition, Table 2 show the aggregated results for the train
and test mean squared error.

For lasso, elastic-net, MCP, and random forests, we also tracked the most important
predictors selected by each model on each fold. For lasso, elastic-net, and MCP, we consider

Table 2: Train MSE, test MSE, and runtime metrics for models fit using the
bcTCGA data set.

Train MSE Test MSE
Model Mean SD Mean SD Mean Runtime (s)

Ridge 0.1391 0.0266 0.2858 0.0610 29.29
Lasso 0.1842 0.0159 0.2304 0.0337 9.57
E-net 0.1799 0.0127 0.2281 0.0469 9.41
SCAD 0.1442 0.0333 0.2218 0.0303 17.28
MCP 0.1566 0.0129 0.2202 0.0224 15.15
GBM 0.0002 0.0004 0.2233 0.0507 538.12
RF 0.0378 0.0013 0.2653 0.0525 4906.59
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Figure 5: Mean squared error of the models fit on the bcTCGA data set. Each
point represents the mean squared error for one fold, while the bars represent the
average for the five folds.

a predictor to be important if it was assigned a non-zero coefficient. For random forests,
each predictor is given an importance score by the algorithms we used; we considered the 50
predictors with the highest importance for each method. The important predictors that all
four models had in common are listed below.

• Fold 1: DTL, NBR2, NPR2, VPS25
• Fold 2: DTL, KHDRBS1, NBR2, VPS25
• Fold 3: DTL, NBR2, VPS25
• Fold 4: NBR2
• Fold 5: NBR2, TIMELESS.

Tables 3 through 6 list the top five predictors chosen by each model on each cross-validation 
fold.

5. Discussion. We first d escribe o ur k ey fi ndings fr om th e si mulation st udy. Although 
results were only shown for the case when n = 50 and p = 2000, some broad conclusions from 
other combinations of n and p will be mentioned. We refer the reader to our supplementary 
document to see the figures a nd t ables f or t hose s imulations. Then, we w ill s ummarize our 
findings f rom the empirical study.

In Model 1 (with a linear response), penalized linear models had a much lower MSE on 
test data than non-linear models, regardless of the values of n and p. This indicates that 
linear models are superior to non-linear models when it is appropriate to assume a linear 
relationship. On the other hand, linear models had a higher MSE on training data than
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Table 3: Top five important genes chosen by lasso.

Gene 1 Gene 2 Gene 3 Gene 4 Gene 5

Iteration 1 NBR2 DTL VPS25 KHDRBS1 FLJ10241
Iteration 2 NBR2 DTL C17orf53 VPS25 KHDRBS1
Iteration 3 NBR2 DTL VPS25 CCDC56 TUBA1B
Iteration 4 NBR2 CCDC56 C17orf53 VPS25 DTL
Iteration 5 NBR2 DTL CCDC56 TIMELESS VPS25

Table 4: Top five important genes chosen by elastic-net.

Gene 1 Gene 2 Gene 3 Gene 4 Gene 5

Iteration 1 NBR2 DTL VPS25 C17orf53 CCDC56
Iteration 2 NBR2 DTL C17orf53 VPS25 KHDRBS1
Iteration 3 NBR2 DTL CCDC56 VPS25 KHDRBS1
Iteration 4 NBR2 CCDC56 C17orf53 VPS25 DTL
Iteration 5 NBR2 DTL CCDC56 TIMELESS TUBA1B

Table 5: Top five important genes chosen by MCP.

Gene 1 Gene 2 Gene 3 Gene 4 Gene 5

Iteration 1 NBR2 DTL VPS25 KHDRBS1 ANKRD13B
Iteration 2 NBR2 DTL VPS25 KHDRBS1 ANKRD13B
Iteration 3 DTL NBR2 VPS25 KHDRBS1 ANKRD13B
Iteration 4 NBR2 TUBA1B RPL27 FLJ10241 ECH1
Iteration 5 NBR2 TIMELESS RPL27 PGLYRP3 ANKRD13B

Table 6: Top five important genes chosen by random forests.

Gene 1 Gene 2 Gene 3 Gene 4 Gene 5

Iteration 1 C17orf53 TUBG1 NBR2 DTL VPS25
Iteration 2 TUBG1 NBR2 C17orf53 VPS25 DTL
Iteration 3 C17orf53 TUBG1 NBR2 DTL VPS25
Iteration 4 C17orf53 NBR2 TUBG1 RDM1 TIMELESS
Iteration 5 TUBG1 NBR2 C17orf53 VPS25 MLX

non-linear models in almost all the simulations. We see that the training MSE for the linear 
models was very close to their test MSE. This indicates that the linear models did not have 
any overfitting, whereas the non-linear models d id. In Model 2  (with a  non-linear response), 
penalized linear models generally have a slightly higher test MSE when p > n when compared 
to non-linear models. Still, in high-dimensional situations, the linear models are competitive 
with non-linear models even when the response cannot be assumed to depend linearly on 
the predictors. When n > p, the linear models had a significantly h igher t est MSE. This is 
expected, since a large number of predictors significantly lowers the variance of the non-linear

205



A COMPARATIVE STUDY OF PENALIZED REGRESSION

models. The linear models continue to have a high bias when n is large, which results in large 
test errors.

For both Model 1 and Model 2, SCAD and MCP generally had the lowest test MSE among 
the linear models. Lasso and elastic-net almost never performed as well as SCAD and MCP 
but were usually not significantly w orse. O rdinary l east s quares a nd r idge r egression were 
the worst-performing linear models. These two models likely suffered f rom their i nability to 
perform variable selection. Because both Model 1 and Model 2 had only a small number of 
important predictors, the need for variable selection is pivotal for good model performance. 
Lasso and elastic-net tended to be pickier about the variables they selected compared to other 
linear models, especially when the correlation among predictors was high. This is evidenced 
by these models having a lower β-sensitivity and higher β-specificity. Even though SCAD and 
MCP were more likely to identify important predictors, all of the linear models struggled to 
identify important predictors in Model 2. This indicates that when the response cannot be 
assumed to have a linear dependence on the predictors, the linear models may not be reliable 
for inference.

The standard deviation of the random error did not have any broad qualitative effects 
on the results, nor did the correlation structure. The standard deviation of the random 
error did result in worse-performing models, but none of the models appeared to be affected 
more or less when varying the random error. Overall, we conclude that among the linear 
models, MCP generally had the best performance. This conclusion backs the results of similar 
simulation studies that compared penalized regression techniques [4, 43]. When p is large, the 
performance of MCP is comparable to that of the non-linear models.

Now, we will discuss some findings from the empirical a nalysis. We found that SCAD and 
MCP maintained the lowest testing mean squared error among the tested models. This can be 
seen in Figure 5 and Table 2. XGBoost, elastic-net, and lasso all had very close performances 
to SCAD and MCP. Ridge regression and random forest models performed the worst among 
the models considered. In addition to minimizing the test MSE, MCP also maintained the 
lowest standard deviation for the test MSE among the five c ross-validation f olds, a s seen 
in Table 2. Lasso and SCAD also had small standard deviations. On the other hand, the 
non-linear models had very different performances on each fold, meaning that they are more 
sensitive to the training data used. These results are all expected, given that the linear 
models have high bias (resulting in low variance) while the non-linear models have low bias 
(and consequently high variance). The penalized regression models were fitted exceptionally 
faster than random forest and XGBoost as documented in Table 2. On average, Lasso and 
elastic-net ran approximately 56x faster than XGBoost and 510x faster than random forest. 
MCP and SCAD ran approximately 30x faster than XGBoost and 290x faster than random 
forest. This provides a significant advantage to the penalized regression techniques, especially 
given that MCP and other penalized techniques performed better than random forest and 
XGBoost.

Recall that for lasso, elastic-net, MCP, random forests, and gradient boosts, we tracked 
the important predictors selected by each model. On all five c ross-validation f olds, a ll five 
models identified NBR2 as an important feature. This gene is known to be a neighbor of
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the BRCA1 gene and acts as a tumor suppressant [41]. The genes DTL, TIMELESS, and 
KHDRBS1 (also known as Sam68), which each appeared in at least one fold, are known to 
be related to breast cancer [35, 18, 2]. The last gene, VPS25, is also known to be a tumor 
suppressant [37]. These results show the potential for these statistical models to reveal new 
insights about the roles of genes in areas such as oncology and demonstrate the selection 
accuracy of such methods.

From Tables 3 through 6, we see that there is some consistency between the top five genes 
identified by e ach m odel. I n p articular, a ll o f t he models t end t o choose NBR2, DTL, and 
VPS25 as some of the most important genes. However, other genes only appear for some of 
the models tested. For example, C17orf53 is chosen as a top five p redictor multiple times 
when using lasso, elastic-net, and random forests, but does not appear at all when using 
MCP. Some further investigation found that C17orf53 is chosen as the 10th or 11th most 
important predictor for MCP in all five c ross-validation f olds. A  s imilar s ituation appears 
with the gene KHDRBS1, which appears multiple times with lasso, elastic-net, and MCP, but 
not for random forests. It turns out that KHDRBS1 is not among the top 15 genes for any 
cross-validation fold of random forests (it ranks 31, 16, 28, 26, and 16). These results show 
that the four models tested will generally identify the same set of genes as important, but the 
exact rankings chosen by each model may vary.

6. Conclusion. There is a severe lack of comprehensive testing comparing widespread 
machine learning methods such as random forest, gradient boosting, and support vector ma-
chines with more statistical methods such as penalized regression. Our paper bridges the 
divide between the machine learning and statistical fields in which these two types of models 
exist in. Testing using Monte Carlo simulations and empirical data has not been tested by 
other researchers with as many different environments and m odels. As complex “black box” 
machine learning and artificial i ntelligence models r ise i n p opularity, t he importance o f sta-
tistical methods that perform variable selection, are easily understood, and simplify models 
becomes increasingly important.

These comparisons have shown that penalized regression should be added to the toolbox 
of any data scientist and machine learning engineer. Penalized regression models overall had 
better test performance than traditional machine learning models when applied to our linear 
simulation data and genomic data. For the non-linear simulation model, machine learning 
models attain a slightly better performance. We note, however, that penalized regression 
techniques offer s everal a dditional a dvantages o ver m achine l earning m odels. Specifically, 
they are typically much less computationally expensive compared to machine learning models. 
Ensemble algorithms, such as the random forest and gradient boosting models considered in 
this paper, can be especially slow. Also, in scenarios such as the empirical data study outlined 
earlier, penalized regression techniques can help identify the relationship between predictors 
and a response value. In such cases, the ability to determine these relationships can be more 
important than the predictive performance of a model. For genetic applications such as that 
of the empirical data studied, understanding important predictors allows for a streamline of 
the identification o f g enes t hat c ause c ancer a nd a llows f or s cientists t o s pecifically target 
important genes for cancer treatments.
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In the future, it may be useful to develop and test a hybrid technique between random
forest and penalized regression. This method would harness the power of ensemble learning,
while still being able to perform variable selection and would hopefully perform better than
either random forest or penalized regression methods individually. Some such models already
exist, as seen in [6, 9, 44] which conduct variable selection, however, these models use wrapper
methods and variable importance which can be computationally expensive and do not inher-
ently eliminate insignificant variables the same way penalized regression does. Given that
random forest models are already very slow, performing additional variable selection using
wrapper methods may result in an exponentially slower runtime. Thus, it is important that
embedded variable selection methods, such as penalized regression methods, are utilized in
ensemble methods.

We could also run Monte Carlo simulations where the response is categorical rather than
numerical. This could be used to study how penalized regression performs when used for
classification data, which is the most common case for high dimensional data sets.
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