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Abstract. We used the singular value decomposition to construct a low-dimensional model that qualitatively
describes the behavior and dynamics of optical solitons governed by the complex cubic-quintic
Ginzburg-Landau equation in two spatial dimensions. With this model, it was found that a single
soliton destabilizes and transitions into a double-soliton configuration through an intermediate pe-
riodic phase as the gain increases. Linear stability analysis then revealed that a Hopf bifurcation
occurs at several critical gain values corresponding to the destabilization of the single and double
solitons.

1. Introduction. The study of nonlinear waves originated in 1834 when John Scott Rus-
sell, a Scottish engineer, was conducting experiments to determine the optimal design for
canal boats [1]. One of the major results was his discovery of, in his own words, the great
wave of translation, or solitary wave, as it is known today. Russell’s discovery subsequently
motivated the mathematical study of water waves by Stokes [2], Boussinesq [3], and Korteweg
and de Vries [4], but it was not until 1965 when Zabusky and Kruskal made the breakthrough
discovery of solitons, i.e., solitary waves that demonstrate particle-like behaviors, which led
to extensive theoretical formulations and numerical simulations of nonlinear waves [5, 6]. To-
day, the study of solitons is of broad scientific interest. It pertains to the understanding of
water wave propagation in the ocean, atmospheric turbulence, optical fiber transmission, and
light-matter interaction, to name a few.

In the field of laser optics, the master mode-locking equation proposed by Haus in 1975 [7]
is the most influential and fundamental governing equation. It is a nonlinear Schrödinger
equation-based model that describes the formation and dynamics of optical solitons in 1-
dimensional laser systems. In this project, we studied the time evolution of optical solitons in
a 2-dimensional laser cavity governed by the complex cubic-quintic Ginzburg-Landau equation
(CQGLE) [8]. The CQGLE generalizes Haus’ model to give a more accurate description of the
dominant physical effects in the laser cavity. Compared to Haus’ model, the CQGLE includes
a quintic correction term for the self-phase modulation and saturable absorption (intensity
discrimination), as well as a bandwidth-limited saturated gain instead of a constant gain.
Ginzburg-Landau equations are of significant physical importance as they arise in a variety
of nonlinear wave and pattern-forming systems [9, 10].

In two spatial dimensions, with normalized parameters, the CQGLE is the partial differ-
ential equation (PDE) given by

(1.1) i
∂u

∂t
+
D

2
∇2u+ (γ − iβ)|u|2u− (ν − iµ)|u|4u = ig(t)(1 + τ∇2)u− iδu ,
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where

(1.2) g(t) =
2g0

1 + ∥u∥2/e0
.

The complex variable u defines the amplitude of the electromagnetic field as a function of the
spatial variables x and y and time t, and the Laplacian operator∇2 is taken with respect to the
spatial variables. D is the averaged diffraction coefficient, and γ and ν represent the cubic and
quintic self-phase modulations, respectively. The cubic gain term |u|2u with positive constant
β models the pulse-forming mechanism in the laser cavity that preferentially amplifies the
high-intensity portion of the electromagnetic field and attenuates the low-intensity portion to
form a soliton, while the quintic loss (the term with coefficient µ) saturates the cubic gain
and thus prevents the amplitude of the soliton from blowing up. The terms on the right
side of the CQGLE represent other dissipative effects in the laser cavity. The gain function
g(t), which is saturated by the total cavity energy ∥u∥2 =

∫∞
−∞

∫∞
−∞ |u|2dxdy, is controlled

by the parameters g0 (pumping strength) and e0 (saturated pulse energy). The parameter τ
measures the bandwidth of the gain, and δ is the total linear loss.

The goal of this research was to study the impact of the gain on the stability and shape of
optical solitons governed by the CQGLE, so we first solved the PDE numerically in MATLAB
using a spectral discretization in x and y and a Runge-Kutta time-stepping algorithm in t.
We adjusted the pumping strength g0 while holding all other system parameters fixed. Unless
stated otherwise, the parameters are assumed to be D = 0.5, γ = 1.5, β = 0.8 , µ = 0.5,
ν = 0.08, e0 = 1, τ = 0.1, and δ = 1. A localized white noise was used as the initial condition
for the CQGLE.

Figure 1. Top: Snapshots of stable single soliton, pulsating soliton, and stable double soliton of the CQGLE 
at different g 0 v alues. B ottom: The corresponding t ime evolution o f t he t otal cavity energy ∥u∥2.

The top panels in Figure 1 show snapshots of the numerical solution of the CQGLE at 
various g0 values, while the bottom panels plot corresponding time evolutions of the total 
cavity energy ∥u∥2. At a moderate pumping strength of g0 = 1.45, the white noise initial 
condition self-organizes into a single soliton that remains stable throughout the rest of the 
simulation. When g0 is increased to 2.3, the amplitude and width of the soliton fluctuate
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slightly over time, which causes periodic fluctuations in its energy as seen in the corresponding
graph. At a high g0 value such as 3.2, these periodic oscillations are no longer observed, and
the system settles onto a double-pulse configuration known as a double soliton. The two pulses
in this case are identical to each other and have a greater amplitude than the single soliton.

Performing full numerical simulations on the CQGLE is time-consuming. Depending on
the number of time steps and the size of the computational domain, each run takes up to a full
week or longer to execute. This makes it extremely inefficient to study the transitions among
different soliton states by direct simulation. Principal component analysis (PCA) is a popular
technique in data analysis that aims to represent the maximum amount of information in a
data set using only a small set of key features known as the principal components. In this
work, we used PCA to derive a low-dimensional model to qualitatively reproduce each of the
observations in Figure 1. This model also supports a dynamical systems approach to analyze
optical solitons governed by the CQGLE in two spatial dimensions. We aimed to efficiently
characterize the transitions among the single-periodic-double soliton sequence as a function
of the pumping strength g0 without running extensive full simulations.

The paper is organized as follows: The construction of the low-dimensional model is
described in section 2. Results based on numerical simulations of this model are presented
in section 3. Linear stability analysis of the low-dimensional model is discussed in section 4,
followed by conclusions from the results in section 5.

2. Low-Dimensional Model for the CQGLE. Let ϕ1(x, y), ϕ2(x, y), ... represent the
principle components, or modes, of the soliton dynamics governed by the CQGLE. These are
essentially the key soliton profiles observed in the evolution history of the electromagnetic field
amplitude u(x, y, t). Mathematically [11, 12], the n-th mode ϕn(x, y) is the n-th eigenfunction
that satisfies the eigenvalue problem

(2.1)

∫ ∞

−∞

∫ ∞

−∞
K
(
x, y, x′, y′

)
ϕn
(
x′, y′

)
dx′dy′ = λnϕn(x, y) .

Here the non-negative constant λn is the eigenvalue associated with ϕn(x, y), and the ker-
nel K (x, y, x′, y′) is the time-average of the product u(x, y, t) u (x′, y′, t), where the overbar
denotes complex conjugation. In addition, the modes satisfy the orthonormality condition

(2.2) ⟨ϕm, ϕn⟩ =
∫ ∞

−∞

∫ ∞

−∞
ϕm ϕn dxdy =

{
1 , m = n ,

0 , m ≠ n .

Once the modes are found from (2.1), they can then be used to convert the CQGLE into
a system of first-order ordinary differential equations (ODEs). The procedure is the same
as solving linear PDEs using eigenfunction expansions. In particular, we expand u(x, y, t) in
terms of the modes (eigenfunctions) as

(2.3)

u(x, y, t) =
∑
n=1

rn(t)e
iθn(t)ϕn(x, y)

= eiθ1(t)

(
r1(t)ϕ1(x, y) +

∑
n=2

rn(t)e
iψn(t)ϕn(x, y)

)
,
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where the real-valued functions rn(t) and θn(t) represent the modal amplitude and phase
associated with the n-th mode, respectively. The phase of the first mode is factored out so
that ψn(t) = θn(t) − θ1(t) measures the phase difference between the n-th mode and the
first mode. Substituting this expansion into the CQGLE (1.1), applying the orthonormality
condition (2.2), and separating the real and imaginary parts leads to the following system of
first order, nonlinear ODEs:

(2.4)

{
r′n = Fn (r1, . . . , ψ2, . . .) , n = 1, 2, . . .

ψ′
n = Gn (r1, . . . , ψ2, . . .) , n = 2, 3, . . .

In the theory of PCA, the relative importance of the modes is ranked by the eigenvalues λ1,
λ2, etc. Modes with greater eigenvalues are more dominant than the others and therefore
capture more information about the data. Technically speaking, the above ODE system is an
infinite dynamical system since there are infinitely many ϕn’s. To arrive at a low-dimensional
description of the CQGLE while retaining most of its important underlying dynamics, we
truncate (2.3) to keep only the modes with the largest eigenvalues, which in turn gives us an
ODE system with only a few equations.

The difficulty in carrying out the procedure described above is that the modes cannot be
found in closed form since u(x, y, t) and hence the kernel function K in the eigenvalue problem
(2.1) are not known a priori. We therefore take a numerical approach. First, we compute the
numerical solution u(x, y, t) of the CQGLE at a particular g0 value, which is then stored in a
matrix where each row corresponds to a particular time step. To account for both the single-
and double-pulse shapes, we stack the data matrices of a single soliton simulation and a double
soliton simulation vertically to form a combined data matrix A. In the numerical case, the
modes ϕ1(x, y), ϕ2(x, y), ... are approximated by orthogonal vectors Φ1, Φ2, ... that satisfy
the eigenvalue problem

(2.5) A∗AΦn = λnΦn .

The asterisk denotes the conjugate transpose, so A∗A is the covariance matrix of the numerical 
data. Each eigenvector Φn is normalized according the orthonormality condition (2.2) where 
the integral is calculated numerically over the computational domain. It is well-known in 
linear algebra that the solution to the above matrix problem is equivalent to the singular 
value decomposition (SVD) of A; the Φn’s are given by the right singular vectors, and the 
λn’s are given by the square of the singular values.

Figure 2 shows the first f our d ominant m odes i n t he c ombined d ata m atrix A , along 
with their associated eigenvalues. As expected, the two most dominant soliton profiles in the 
numerical data matrix are in the shapes of a single soliton (top right panel) and double soliton 
(top left panel). The two following modes are combinations of shapes that are seen during the 
transient stage of the evolution. Experimentally, it was determined that the 11 most dominant 
modes were sufficient to  qualitatively ca pture th e es sential dynamics of  bo th th e si ngle and 
double solitons [13]. Using the eigenvalues, the percentage of information contained in the m 
most dominant modes can be calculated by dividing the sum of the m largest eigenvalues by 
the sum of all eigenvalues. Our 11 most dominant modes contain over 99.9% of the information 
from the two numerical simulations.
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Figure 2. The four most dominant modes in the combined soliton evolution data.

Although there is still no analytical solution for this low-dimensional system, i.e., (2.4) 
where n is capped at 11, due to its complicated form, simulating just 21 equations instead of 
the original CQGLE, which typically has over 10,000 ODEs based on how the spatial domain 
is discretized, is a tremendous improvement in computational efficiency.

3. Results of the Low-Dimensional Model. Figure 3 shows the numerical results of our 
low-dimensional model. As demonstrated in our previous work [13], at a moderate pumping 
strength of g0 = 1.45, the modal amplitudes rn(t) and phase differences ψn(t) approach fixed 
values in the long run. In particular, r2 (the orange curve in Figure 3) approaches a value 
of around 1.5 while the other modal amplitudes decay to near zero. This is an important 
result as it tells us that the shape of u(x, y, t) should resemble the shape of ϕ2, a single soliton 
(see Figure 2), at this g0 value. The 3-dimensional graph that plots the expansion (2.3) at 
the steady state, truncated at the 11-th mode, also demonstrates that this low-dimensional 
model correctly reproduces the qualitative, stable behavior as seen in the full simulation of 
the CQGLE (see left panel in Figure 1).

At a slightly higher pumping strength around g0 = 2.3, r2 still remains the most dominant 
modal amplitude, but the other rn’s are more noticeable than before and oscillate periodically 
over time, as shown in Figure 4. A snapshot of the 3-dimensional view shows that u(x, y, t) 
still has the shape of a single soliton. Its width and height, however, undergo persistent 
fluctuations due to the periodicity in the modal amplitudes.

The time dependence of the modal amplitudes and phase differences disappears when the 
pumping strength is increased beyond certain critical value. As shown in Figure 5, at a high
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Figure 3. Simulation of the low-dimensional model at g0 = 1.45. The bottom left panel shows the stable
fixed point.

Figure 4. Simulation of the low-dimensional model at g0 = 2.3.

gain value of g0 = 3.2, the modal amplitudes and phase differences s tabilize a fter a  brief 
transient stage. This time, however, it is r7 (the green curve), a modal amplitude associated 
primarily with the double-soliton shape, instead of r2, that emerges as the dominant modal 
amplitude at steady state. Contributions from the other rn’s are non-negligible and all the 
modal amplitudes combine to form a clean double pulse, matching the results from the full 
simulation (see right panel of Figure 1). At such a high gain, a single-soliton configuration 
is not sustainable, as the total cavity energy is too high to be contained in one pulse. A 
double-soliton configuration is a more favorable equilibrium state.
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Figure 5. Simulation of the low-dimensional model (2.4) at g0 = 3.2.

4. Linearization. The ultimate goal of this low-dimensional model was to find its fixed
points, which correspond to the different soliton states of the CQGLE. The stability of the
single and double solitons can be studied by linearizing the low-dimensional model about
these fixed points. Finding fixed points allowed us to mathematically confirm the qualitatively
observed long-term behavior of the solitons from the numerical simulations. Specifically, once
fixed points were found, their stability could be determined and bifurcations at critical g0
values could be analyzed using the eigenvalues of the relevant Jacobian matrix.

Fixed points are steady-state values of rn and ψn that make the right sides of (2.4)
equal to zero, and they can be computed using MATLAB’s root-finding algorithm fsolve. For
this calculation, it is necessary to work with ψn instead of θn, since the phase angle θn is
constantly changing. Branches of fixed points corresponding to different pumping strengths
were computed numerically by means of continuation. Once a solution of the equations Fn = 0
and Gn = 0 at a particular g0 had been found, it was used as the initial guess of the algorithm
to compute the solution at a slightly different g0 value. Since it is possible that multiple
fixed points exist for the same g0 value, convergence of the root-finding algorithm is highly
dependent upon the initial guess used. In practice, it is often easier to use one of the modal
amplitudes (e.g. r2 or r7, depending on whether we wanted to find a single-soliton branch or a
double-soliton branch) instead of g0 as the varying parameter. Once the fixed point branches
are computed, the Jacobian matrix

(4.1) J =


∂F1/∂r1 ∂F1/∂r2 . . . . . . ∂F1/∂ψ11

∂F2/∂r1 ∂F2/∂r2 . . . . . . ∂F2/∂ψ11
...

...
. . .

. . .
...

∂G11/∂r1 ∂G11/∂r2 . . . . . . ∂G11/∂ψ11


(21×21)

at each fixed point is then numerically approximated using central d ifferences. Stability of the 
fixed point is indicated by the eigenvalues of the Jacobian matrix. Specifically, the fixed point
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Figure 6. Real and imaginary parts of the eigenvalues of the Jacobian matrix at a stable and unstable
fixed point. Pairs of eigenvalues cross the imaginary axis as the soliton becomes unstable, which indicate Hopf
bifurcations.

is stable if the real parts of all eigenvalues are negative (see left panel of Figure 6). Otherwise
the fixed point is unstable (one example shown in the right panel of Figure 6).

1.18 2.28 2.93 3.98 5

g
0

0

9

r n2

Unstable

Stable

Figure 7. Bifurcation diagram showing stability of soliton at different pumping strength values.

Figure 7 plots the bifurcation diagram of the steady-state value of
∑
r2n as a function of

g0 based on our low-dimensional model. The branch with smaller amplitudes represents the 
single solitons while that with greater amplitudes represents the double solitons. A solid curve 
indicates that the solitons in that range of g0 values are stable while a dashed curve means that 
the solitons are unstable. According to the low-dimensional model, solitons will not form for 
gain values below g0 ≈ 1.18 because pulses are not sustainable at such low pumping strengths. 
Once g0 increases above this critical value, a stable branch and an unstable branch of single 
solitons are formed simultaneously, which suggests that the system undergoes a saddle-node 
bifurcation at this g0 value. The single soliton remains stable up to approximately g0 ≈ 2.28 
where a pair of complex conjugate eigenvalues cross the imaginary axis from the left half into 
the right half of the complex plane (see Figure 6 and this video), which is the signature of 
a Hopf bifurcation. At this bifurcation value, the single soliton loses stability and a periodic
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solution is created, which is exactly what we saw in Figure 4. Another Hopf bifurcation
occurs at g0 ≈ 2.93 where the periodic solution is destroyed and the system “jumps” to the
stable branch of double solitons. These double solitons eventually lose stability at around
g0 ≈ 3.98 through another Hopf bifurcation. After this point, the double-pulse is seen to
oscillate periodically over time. We ran full simulations on the CQGLE (1.1) and confirmed
that these bifurcations occur at roughly the same g0 values. The low-dimensional model we
built thus qualitatively and efficiently reproduces the essential soliton dynamics governed by
the full PDE model.

5. Conclusions. We used the singular value decomposition to derive a low-dimensional
model that describes the soliton dynamics observed in the complex cubic-quintic Ginzburg-
Landau equation. Our low-dimensional model qualitatively reproduced the transition from
single to double solitons via an intermediate periodic state as the pumping strength increased.
In addition, the bifurcation analysis of the model showed that the creation and destruction
of the periodic states were through Hopf bifurcations. Not only was the computational time
significantly shortened, the low-dimensional model also gave us a mathematical understanding
of the soliton dynamics governed by the CQGLE.

This same process could be used to analyze bifurcations and accompanying changes in
soliton behavior due to varying other parameters. For example, soliton behavior notably
changes dependent on the sign of the diffraction coefficient D, so these same methods of
dimension reduction and linear stability analysis could be used to mathematically study the
case where D is negative. On a broader scale, the methods demonstrated in this paper could
also be applied to other pattern-forming systems.
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