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Abstract

Synchrony is an important feature of brain activities for the coordination of neural
information and is also related to some neuronal disorders. Around 40 different mea-
sures have been proposed in literature for quantifying the synchrony of spike trains
and the list is still growing. The main issue is that it is not clear to users which one
to use and how measurements correspond to different features of synchrony. In this
work, instead of looking at all methods at once, we focus on investigating one of the
popular measures in the field of neuroscience: Spike Time Tiling Coefficient (STTC)
proposed by Cutts and Eglen in 2014. We simulate three scenarios of neural spike
trains and study how STTC values depend on distributions and phase shifts of spike
trains. Firstly, we study pairs of simple periodic binary time series. We derive an
analytical formula showing that the dependence of the STTC value on the phase shift
is symmetric and has a general trend where the maximum value of STTC occurs when
the phase shift is zero and the minimum value occurs when the phase shift is half of the
period. Secondly, we investigate pairs of “periodic” normally distributed spike trains.
While we observe the similar trends shown in the first scenario, we notice an exception.
We also observe a general trend where the STTC value decreases as the standard devia-
tion of the normal distribution increases. Thirdly, we study pairs of Poisson distributed
spike trains. Using properties of the Poisson distribution, we generate pairs of Poisson
distributed spike trains with certain overlap ratios and study the relationship between
STTC and the overlap ratio. In general, this relationship is nonlinear. We observe that
as the synchronicity window decreases towards zero, this nonlinear relationship tends
toward a linear relationship. We derive analytical formulas to describe this nonlinear
relationship and quantitatively evaluate its closeness to a linear relationship as the syn-
chronicity window decreases towards zero. Through studying STTC, we notice that
when the synchronicity window is too large, the problem of dividing by zero occurs in
the calculation of STTC. To avoid such a problem, we derive an upper bound for the
synchronicity window. We also argue that STTC can only approach −1, and show a
case to demonstrate this argument.
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1 Introduction

Neurons use action potentials, which are also called spikes, to signal over long distances. It is
believed that the timing of individual spikes carries most of the information [6]. The detailed
voltage waveform is often converted into binary events where “1” represents a spike and “0”
means no spike. The binary sequence is referred to as a spike train. When comparing a pair
of spike trains, we can always convert them to binary representations so that the pair has
the same unit time step since any arrival time is assumed to be a rational number. Bursting
refers to groups of relatively high-frequency spikes that are separated by quiescence [8]. Each
such group of high-frequency spikes is called a burst. In binary representation, a burst refers
to a piece of signal that satisfies [1]: (a) consisting of consecutive 1s and 0s, (b) starting and
ending with 1, (c) being separated from neighboring bursts by relatively long consecutive 0s.

The study of synchrony between spike trains has many applications [3]. For example,
synchrony is an important feature of brain functions [5, 7, 9], and it is also related to
pathological states [2]. Around 40 different measures for synchrony of spike trains have been
proposed, and several papers have been devoted to comparing some or all of the existing
methods [2, 4]. However, it is still not clear to a practitioner on which one to use and how
to interpret resulting measurements if the signals are not in complete synchrony.

In this work, instead of looking at all measurements at once, we focus on investigating in
a great detail in one of the popular measurements in the field of neuroscience: Spike Time
Tiling Coefficient (STTC) Method proposed by Cutts and Eglen [4]. We study STTC for
signals generated by three models, namely periodic binary time series, “periodic” normal-
bursting, and Poisson spiking trains. Our choice of the three models was inspired by the test
setting in [4]. The measure STTC was tested in [4] for pairs of synthetic spike trains gen-
erated by the Poisson spiking model, Poisson burst model and out-of-synchrony spiking and
bursting models. The Poisson spiking model assumes that spike trains A and B fire Poisson-
distributed spikes, and a certain proportion of spikes from the two trains are synchronous
and also follow the Poisson distribution. It is not hard to see that increasing the proportion
of synchronous spikes increases the mean STTC value. However, it is not transparent how
exactly STTC values depend on the proportion of synchrony. We are interested in finding
out the relation between these two quantities by following [4] to further study STTC values
of pairs of signals generated by the Poisson spiking model. The Poisson burst model in [4] is
a doubly stochastic process: the center-points of bursts are generated by the Poisson process
and then the positions of spikes relative to the center-point of each burst follow either a
normal distribution or a continuous uniform distribution. As the measure was also tested for
out-of-synchrony (anti-phase) spiking and bursting models, a natural question arises for this
testing scenario: suppose a signal is periodic, how does STTC value depend on the phase
shift? To seek the answer to this question, we choose to start with a simplistic model: a
periodic binary time series with a repeated pattern in the form 1 · · · 10 · · · 0. The model is
simple enough for easy calculations of STTC values while still capturing the main feature
of bursts. We then ask the same question when the signals are generated by the “periodic”
normally distributed burst model, in which center-points of bursts are equally spaced and
the positions of spikes relative to the center-point of each burst follow a normal distribution.

For the binary time series model, we are able to derive an analytical formula demonstrat-
ing how STTC values depend on the phase shift and how this dependence is determined by
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the number of spikes in the spike trains. In general, the dependence of STTC values on the
phase shift is symmetric and has a general trend where the maximum value of STTC occurs
when the phase shift is zero and the minimum value occurs when the phase shift is half of
the period. This simple case provides a perspective to gain a basic understanding of STTC
measure.

For “periodic” normally distributed spike trains, while we observe similar trends shown
in the first scenario, we notice an exception that when the the synchronicity window for
calculating STTC is large relative to the period, the maximum value of STTC occurs when
the phase shift is half of the period and the minimum value occurs when the phase shift is
zero. This is opposite to the case when the synchronicity window is small relative to the
period. We also observe a general trend that STTC value decreases as the standard deviation
of the normal distribution increases.

In the case of the Poisson spiking model, using properties of the Poisson distribution, we
generate pairs of Poisson distributed spike trains with certain overlap (synchrony) ratios and
study the relationship between STTC and the overlap ratio. In general, this relationship
is nonlinear. We observe that as the synchronicity window decreases towards zero, this
nonlinear relationship tends to a linear relationship with a slope of λa+λb

2λb
and a y-intercept

of zero, where λa ≤ λb are the rates of pairs of Poisson distributed spike trains. We derive
analytical formulas to describe this nonlinear relationship and quantitatively evaluate its
closeness to this linear relationship as the synchronicity window decreases towards zero.

Through studying STTC, we realize that when the synchronicity window is too large,
the problem of dividing by zero occurs in the calculation of STTC. To avoid such a problem,
we derive an upper bound for the synchronicity window. We also argue that STTC can only
approach −1, and show a case to demonstrate this argument.

The paper is organized as follows. In Section 2, we briefly review the STTC measure.
In Section 3, we derive an analytical formula for the STTC measure for pairs of simple
periodic binary time series. In Section 4, we present experimental results for the STTC
measure for pairs of “periodic” normally distributed spike trains. In Section 5, we present
both experimental and analytical results for STTC measure for pairs of Poisson distributed
spike trains. We discuss some general observations about STTC in Section 6 and finally,
draw some conclusions in Section 7.

2 Preliminary

In this section, we briefly review the method of Spike Time Tiling Coefficient (STTC) [4].
This method was proposed for quantifying the correlation between pairs of spike trains.
In this method the authors defined four variables, TA, TB, PA, and PB, as shown in the
following diagram from the original paper, where TA is the proportion of the total recording
time that falls within the synchronicity window ±∆t of any spike from signal A, and PA is
the proportion of spikes from signal A that falls within ±∆t of any spike from signal B. TB

and PB are calculated in a similar way.
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Figure 1: Definition of STTC. This figure is taken from [4] Fig.1.

In calculating TA or TB, if ∆t overlaps multiple spikes, then we only count the over-
lapping areas once. The authors argued that STTC should be symmetric to combine the
contributions from both spike trains. In summary, the authors define the STTC formula as
follows:

STTC =
1

2

(
PA − TB

1− PATB

+
PB − TA

1− PBTA

)
The authors indicate that STTC ranges from −1 to 1 and is equal to 1 for autocorrelation
and −1 when PA = 0 and TB = 1. However, we argue that STTC can only approach but
never equal −1 since if TB = 1, then PA ̸= 0, and vice versa (assume that spike trains A and
B contain at least one spike, respectively). We demonstrate this argument in Section 6.

3 STTC of Pairs of Periodic Binary Time Series

In this section, we study pairs of simple periodic binary time series. The pairs have the
following format: binary time series A is periodic in the form

A : 1 · · · 1︸ ︷︷ ︸
m

0 · · · 0︸ ︷︷ ︸
n

(3.1)
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Binary time series B is a k-shift of A, with 0 ≤ k ≤ (m+n). For example, when m = 3, n =
5, k = 1

A : 11100000

B : 011100000

If we choose the synchronicity window ∆t = 0.5, then

TA = TB =
3

8

PA = PB =
2

3

So

STTC =
1

2

(
PA − TB

1− PATB

+
Pb − TA

1− PBTA

)
=

PA − TB

1− PATB

=
2
3
− 3

8

1− 2
3
· 3
8

=
7

18

if ∆t = 1, then

TA = TB =
4

8
=

1

2

PA = PB = 1

STTC =
PA − TB

1− PATB

= 1

Theorem 3.1. Let A be a periodic binary time series of the form of (3.1) and B is a k
phase shift of A with 0 ≤ k ≤ (m+n), where m > 0. If we choose the synchronicity window
∆t to be 0.5, then

STTC =


mn− (m+ n)k

mn+mk
, 0 ≤ k < min{m,n}

Z, min{m,n} ≤ k ≤ max{m,n}
mn− (m+ n)q

mn+mq
, max{m,n} < k ≤ (m+ n)

(3.2)

where q = (m+ n)− k and

Z =


− m

m+ n
, m < n

− 1

2
, m = n

− n

2m
, m > n

Proof. When the synchronicity window ±∆t centered with each number in the binary time
series fully covers a 1 or 0, i.e., ∆t = 0.5, then TA and TB can be simply calculated by
counting the number of 1s and 0s in the time series. Also because of periodicity, we just
need to count spikes over one period. So TA is equal to the ratio of the number of spikes
over one period and the total number of time steps over a period, i.e.,
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TA = TB =
m

m+ n
Similarly, PA and PB can be found by counting spikes over a period as well. When k is

in the range of 0 ≤ k < min{m,n}, the number of overlap over one period is m− k. Hence,

PA = PB =
m− k

m

When k is in the range of max{m,n} < k ≤ (m+n), the number of overlap over one period
is k − n. Hence, PA and PB is,

PA = PB =
k − n

m
When k is in the range of min{m,n} ≤ k ≤ max{m,n}, there are two cases.
Case 1: If m ≤ n, then m ≤ k ≤ n and the two trains have no overlapping spike. Hence,

PA = PB = 0

Case 2: If m > n, then n ≤ k ≤ m and the two trains have exactly m− n number of spikes
overlapped. Hence,

PA = PB =
m− n

m
From the definition of STTC, the STTC value for the pair of periodic binary time series

A and B is derived as follows.

1) When 0 ≤ k < min{m,n},

STTC =
m−k
m

− m
m+n

1− m−k
m

m
m+n

=
nm− (m+ n)k

mn+mk

2) When max{m,n} < k ≤ (m+ n),

STTC =
k−n
m

− m
m+n

1− k−n
m

m
m+n

=
nm− (m+ n)q

mn+mq

where q = (m+ n)− k.

3) When min{m,n} ≤ k ≤ max{m,n},

if m < n, then

STTC = − m

m+ n

if m = n, then

STTC = −1

2

if m > n, then

STTC = − n

2m
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In summary, the STTC for the pair of periodic binary time series A and B can be written
as the expression in (3.2).

Remark:

1) Z is the minimum value of STTC, which is greater than or equal to −1
2
, with equality

when m = n. It only depends on the number of consecutive 1s and 0s in the binary
time series of the form of (3.1) and is independent of the shift k.

2) STTC reaches the minimum value when shift k = min{m,n}, and remains the mini-
mum value until k is beyond the value of max{m,n}.

3) STTC is symmetric around k = 1
2
(m+ n).

These observations are illustrated in Figure 2, where the combinations of m and n include
(m,n) = {(10, 10), (15, 5), (5, 15)}. We can see that the dependence of STTC value on k is
symmetric, and has a general trend where the maximum value of STTC occurs when shift
k is zero, and the minimum value of STTC occurs when k is half of the period (m + n).
This simple case demonstrates how the STTC value is determined by the number of spikes,
m, in the spike trains and the period (m + n) and provides a perspective to gain a basic
understanding of the STTC measure.

Figure 2: Dependence of the STTC value on phase shift k for pairs of periodic binary time
series in the form of (3.1), where the period is (m + n) and the combinations of m and n
include (m,n) = {(10, 10), (15, 5), (5, 15)}.
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4 STTCMeasure for Pairs of “Periodic” Normally Dis-

tributed Spike Trains

In this section, we study pairs of “periodic” normally distributed spike trains. We investigate
how STTC values depend on the phase shift and the standard deviation of the normal
distribution, respectively. We further investigate how the synchronicity window affects the
dependence of STTC values on the phase shift. We generate normally distributed spike
trains for each period independently, which implies that the resulting spike trains are not
exactly periodic though the standard deviation is the same. Figure 3 shows an example of
such periodic spike trains, where period W = 10, standard deviation σ = 1, and the mean
of the normal distribution is an integer multiple of the period. In the figure, a pair of 5
periods of normally distributed spike trains are shown, and in each period, there are 20
spikes that follow the normal distribution. The pair has a half-period phase difference, and
the histogram for the pair is plotted along with the distribution of spikes. More specifically,
spike locations in each period follow a normal distribution.

Figure 3: A pair of 5 periods of normally distributed spike trains and their histogram, with
period W = 10, standard deviation σ = 1. The number of spikes in each period is 20.
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4.1 Dependence of STTC on Phase Shift

We calculate STTC values as phase shift k changes from 0 to a period, W = 10, with
increments of 0.2. For each k, we generate 100 pairs of normally distributed spike trains
with standard deviation σ = 1. For each pair, we generate 10 periods of spike trains, and in
each period, there are 20 spikes that follow the normal distribution. We calculate STTC for
each pair with synchronicity window ∆t = 0.5. We use the mean value of such 100 STTC
values for the corresponding phase shift k. Figure 4 shows the experimental result. We
observe similar trends shown in the scenario of pairs of simple periodic binary time series.
That is, the dependence of STTC values on the phase shift is symmetric, and has a general
trend that the maximum value of STTC occurs at the location where the phase shift k is
zero, and the minimum value of STTC occurs at the location where the phase shift k is half
of the period W .

Figure 4: Dependence of the expected value of STTC on phase shift k for pairs of “periodic”
normally distributed spike trains, with period W = 10, standard deviation σ = 1 and
synchronicity window ∆t = 0.5.
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4.2 Dependence of STTC on Standard Deviation

We calculate STTC values for pairs of “periodic” normally distributed spike trains with
various standard deviations σ, ranging from 0.25 to a period, W = 10, with increments
of 0.25. For each σ, we generate 100 pairs of normally distributed spike trains. For each
pair, we generate 10 periods of spike trains, and in each period, there are 20 spikes that
follow a normal distribution. We calculate STTC for each pair with phase shift k = 0 and
synchronicity window ∆t = 0.1. We use the mean value of such 100 STTC values for the
corresponding standard deviation σ. Figure 5 shows the experimental results, where two
different cases are demonstrated. In the first case, the standard deviation used to generate
both signals in the pair is the same, i.e., σa = σb = σ. In the second case, the standard
deviation for one of the signals in the pair is fixed, i.e., σa = 0.25, and the standard deviation
for the other changes, i.e., σb = σ. We can see that in general for both cases the STTC value
decreases as standard deviation σ increases. However, it is interesting to note that when σ
continues increasing so that 2σ is close to and greater than period W , the STTC value no
longer decreases and even increases a little bit. The reason could be that as the standard
deviation increases beyond certain point, the spikes act more like random noise.

Figure 5: Dependence of the expected value of STTC on standard deviation σ for pairs of
“periodic” normally distributed spike trains, with period W = 10, phase shift k = 0 and
synchronicity window ∆t = 0.1.
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4.3 Effects of Synchronicity Window on STTC Measure

We are interested in how the dependence of STTC values on phase shift k is affected by
synchronicity window ∆t. We investigate a set of ∆t, represented in the form of a ratio of
∆t over period W , that is, ∆t/W = [0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6], where W = 10. For
each ∆t, we calculate STTC values as phase shift k changes from 0 to a period, W = 10,
with increments of 0.2. For each k, we generate 100 pairs of normally distributed spike
trains with standard deviation σ = 1. For each pair, we generate 10 periods of spike trains,
and in each period, there are 20 spikes that follow the normal distribution. We calculate
STTC for each pair with synchronicity window ∆t selected from the set of ∆t/W . We use
the mean value of such 100 STTC values for the corresponding phase shift k. Figure 6
shows the experimental results. It is interesting to note that when ∆t/W is large, indicating
that synchronicity window ∆t is large relative to the period W , the general trend observed
in Section 3 and Section 4.1 is inverted. That is, the maximum value of STTC occurs at
the location where phase shift k is half of the period W , and the minimum value of STTC
occurs at the location where phase shift k is zero. The reason could be that the synchronicity
window is large enough to include spikes in neighboring period intervals in the calculation
of the STTC. As a result, when the phase shift is at half the period, it appears that pairs of
spike trains have a better correlation.

Figure 6: Effects of synchronicity window ∆t on the dependence of the expected value of
STTC on phase shift k for pairs of “periodic” normally distributed spike trains, with period
W = 10 and standard deviation σ = 1.
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5 STTCMeasure for Pairs of Poisson Distributed Spike

Trains

In this section we study pairs of Poisson distributed spike trains with certain overlaps. The
overlapped parts of the pair of spike trains contain shared spikes and thus are synchronous,
and the non-overlapped parts are statistically independent. We generate a pair of overlapped
Poisson distributed spike trains by combining two separate Poisson distributed spike trains.
One is the synchronous spike train containing shared spikes, and the other is the independent
spike train. Let the rates of a pair of overlapped Poisson distributed spike trains be λa and
λb, and without loss of generality, let λa ≤ λb, then the rate of the synchronous spike train
is λs = rλa, with 0 ≤ r ≤ 1 being the overlap ratio, and the rates of independent spike
trains are λa − λs and λb − λs, respectively. Figure 7 shows an example of a pair of Poisson
distributed spike trains with r = 0.5, λa = λb = 2, and time limit T = 20. We investigate the
relationship between STTC and overlap ratio r for pairs of Poisson distributed spike trains.

Figure 7: An example of a pair of Poisson distributed spike trains with overlap ratio r = 0.5,
rates λa = λb = 2, and time limit T = 20.

5.1 Relationship Between STTC and Overlap Ratio

To investigate the relationship between STTC and overlap ratio r, we calculate STTC values
for pairs of Poisson distributed spike trains as overlap ratio r changes from 0 to 1. Given a
pair of spiking rates λa and λb, for each r from 0 to 1 with increments of 0.02, we generate
100 pairs of Poisson distributed spike trains with time duration T = 100, and compute the
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mean STTC. We repeat the process for different values of synchronicity window ∆t. The
result for λa = λb = 2 is shown in Figure 8. We observe that in general the relationship
between the expected value of STTC and the overlap ratio is nonlinear. For a fixed λ, as
synchronicity window ∆t decreases, the relationship tends to be linear. We find that this
observation remains the same as we change the spiking rates λa and λb to other values.

Figure 8: Relationship between the expected value of STTC and overlap ratio r for pairs of
Poisson distributed spike trains, where λ = 2, T = 100, and ∆t = [0.01, 0.05, 0.2].

We further derive an analytical formula to estimate STTC,

STTCE(r,∆t, λa, λb) =
1

2

(
r

1 + (1− r)(1− e−2∆tλb)
+

βr

1 + (1− βr)(1− e−2∆tλa)

)
(5.3)

where STTCE denotes an estimate of the expected value of STTC, λa ≤ λb, and β = λa

λb
. The

analytical result of 5.3 closely follows the experimental result of the sample mean of STTC,
as shown in Figures 9 and 10 for Examples 5.1 and 5.2, respectively. Appendix A shows the
details of how we arrive at the expression of STTCE. When ∆t → 0, STTCE → λa+λb

2λb
r,

which implies that the expected value of STTC tends to linearly depend on overlap ratio r.

Remark:

1) STTCE is an increasing function of r, for given ∆t, λa and λb. It has a minimum
value, denoted as STTCE,min, at r = 0 and a maximum value, denoted as STTCE,max,
at r = 1. Substituting r = 0 and r = 1 into 5.3, respectively, we have STTCE,min = 0,

and STTCE,max(∆t, λa, λb) =
1
2

[
1 + β

1+(1−β)(1−e−2∆tλa )

]
.

2) STTCE,max is a function of ∆t, λa and λb, and has a range of 0.5 < STTCE,max ≤ 1.
For a given ∆t, STTCE,max increases as β increases.
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3) For a given λa ≤ λb, STTCE,max increases as ∆t decreases. When ∆t → 0,

STTCE,max → λa+λb

2λb
.

Example 5.1. We conduct experiments similar to ones shown in Figure 8, with parameters
λa = λb = λ = 2, T = 100, and ∆t = [0.01, 0.05, 0.2]. We calculate STTCE,max with the
same parameters and plot both experimental and analytical results side by side in Figure 9.
We also plot the straight line L(r,∆t, λa, λb) = sr, where the slope s is equal to STTCE,max,
and thus a function of ∆t, λa and λb. In this example, since β = 1, s = 1, regardless of the
∆t value. We observe that analytical results of STTCE closely follow experimental results of
the sample mean of STTC. We also observe that the nonlinear curves of STTCE for different
∆t are hanging below one single straight line L(r) = r, since β = 1, and sharing the same
endpoints at r = 0 and r = 1, corresponding to SE,min = 0, and SE,max = 1, respectively. As
∆t decreases, the nonlinear curve of STTCE tends toward to the straight line L(r) = r.

Figure 9: Relationship between the expected value of STTC and overlap ratio r for pairs
of Poisson distributed spike trains when λa = λb, where λa = λb = λ = 2, T = 100, and
∆t = [0.01, 0.05, 0.2].

Example 5.2. We conduct a similar experiments for the case of λa ̸= λb, with parameters
λa = 2, λb = 3, T = 100, and ∆t = [0.01, 0.05, 0.2]. The results are shown in Figure 10. We
observe the similar trends as seen in Example 5.1. The difference is that the endpoint at
r = 1, i.e., STTCE,max, varies with ∆t, since β ̸= 1. Specifically, STTCE,max is less than 1
and increases as ∆t decreases, which makes the nonlinear curves of STTCE tend toward to
the straight lines L(r,∆t) = sr, depending on the values of ∆t, with s = STTCE,max = 0.5+

1
4−e−4∆t . When ∆t → 0, STTCE,max → λa+λb

2λb
= 5

6
, or s = STTCE,max = 0.5 + 1

4−e−4∆t → 5
6
.
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Figure 10: Relationship between the expected value of STTC and overlap ratio r for pairs
of Poisson distributed spike trains when λa ̸= λb, where λa = 2, λb = 3, T = 100, and
∆t = [0.01, 0.05, 0.2].

5.2 Measuring Closeness to Linear Relation

We have observed that given the rates of pairs of Poisson distributed spike trains, λa ≤ λb,
when synchronicity window ∆t decreases, the nonlinear relationship between STTCE(r)
and overlap ratio r tends toward a linear relationship with a form of L(r,∆t, λa, λb) = sr,

where s = STTCE,max = 1
2

[
1 + β

1+(1−β)(1−e−2∆tλa )

]
with 0 < β ≤ 1. We are interested

in quantitatively evaluating the closeness between the nonlinear curve STTCE(r) and the
straight line L(r), for a given ∆t, λa and λb. We use a relative area between STTCE(r)
and L(r) as a measure of closeness. Note the area between STTCE(r) and L(r) is equal to
the area of the triangle, defined by (0, 0), (1, STTCE,max) and (1, 0), subtracted by the area
underneath the curve STTCE(r) with STTCE(r) ≥ 0. Since the area of the triangle is s

2
,

the area between STTCE(r) and L(r) is A = 1
2
s−

∫ 1

0
STTCE(r) dr. We define the measure

for closeness as a relative area Aε =
A
s/2

. That is,

Aε = 1− 2

s

∫ 1

0

STTCE(r) dr

Using standard integration techniques, we can find that

Aε = 1− 2


(

1
b
+ a ln |a|

b2

)
+ β

(
1
d
− c(ln |c+d|−ln |c|)

d2

)
1 + β

c+d


where a = 2−e−2∆tλb , b = e−2∆tλb −1, c = 2−e−2∆tλa and d = −β(1−e−2∆tλa). Appendix C
shows the detailed calculation. We say that the smaller the area is, the closer the nonlinear
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curve STTCE(r) and the straight line L(r) are, and the better the linearity of the relationship
between the expected value STTC and overlap ratio r for pairs of Poisson distributed spike
trains.

We plot the relationship between Aε and ∆t for a given λa ≤ λb in Figure 11, where the
combinations of λa and λb include (λa, λb) = {(2, 2), (4, 4), (8, 8), (2, 3), (2, 5), (2, 7)} . We can
see that when ∆t decreases, Aε decreases, implying that the nonlinear relationship between
the expected value of STTC and overlap ratio for pairs of Poisson distributed spike trains is
closer to a linear relationship.

As an application of this quantitative evaluation of linearity, for any given curve of Aε

with rates λa and λb, as shown in Figure 11, we may set a threshold of Aε, for example
Aε = 0.05, for which a threshold of ∆t, denoted as ∆tTH , can be determined. When we
choose any value ∆t ≤ ∆tTH to calculate the expected value of STTC for pairs of Poisson
distributed spike trains with overlap ratio r, we may use the linear relationship L(r) = λa+λb

2λb
r

to quickly obtain an estimation of the expected value of STTC for given rates λa and λb.

Figure 11: Measure of linearity of the relationship between the expected value of STTC and
overlap ratio r for pairs of Poisson distributed spike trains. The smaller the synchronicity
window ∆t is, the smaller the value of Aε is, and the better the linearity.
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6 Size of Synchronicity Window

The synchronicity window ∆t is a key parameter for calculating STTC. Through studying
STTC, we have the following general observations about the relation of ∆t and STTC values.

1) When ∆t is small enough to where signal spikes in A and B do not overlap, PA =
PB = 0, therefore, STTC = −1

2
(TA + TB).

2) When ∆t is large enough to where all signal spikes in A and B overlap, PA = PB = 1,
therefore, STTC = 1.

3) When ∆t is too large where TA = TB = PA = PB = 1, the problem of dividing by zero
occurs.

4) To avoid dividing by zero in calculating STTC, neither TA nor TB can equal 1.

Based on Observation 4, we can derive an upper bound for ∆t to avoid dividing by zero
in the calculation of STTC. Theorem 6.1 defines such an upper bound.

Theorem 6.1. Assuming that signals A and B have a time limit T and contain spikes at
locations ai for i = 1, 2, · · · , N and bj for j = 1, 2, · · · ,M , respectively, to avoid dividing by
zero in calculating STTC, the upper bound for the synchronicity window ∆t is the minimum
value between ∆ta and ∆tb, that is,

∆t < min {∆ta,∆tb}

where

∆ta = max {da, a1, (T − aN)}

∆tb = max {db, b1, (T − bM)}

where

da = max
i

{
1

2
(ai+1 − ai)

}
, i = 1, 2, · · · , N − 1

db = max
j

{
1

2
(bj+1 − bj)

}
, j = 1, 2, · · · ,M − 1

Proof. The definition of STTC is

STTC =
1

2

(
PA − TB

1− PATB

+
PB − TA

1− PBTA

)
To avoid dividing by zero in calculating STTC, it requires PBTA ̸= 1 and PATB ̸= 1.
By definition, 0 ≤ TA ≤ 1, 0 ≤ TB ≤ 1, 0 ≤ PA ≤ 1, and 0 ≤ PB ≤ 1. Therefore,

• PBTA = 1 if and only if TA = PB = 1

• PATB = 1 if and only if TB = PA = 1
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Also by definition,

• if TA = 1, PB = 1

• if TB = 1, PA = 1

Therefore, the requirement of PBTA ̸= 1 and PATB ̸= 1 is equivalent to the requirement
of TA ̸= 1 and TB ̸= 1.

According to the definition of the synchronicity window ∆t,

• TA ̸= 1 if and only if ∆t < ∆ta

• TB ̸= 1 if and only if ∆t < ∆tb

Therefore, the upper bound for ∆t is the minimum value between ∆ta and ∆tb, that is,

∆t < min {∆ta,∆tb}

As another observation about the STTC value, we realize that when defining an STTC
value [4], the authors state that “we require the coefficient to be equal to +1 for autocorre-
lation, to be −1 when PA = 0, TB = 1 and to have a range of [−1, 1]”, but it can be argued
that the value of STTC can never equal −1, because if TB = 1, PA ̸= 0, and if PA = 0,
TB ̸= 1 (assume that spike trains A and B contain at least one spike, respectively). It can
be further argued that STTC can only approach −1. We demonstrate in Figure 12 that this
argument holds true for the following case where spike train A is a periodic signal with a
period of TP , spike train B is a shift of spike train A by a half of period of TP , and ∆t is
less than TP/2 but approaching TP/2. In this case, TA → 1, TB → 1, PA = 0 and PB = 0,
and therefore, STTC → −1.

Figure 12: Demonstration of STTC approaching −1
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7 Conclusions

We studied one of the popular measures in the field of neuroscience, Spike Time Tiling
Coefficient (STTC), for quantifying the synchrony of spike trains. Through numerical simu-
lations and analytical study, we derived several interesting properties of the STTC measure
that provides a better understanding of the information encoded by the measure. It is
expected that increasing the proportion of synchronous spikes increases the STTC value.
However, the exact relation between STTC and the proportion is not transparent. In this
work, we characterized this relation: when pairs of spike trains are generated from Poisson
processes and synchronicity window is very small, STTC measures the proportion of syn-
chrony. That means, in this setting, STTC is generally non-negative. It was shown in [4]
that STTC could also measure the anti-phase relation, which is what negative values imply.
We explored a little further this aspect and showed how STTC could measure phase-shifts of
periodic bursts. Interestingly, what we observed in a simple burst model was also observed in
periodic-centered bursts with random spikes: STTC decreases as phase-shift increases from
0 to half of the period, and has a minimum value at half of the period. In [4], the range of
STTC was designed to be any value between −1 and 1. However, we showed that the value
of −1 could never be reached. We also addressed the effect of the synchronicity window
on the STTC measure. In general applications, the synchronicity window is selected to be
relatively small. As the synchronicity window becomes too large, the problem of dividing by
zero occurs in the calculation of STTC. We derived an upper bound for the synchronicity
window to avoid such a problem.

This study was not intended to be a systematic study of the STTC measure, but to
provide some insights on how to interpret the values of STTC. For this reason, we did not
study more complex bursting models. In this study, we presented an analytical expression to
describe the relation between the ratio of synchronous spikes and an estimate of the expected
value of STTC for pairs of Poisson distributed spike trains. While the analytical result of the
estimation of the expected value of STTC closely follows the numerical result of the sample
mean of STTC, we have yet to find a rigorous expression for the expected value of STTC.
These could be interesting aspects to investigate in the future.
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A Derivation of (5.3)

We derive (5.3) using the following steps:

1) Estimate E[PA] and E[PB]

2) Compute E[TB] and E[TA]

3) Estimate E [STTC] by 1
2

(
E[PA]−E[TB ]
1−E[PA]E[TB ]

+ E[PB ]−E[TA]
1−E[PB ]E[TA]

)
Estimate E[PA] and E[PB] Let the rates of a pair of overlapped Poisson distributed spike
trains, A and B, be λa and λb, and without loss of generality, let λa ≤ λb, then the rate of
the synchronous spike train, S, is λs = rλa, with 0 ≤ r ≤ 1 being the overlap ratio, and the
rates of independent spike trains, IA and IB, are λa − λs and λb − λs, respectively. Let NS

be the number of spikes in Train S, Na be the number of spikes in Train IA and NAB be the
number of spikes in IA within ±∆t range of the spikes of IB or S, then the total number of
spikes in Train A is NA = NS +Na. By definition of PA, we have

PA =
NS +NAB

NA

It follows that

E(PA) = E
[
NS +NAB

NS +Na

]
= E

[
NS

NA

]
+ E

[
NAB

NA

]
Since IA is independent of IB and S, we estimate E

[
NAB

NA

]
by (1 − r)E[TB] (we add a

factor (1 − r) for we exclude the synchronous portion). To get a rough estimation, we use
E[NS ]
E[NA]

= λs

λa
= r as an estimate of E

[
NS

NA

]
. As a result, we have an estimate of E[PA], denoted

as PA,E,

PA,E = r + (1− r)E[TB]

Similarly, we have an estimate of E[PB], denoted as PB,E,

PB,E = r + (1− rβ)E[TA]

where β = λa

λb
.

Compute E[TB] and E[TA] For a Poisson distributed spike train with rate λ, the distance
between two neighboring spikes, x, follows an exponential distribution λe−λx for x ≥ 0.
Therefore, based on the definition of TB, an expected value of TB is

E[TB] = 2∆tλb − λb

∫ 2∆t

0

[(2∆t− x)(λbe
−λbx)] dx

where ∆t is the size of the synchronicity window. The first term on the right-hand side of the
formula is the total time covered by the synchronicity window given rate λb, and the second
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term is the overlapping time when the synchronicity window overlaps two spikes. Since the
definition of calculating TB states that the overlapping area counts only once, the second
term is subtracted from the first term. Using the integral formula for exponential functions∫

eax dx =
1

a
eax∫

xeax dx =
ax− 1

a2
eax

we have

E[TB] = 2∆tλb − λb

∫ 2∆t

0

(2∆tλbe
−λbx) dx+ λb

∫ 2∆t

0

(λbxe
−λbx) dx

= 2∆tλb + 2∆tλb(e
−2∆tλb − 1)− λb

[
2∆te−2∆tλb +

1

λb

(e−2∆tλb − 1)

]
= 1− e−2∆tλb

Similarly, we have

E[TA] = 1− e−2∆tλa

Estimate E[STTC] Using E[TB], E[TA], PA,E and PB,E for TB, TA, PA and PB, re-
spectively, in the definition of STTC, an estimate of expected value of STTC, denoted as
STTCE(r,∆t, λa, λb), is

STTCE(r,∆t, λa, λb) =
1

2

( [
r + (1− r)E[TB]

]
− E[TB]

1−
[
r + (1− r)E[TB]

]
E[TB]

+

[
rβ + (1− rβ)E[TA]

]
− E[TA]

1−
[
rβ + (1− rβ)E[TA]

]
E[TA]

)

=
1

2

(
r
(
1− E[TB]

)(
1 + E[TB]− rE[TB]

)(
1− E[TB]

) + rβ
(
1− E[TA]

)(
1 + E[TA]− rβ E[TA]

)(
1− E[TA]

))

=
1

2

(
r

1 + (1− r)E[TB]
+

βr

1 + (1− βr)E[TA]

)
=

1

2

(
r

1 + (1− r)(1− e−2∆tλb)
+

βr

1 + (1− βr)(1− e−2∆tλa)

)
When λa = λb, β = 1, and E[TA] = E[TB], and thus

STTCE(r,∆t, λa, λb) =
r

1 + (1− r)(1− e−2∆tλa)

Note that in general E[A
B
] ̸= E[A]

E[B]
or E[AB] ̸= E[A]E[B]. In this sense, STTCE is an esti-

mate of the expected value of STTC, and PA,E and PB,E are estimates of the expected values
of PA and PB, respectively. However, in our case the analytical result STTCE(r,∆t, λa, λb)
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closely follows the numerical result of the sample mean of STTC. We think it is a very inter-
esting observation though we have yet to find a rigorous expression for the expected value
of STTC.

Remark:

1) PA,E and PB,E are dependent on overlap ratio r. For a given E[TB] and E[TA], the
dependence is linear, that is, PA,E = r+ (1− r)E[TB] and PB,E = rβ + (1− rβ)E[TA].

2) The relationship between STTC and overlap ratio r is reflected in PA,E and PB,E, but
not in E[TA] or E[TB] since they are independent of r. This is consistent with the
definition of these variables, that is, PA and PB reflect the relations between the paired
signals, and TA and TB contain information about the signals themselves.

B More Numerical Examples

Example B.1. We conduct an experiment with a fixed λa and ∆t, but a varying β =
λa

λb
. Specifically, we use parameters ∆t = 0.1, λa = 2 and λb = [3, 5, 7], which indicates

β = [0.67, 0.4, 0.29]. The results are shown in Figure 13. We observe that as β decreases,

STTCE,max decreases, where STTCE,max = 1
2

[
1 + β

1+(1−β)E[TA]

]
= 0.5+ β

2+0.66(1−β)
. Also, we

observe that analytical results STTCE closely follow experimental results of expected values
of STTC.

Figure 13: Relationship between the expected value of STTC and overlap ratio r for pairs
of Poisson distributed spike trains with fixed λa and ∆t, but varying β = λa

λb
, where λa = 2,

λb = [3, 5, 7], T = 100, and ∆ = 0.1.
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Example B.2. We conduct an experiment with a fixed β = λa

λb
= 1, and a fixed product

λ∆t = 0.2, where ∆t = [0.01, 0.05, 0.1] and λ = [20, 4, 2]. The results are shown in Figure
14. As expected, the nonlinear curves of STTCE for the three different cases are the same
since β and λ∆t are the same. Again, we observe that analytical results STTCE closely
follow experimental results of expected values of STTC.

Figure 14: Relationship between the expected value of STTC and overlap ratio r for pairs
of Poisson distributed spike trains with fixed β = λa

λb
= 1 and product λ∆t = 0.2, where

T = 100, λ = [20, 4, 2] and ∆t = [0.01, 0.05, 0.1], respectively.

Example B.3. In calculating STTC, we need first determine the values of TA, TB, PA, PB.
To get an explicit impression of relationships between them, we present both experimental
and analytical results of the expected values of STTC, TA, TB, PA, and PB side by side
in Figures 15 and 16 for cases of λa = λb and λa ≠ λb, respectively. Parameters used are
∆t = 0.1, T = 100. In Figure 15, with λa = λb = λ = 2, we observe that E[TA] = E[TB] =
0.33 and PA,E = PB,E = 0.67r + 0.33. At r = 0, PA,E = PB,E = 0.33 and STTCE = 0;
at r = 1, PA,E = PB,E = 0.1 and STTCE = 1. In Figure 16, with λa = 2 and λb = 3, we
observe that E[TA] = 0.33, E[TB] = 0.45, PB,E = 0.45r + 0.33 and PA,E = 0.55r + 0.45. At
r = 0, PA,E = E[TB] = 0.45, PB,E = E[TA] = 0.33 and STTCE = 0; at r = 1, PA,E = 1,
PB,E = 0.78 and STTCE = 0.8. In both Figure 15 and Figure 16, we observe that analytical
results STTCE, E[TB], E[TA], PA,E and PB,E closely follow experimental results of expected
values of STTC, TB, TA, PA and PB.
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Figure 15: Relationship between the expected value of STTC, TA, TB, PA, PB and overlap
ratio r for pairs of Poisson distributed spike trains when λa = λb, where λa = λb = λ = 2,
T = 100, and ∆t = 0.1.

Figure 16: Relationship between the expected value of STTC, TA, TB, PA, PB and overlap
ratio r for pairs of Poisson distributed spike trains when λa ≠ λb, where λa = 2, λb = 3,
T = 100, and ∆t = 0.1.
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C Calculation of Aε

Given the nonlinear curve,

STTCE(r,∆t, λa, λb) =
1

2

(
r

1 + (1− r)E[TB]
+

βr

1 + (1− βr)E[TA]

)
and the straight line

L(r,∆t, λa, λb) = sr

the area between STTCE(r) and L(r) for a given ∆t, λa and λb is,

A =
1

2
s−

∫ 1

0

STTCE(r) dr

where

s = STTCE(r = 1) =
1

2

[
1 +

β

1 + (1− β)E[TA]

]
The closeness between STTCE(r) and L(r) is measured by a relative area, Aε, which defined
as a ratio of A over 1

2
s, that is,

Aε = 1− 2

s

∫ 1

0

STTCE(r) dr

The smaller Aε is, the closer STTCE(r) and L(r) are, and the closer to a linear relation
between the expected value of STTC and r.

When λa = λb, β = 1, and thus s = 1 and∫ 1

0

STTCE(r) dr =

∫ 1

0

r

1 + E[TB]− rE[TB]
dr

Letting a = 1 + E[TB] and b = −E[TB], we have∫ 1

0

STTCE(r) dr =

∫ 1

0

r

a+ br
dr

Using the integral formula

∫
x

u+ vx
dx =

1

v

∫ (
1− u

u+ vx

)
dx

=
1

v

∫
1 dx− u

v2

∫ (
1

u+ vx

)
d(u+ vx)

=
1

v
x− u

v2
ln |u+ vx|

we have
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∫ 1

0

STTCE(r) dr =

∫ 1

0

r

a+ br
dr

=
1

b
− a

b2
(ln |a+ b| − ln |a|) = 1

b
+

a ln |a|
b2

Therefore,

Aε = 1− 2

s

∫ 1

0

STTCE(r) dr

= 1− 2

(
1

b
+

a ln |a|
b2

)
When λa ̸= λb,

s =
1

2

[
1 +

β

1 + (1− β)E[TA]

]
and

∫ 1

0

STTCE(r) dr =
1

2

∫ 1

0

(
r

1 + E[TB]− rE[TB]
+

βr

1 + E[TA]− rβ E[TA]

)
dr

Letting c = 1 + E[TA] and d = −β E[TA], we have

s =
1

2

(
1 +

β

c+ d

)
and ∫ 1

0

STTCE(r) dr =
1

2

∫ 1

0

(
r

a+ br
+

βr

c+ dr

)
dr

Using the same integral formula, we have∫ 1

0

STTCE(r) dr =
1

2

[(
1

b
+

a ln |a|
b2

)
+ β

(
1

d
− c(ln |c+ d| − ln |c|)

d2

)]
Therefore,

Aε = 1− 2

s

∫ 1

0

STTCE(r) dr = 1− 2


(

1
b
+ a ln |a|

b2

)
+ β

(
1
d
− c(ln |c+d|−ln |c|)

d2

)
1 + β

c+d
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