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Abstract. Univariate regression models are commonly used in statistics and machine learning to examine the
relationship between an outcome variable and a set of explanatory variables, and possibly use this
relationship to predict the unknown values of the outcome variable. However, when dealing with
multiple outcome variables that are interrelated, multivariate regression models are preferred. These
models simultaneously capture the dependencies between outcome variables and their collective re-
lationships with explanatory variables. While multivariate regression models provide a rigorous
and comprehensive understanding of factors associated with outcomes of interest, they have sev-
eral limitations including: increased model complexity, larger sample size requirements, and lack
of interpretability. To address these issues, we propose an alternative approach, called Integrated
Multivariate Regression (IMR) that reduces the dimensionality of the outcome variables by trans-
forming them into one or more derived outcome variables that retain important information. Using
simulated and real data, we demonstrate that IMR simplifies the analysis and increases statistical
power by reducing the number of parameters, while simultaneously maintaining interpretability and
accounting for interdependencies among the outcome variables.

1. Introduction. In statistics and machine learning, univariate regression models are com-
monly used to capture the relationship between an outcome of interest (also known as response
variable or dependent variable) and one or more explanatory variables (also known as covari-
ates or independent variables). However, many scientific problems involve the analysis of
multiple outcome variables measured simultaneously. For example, we may measure multi-
ple cognitive tests for a group of subjects and examine the associations between these mea-
surements and specific demographic and clinical factors. Other instances include evaluating
variations in expression values of numerous genes in response to different experimental con-
ditions, assessing improvements across various health outcomes for different treatments, and
analyzing changes in various crime rates in response to a new policy. Real-life applications of
such nature can be challenging to analyze, particularly when dealing with small sample sizes,
which is often the case. Hence, it is crucial to develop new methods that are flexible and
powerful enough to handle the complexity of regression problems with multiple outcomes.

For such problems, we could simply use individual regression (IR) models, i.e., one regres-
sion model for each outcome. As we show later, such an approach is not efficient – it lacks
statistical power since it ignores the underlying relationship among the outcome variables. Al-
ternatively, we can use multivariate regression (MR) models [13], which are particularly useful
when the outcome variables are interrelated and may exhibit dependencies that need to be ac-
counted for in the analysis. Multivariate regression allows for modeling the interdependencies
between the outcome variables and capturing their collective relationships with the explan-
atory variables. By considering multiple outcome variables simultaneously, researchers can
gain a more comprehensive understanding of the corresponding scientific problem. However,
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in practice, multivariate regression models have some limitations. 1) With multiple outcomes, 
the complexity of the regression model increases. As the number of outcome variables grows, 
the model’s parameters, including the regression coefficients, al so in crease. Th is complexity 
can lead to challenges in fitting the model ( see Section 4  f or r eal e xamples). 2 ) Interpreting 
the results of multivariate regression models with multiple outcomes can be more challeng-
ing compared to models with a single outcome. In these models, the coefficients capture the 
relationship between the explanatory variables and each outcome, considering the other out-
comes’ influence. I nterpreting t he i ndividual c oefficients req uires car eful con sideration and 
understanding of the underlying relationships and dependencies between the outcomes. Ad-
ditionally, presenting and communicating the results of multivariate regression models in a 
meaningful and concise manner can be complex. 3) Multivariate regression models gener-
ally require larger sample sizes compared to models with a single outcome because of their 
relatively large number of parameters. Insufficient sa mple si zes ma y re sult in  un stable or 
unreliable models, limiting their generalizability and usefulness.

To address these issues, one possible solution is to use canonical correlation analysis (CCA)
[12]. CCA reduces the number of parameters while exploring and quantifying the relationship 
between two sets of variables, namely explanatory and outcome variables. Its objective is to 
identify the linear combinations of variables from each set that exhibit the highest correlation 
with each other. By doing so, CCA aims to provide insights into the underlying associations 
and dependencies between two multivariate datasets. However, interpreting the results can 
still be challenging due to the complex nature of the analysis. Additionally, CCA treats 
outcome and explanatory variables equally, disregarding the central role of outcome variables 
as the primary focus of the analysis.

In this paper, we propose a simpler and more interpretable approach called integrated 
multivariate regression (IMR). Similar to standard multivariate regression, IMR accounts for 
the interdependencies among multiple outcomes. However, in contrast, IMR achieves this 
while utilizing a substantially smaller number of parameters to increase statistical power. 
More specifically, IMR r elies on Principal Component Analysis (PCA), which i s a  statistical 
technique used for dimensionality reduction. While PCA is commonly used to reduce the di-
mensionality of explanatory variables, in this study, we employ it to reduce the dimensionality 
of the outcome variables. Our objective is to transform the multiple outcome variables into a 
single derived outcome variable that preserves as much information as possible. Specifically, 
we define o ur s ingle o utcome variable a s t he fi rst pr incipal co mponent, wh ich ca ptures the 
maximum variance among the multiple outcome measurements. If necessary, we can utilize 
two or more principal components to retain additional information, while still maintaining a 
significantly lower number of parameters compared to standard multivariate regression.

This paper is organized as follows. In Section 2, we provide a brief review of individual 
regression (IR), multivariate regression (MR), and principal component analysis (PCA). We 
then explain our proposed integrated multivariate regression (IMR) method in detail. In 
Section 3, we evaluate the performance of our method using a set of simulation studies. 
Section 4 focuses on the application of IMR to two real problems. The first problem involves 
examining the association between multiple cognitive tests and a set of demographic and 
clinical variables. The second problem pertains to evaluating the effect of a  specific genotype 
on 120 genes potentially involved in nutritional problems. Finally, in Section 5, we discuss
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the advantages and limitations of our method and briefly explore possible future directions.

2. Method.

Individual Regression Model. Standard univariate regression with a single outcome vari-
able and multiple explanatory variables can be presented as follows:

E(Y |X) = β0 +Xβ,(2.1)

which models the expectation (mean) of the outcome variable, Y , for a given set of explanatory
variables, X, as a linear combination of them. Here, Y is an n×1 vector of the outcome values
for n data points, X is a matrix of n× p for p explanatory variables, β0 is the intercept, and
β is a p× 1 vector of regression coefficients. Alternatively, we can write the model as follows:

E(Y |X) = Xβ.(2.2)

In this case, X is an n× (p+ 1) matrix, where the first column is one, and β is a (p+ 1)× 1
vector, where the first element is the intercept.

The regression parameters are obtained using the least squares estimates. The significance
of each explanatory variable, Xj , can be evaluated based on its corresponding regression
coefficient, βj , by testing the null hypothesis βj = 0. For this, we can use Analysis of Variance
(ANOVA). When there are multiple outcome variables, we can simply use a separate univariate
regression model for each outcome. We refer to this approach as individual regression (IR)
model.

Multivariate Regression Model. As discussed in the Introduction section, when there are
multiple, m, outcome variables, it is more appropriate to use a multivariate regression (MR)
model. In this case, we rewrite Equation 2.1 as follows:

E(Y|X) = Xβββ.(2.3)

Here, Y is an n × m matrix of the outcome values, X is an n × (p + 1) matrix, and βββ 
is a matrix of (p + 1) × m regression parameters. As before, the regression parameters β0 
and β can be obtained using the least squares estimates. Then, multivariate analysis of 
variance (MANOVA) can be used to evaluate the overall and collective association of a specific 
explanatory variable with the set of outcome variables.

Principal Component Analysis (PCA). As mentioned above, we propose to use PCA in 
order to reduce the dimensionality of the outcome variables. The concept of PCA was first 
introduced by Pearson [18] to study the lines and planes of closest fit for high-dimensional data 
by finding t he d irection t hat maximizes t he variance i n multivariate d ata. L ater, Hotelling 
extended this concept, established its statistical and mathematical foundation, and showed 
that PCA is equivalent to finding t he e igenvectors and e igenvalues o f t he c ovariance matrix 
of multivariate data [11].

Consider a set of outcome variables, Y1, . . . , Ym, which are standardized to have zero 
means and variances of one. We denote the centered matrix of observed data as y1, . . . , ym. 
The principal components are a set of orthonormal basis, v1, v2, . . . , vm, such that v1 is the
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basis with the largest sample variance, v2 is the basis with the second largest sample variance
that it is orthogonal to v1, v3 is the basis with the third largest sample variance that it is
orthogonal to v1, v2, and so forth.

To find these principal components, we first calculate their covariance matrix SSS and its
corresponding eigenvectors: v1, v2, . . . , vm. Then, we order the eigenvectors based on the
descending order of their corresponding eigenvalues, λ1, λ2, . . . , λm,

SSSvj = λjvj , j = 1, . . . ,m, λ1 ≥ λ2 ≥ . . . ≥ λm.

The eigenvectors represent the directions in the original feature space, and the corre-
sponding eigenvalues indicate the amount of variance explained by each component. The
eigenvectors are then used to project the data onto the new coordinate system defined by
the principal components. By selecting a subset, q ≪ m, of the principal components, one
can effectively reduce the dimensionality of the data while preserving the most informative
aspects. Here, we set q = 1 to select the first principal component, denoted as Z, which can
be written as a weighted sum of the original variables:

Z = v11Y1 + v12Y2 + . . .+ v1mYm,(2.4)

where v11, . . . , v1m are the elements of the first eigenvector (i.e., the eigenvector with the
highest eigenvalue, λ1).

Integrated Multivariate Regression. Given the first principal component of the outcome
variables, we reduce Equation 2.3 to the simple form presented in Equation 2.2:

E(Z|X) = Xβ.(2.5)

From Equation 2.4, we have

E[Z|X] = v11E[Y1|X] + v12E[Y2|X] + . . .+ v1mE[Ym|X].(2.6)

Therefore, we can rewrite Equation 2.2 as

v11E[Y1|X] + v12E[Y2|X] + . . .+ v1mE[Ym|X] = Xβ.(2.7)

Then, for Y1, we have

E[Y1|X] =
1

v11
{Xβ − (v12E[Y2|X] + . . .+ v1mE[Ym|X])}

= Xβ∗.

Similar equations can be written for Y2, . . . , Ym. Note that the resulting model for each out-
come variable itself is in the form of a univariate regression (Equation 2.2), but its parameters 
are not the same as what we would obtain by fitting individual regression (IR) models.

We can extend this approach to cases where the first principal component alone does not 
capture a significant p ortion o f t he v ariance i n t he d ata. I n s uch s ituations, w e h ave the 
option to include multiple principal components in the analysis. By doing so, we can still 
effectively r educe t he d imensionality o f t he o utcome variables a nd m inimize t he number of 
required parameters. However, it is important to note that the resulting model may not be 
as straightforward compared to using only the first principal component.
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Figure 1. Correlation matrix (left), scree plot (middle), and cumulative proportion of variance explained
by the principal components for simulated data with high (top row) and low (bottom row) correlations among
the outcome variables.

3. Simulation Results. In this section, we evaluate the performance of our proposed
method using simulation studies. We assume that we are interested in the association between
a genetic factor, denoted as a binary variable X (e.g., 1 for allele A and 0 for allele a), and the
overall health, denoted as Z, in a population. While we cannot directly observe Z, we can use
five different medical tests, Y1, . . . , Y5 to measure it indirectly. We expect these measurements
to be correlated since they all represent the overall health of a subject. More specifically, we
simulate data as follows:

X ∼ Bernoulli(0.25),

Z ∼ N(1 + βX, 1),

Yj ∼ N(aj + bjZ, s
2
j ), j = 1, . . . , 5.

Here, we assume that 25% of the population have allele A and their overall measurement of 
health, Z, increases by β on average. We assume that Z and the medical tests are normally 
distributed. For each medical test, the average measurement is aj + bjZ (i.e., a function of Z, 
where bj captures the strength of relationship) and the measurement noise is controlled by sj . 

We conduct three simulation studies. In each simulation, we use the above model to 
generate 1000 simulated datasets. For each simulated data, we compare our method (IMR) to 
five individual regression (IR) models, and a multivariate regression (MR) model that captures
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Figure 2. Left panel: Statistical power comparison among the three alternative methods using simulated
data with highly correlated outcome variables. Middle panel: Statistical power comparison when the outcome
variables have low correlations. Right panel: Comparing the Type I Error rates among the three methods.

the effect of the gene on the five outcome variables simultaneously using the Pillai test statistic
[19] implemented in the car package [8] in R. For all models, we set the significance level
at 0.05 and reject the null hypothesis if p-value < 0.05. We compare the three models in
terms of their statistical power, which refers to the percentage of times (across 1000 simulated
datasets) that a model correctly rejects the null hypothesis. Additionally, we examine their
Type I error, which represents the percentage of times (across 1000 simulated datasets) that
a model incorrectly rejects the null hypothesis.

For Simulation I, we assume β = 0.5 so the genetic factor is indeed associated with the
overall health. Therefore, under this scenario, the models should reject the null hypothesis and
conclude that the gene is in fact associated with the outcome variables. For this simulation, we
compare the models in terms of their statistical power. To generate data, we randomly sample
aj and bj from the N(0, 1) distribution and sample sj from the Uniform(0, 1) distribution.
For a sample dataset under Simulation I, Figure 1 (top row) shows the pairwise scatter plots
and correlation coefficients (left panel), the scree plot (i.e., the eigenvalues of the principal
components; middle panel), and the cumulative percentage of the overall variance explained by
the principal components (right panel). As we can see, Y1, . . . , Y5 are significantly correlated,
and the first principal component is a good representative of the data, which captures around
60% of the overall variation.

For Simulation II, we follow the same process to generate data, but this time we sample
sj from the Uniform(2, 3) distribution. By doing so, we increase the noise in the observed
outcome variables, and as a result, weaken the correlations among them. The bottom row in
Figure 1 shows the corresponding plots. As we can see, the correlation coefficients are small,
and the first principal component only captures about 25% of the overall variation in the data.
Nevertheless, as before, we expect the models to reject the null hypothesis and conclude that
the gene is significantly associated with the overall health since we kept β = 0.5. Similar to
Simulation I, under this scenario, we compare the three models in terms of their statistical
power.

For Simulation III, we use a similar setup as Simulation II, but this time we set β = 0
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Table 1
Definition and summary statistics for the NACC data. The outcome variables include MMSE, ANIMALS,

and TMTB, and explanatory variables include disease status (diagnosis), gender (female), age, years of educa-
tion, and systolic blood pressure (bpsys). For categorical variables, the frequency and percentage (in parenthesis)
of each category are presented. For numerical variables, we provide the median and interquartile range (IQR,
in parenthesis).

to remove the effect of the gene on the overall h ealth. In this setting, the models should not 
reject the null hypothesis, which indicates that the gene is not associated with the outcome 
variables. Failing to do so will contribute to the Type I error. Therefore, under this scenario, 
we compare the three models in terms of their Type I error rate. Because we have set the 
significance level at 0.05, we expect the Type I  error rate for the models to be close to 0.05.

Figure 2 compares the three alternative models (IR, MR, and IMR) in terms of their 
statistical power under Simulations I & II, and their Type I error rate under Simulation III. 
For Simulation I, the left panel shows that our proposed approach has substantially higher 
power compared to the two alternatives. Additionally, while IR and MR perform similarly 
for small sample sizes, MR outperforms IR as the sample size increases. For Simulation 
II (middle panel), the overall power decreases for all three methods due to the high level 
of noise. Nevertheless, despite the absence of substantial correlation between the outcome 
variables, IMR continues to exhibit superior performance compared to the other two models. 
For Simulation III (right panel), where the null hypothesis is true, the observed trend suggests 
that all three models adhere to their expected Type I error rate of 0.05.

4. Real Data Analysis.

Demographic and Clinical Factors Associated with Cognitive Performance. The num-
ber of patients suffering f rom A lzheimer’s d isease ( AD) i s p rojected t o r each 1 3 m illion by 
2050 [1]. Therefore, there is a great need to 1) understand the underlying factors contributing 
to this disease, 2) identify it as early as possible, and 3) improve patients’ quality of life by re-
ducing and controlling its symptoms. Here, we focus on a battery of cognitive tests commonly 
used to examine the severity of the disease and aim to identify different demographic and
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clinical factors associated with these tests. To achieve this goal, we will use the data obtained
from the National Alzheimer’s Coordinating Center (NACC) [2, 23], which standardizes data
collected from more than 30 Alzheimer’s Disease Research Centers (ADRC) across the United
States. The data contain information from multiple time points and across different data
modalities, including clinical information from the Uniform Data Set (UDS) [16, 4]. Here,
we have selected all baseline visits and applied the Crosswalk Study [15] to convert UDS 3.0
neuropsychological testing features to 2.0 features to preserve more subjects.

The final dataset includes 2700 subjects classified into one of three categories: healthy
controls (HC), mild cognitive impairment (MCI), and Alzheimer’s disease (AD). Each subject
was examined using several cognitive tests, including the Mini Mental State Examination
(MMSE) test [7], ANIMALS [9], and Trail Making Test Part B (TMTB) [20, 6]. MMSE,
which is by far one of the most commonly used screening method at primary care visits, is a
brief questionnaire-based test that helps evaluate an individual’s cognitive functioning across
several areas, including orientation, memory, attention, language, and visuospatial skills. The
total score ranges from 0 to 30, with higher scores indicating better cognitive function. The
ANIMALS test involves reciting the name of animals in one minute. Similar to MMSE,
higher scores are better. For TMTB, participants are given 25 circles on a piece of paper,
with numbers (1 to 12) and letters (A through L). They are asked to connect the circles in
ascending order as quickly as possible, alternating back and forth from numbers to letters.
Unlike MMSE and ANIMALS, where higher scores are better, lower scores are preferred for
TMTB. We expect MMSE and ANIMALS to be positively correlated with each other, and
both negatively correlated with TMTB. The three test indirectly capture the overall cognitive
ability of the participants.

In this paper, our goal is to investigate whether these test scores are significantly associated
with the diagnosis, as well as several demographic and clinical variables including age, gender,
education, and blood pressure. Table 1 provides a summary of all explanatory and outcome
variables along with a brief description.

We start our analysis by fitting three individual regression (IR) models, one for each

Table 2
Individual regression models for the NACC Data with three outcome variables.
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Table 3
Multivariate Analysis of Variance (MANOVA) of the NACC data using Pillai test statistic [19].

outcome variable. The results are presented in Table 2 (which are prepared using the R
package gtsummary [22]). As we can see, diagnosis, age, and education show strong statistical
significance (all p-values < 0.001), whereas the associations with gender and blood pressure
are not significant (at the 0.05 level) according to these models.

Using a multivariate regression (MR) model to examine the associations with the three
outcome variables simultaneously, our analysis further confirms that diagnosis, age, and edu-
cation are indeed statistically significant factors (Table 3). As before, this model shows that
gender and blood pressure lack statistical significance when examined in relation to the set
of outcome variables. These findings shed light on the multivariate relationships between
the three cognitive tests and the set of demographic (age, gender, education) and clinical
(diagnosis, blood pressure) variables under investigation.

Finally, we apply our proposed IMR method to the NACC data. As we can see in Figure 3
(left panel), the three outcome variables, MMSE, ANIMALS, and TMTB, are highly correlated
– MMSE and ANIMALS are positively correlated, with the correlation coefficient equal to

Figure 3. Correlation matrix (left), scree plot (middle), and cumulative proportion of variance explained
by principal components (right) for the three outcome variables from the NACC data. As we can see, the three
variables are highly correlated (both positively and negatively) and the first principal component captures almost
2/3 of the overall variance.
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Table 4
Regression analysis results for the NACC data using our proposed IMR method.

0.554, and they are both negatively correlated with TMTB, with the correlation coefficients
equal to -0.409 and -0.518 respectively. The scree plot (middle panel) and the proportion
of variance explained (right panel) justify using the first principal component as a singular
combined variable in place of the the original three outcome variables. In this case, the first
principle component captures almost 2/3 of the overall variance.

The elements of the first eigenvector (i.e., with the highest eigenvalue) are v11 = −0.57,
v12 = −0.61, v13 = 0.55. The first principal component uses these elements to create a
combined score, henceforth called the Combined Cognitive Score (CCS), as follows:

CCS = −0.57×MMSE∗ − 0.61×ANIMALS∗ + 0.55× TMTB∗,(4.1)

where MMSE∗, ANIMALS∗, and TMTB∗ are the standardized (mean zero and variance 1) 
versions of the original outcome variables. This way, CCS has the same direction as TMTB and 
opposite direction as MMSE and ANIMALS. Therefore, for CCS lower scores are preferred.

Using CCS as the outcome variable, we fit a linear regression model with diagnosis, gender, 
age, education, and blood pressure as the explanatory variables. The results are presented in
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Figure 4. Left panel: The distribution of p-values for the genotype (wild-type and PPARα-deficient) effect
on 120 genes potentially involved in nutritional problems, while controlling for the type of diet. Middle panel:
The scree plot from applying PCA to the gene expression data. Note that there are only 40 principal components
since the sample size is 40 even though there are 120 variables. Right panel: The cumulative proportion of
variance explained by principal components for the gene expression data. As we can see, the scree plot levels
off after the first three principal components, which together capture about 65% of the overall variance.

Table 4. While our findings are similar to those provided by IR and MR, our method shows
that blood pressure is marginally significant (p-value = 0.049). Our model indicates that
compared to the healthy controls, on average CCS increases by 0.989 for patients with MCI
and by 2.412 for patients with AD. As age increases by one year, the average CCS increases by
0.023. Education on the other hand improves the score: for each extra year of education, CCS
decreases (improves) by -0.099. Finally, for each 10 units increase in systolic blood pressure,
CCS increases (worsens) by 0.02 on average. This finding is consistent with some recent
studies [21, 17] that have shown there is a slight correlation between the cognitive status of
people and their blood pressure level. More specifically, these studies confirm an underlying
association between hypertension and poor performances in executive function and attention
tests, as well as possible dementia later in life. Our IMR approach confirms these findings.
As illustrated by simulation studies earlier, we believe this is due to our model’s ability to
identify weak signals because of its improved power.

Effect of Diet and Genotype on Lipid Metabolism. Next, we re-examine the study con-
ducted by Martin et al. [14] that highlights the importance of proliferator-activated receptor-α
(PPARα) in regulating lipid and xenobiotic metabolism and provides novel insights into its
regulatory mechanisms through a nutrigenomic approach. The study examines the effects of
different fatty acids (FAs) compositions on liver lipids and gene expression in wild-type and
PPARα-deficient mice under low-fat intake conditions. More specifically, the study includes
20 wild-type and 20 PPARα-deficient mice under five different low fat diets. For each mouse,
they measured the expression level of 120 genes related to class II nuclear receptor (NR)
signaling. The study suggests that even under conditions of low-fat intake, dietary FAs can
reduce hepatic steatosis. Further, it highlights the role of PPARα in regulating hepatic FA
content and composition.

Using individual regression (IR) models and controlling for the type of diet, we find that
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the genotype (i.e, wild-type vs. PPARα-deficient) is significantly associated (p-value < 0.05)
with 52 out of 120 genes. The distribution of p-values are presented in Figure 4 (left panel).
Before making any conclusion, we need to account for the fact that multiple (120) hypotheses
are tested simultaneously. However, different methods lead to substantially different results.
Using the Holm-Bonferroni [10] method, only 26 genes remain significant; whereas, using the
False Discovery Rate (FDR) approach [3] to adjust the p-values leads to 38 significant genes
at the 0.05 level.

As discussed above, alternatively we could evaluate the association of the 120 gene ex-
pression values simultaneously with the genotype using a multivariate regression (MR) model
to account for their underling correlation structure. In this case, however, we only have 40
subjects for the 120 outcome variables. Therefore, the standard multivariate regression model
(like the one we used earlier) is infeasible for this problem.

We could use our proposed integrated multivariate regression (IMR) model. We start by
finding the principal components. The scree plot (Figure 4, middle panel) and the cumulative
proportion of variance explained by the principal components (Figure 4, right panel) indicate
that using only the first principal component is not sufficient. Therefore, we use the first
three principal components instead, since that is the point the scree plot levels off, and we can
capture 65% of overall variance. Table 5 provides the list of top five genes with the highest
absolute weights for the first three principal components (PC1, PC2, and PC3).

Using the top three principal components leads to a slightly more complex model compared
to the ones we used earlier. However, by using the first three principal components as the
derived outcome variables (instead of the original 120 gene expressions), we are able to fit a
multivariate regression model with substantially smaller number of parameters. Our results
(Table 6) shows that the overall gene expression values (captured by their first three principal
components) are significantly associated with both diet and genotype (p-values < 0.001). Our
results confirm the finding of Martin et al. [14].

Table 5
Top five genes with the highest absolute weights for each of the first three principal components.

338



INTEGRATED MULTIVARIATE REGRESSION

Table 6
Evaluating the effect of diet and genotype on overall gene expression using IMR with three principal com-

ponents.

5. Discussion. In this paper, we have proposed a simple, yet powerful model for regres-
sion problems with multiple outcome variables. Our simulation results show that this ap-
proach outperforms some commonly-used alternative models, including individual univariate 
regression, which ignore the correlation structure in the outcome variables, and multivariate 
regression, which require estimating a large number of parameters. We have also applied our 
method to two scientific problems involving multiple cognitive tests and genomics data.

One of the main drawbacks of our method is that by reducing the dimensionality of the 
outcome variables, it could lose substantial amount of information, especially if the outcome 
variables are not highly correlated. To avoid this issue, as we discussed above, one could 
use multiple principal components in the analysis. This, however, requires finding t he right 
trade-off b etween r educing the number o f parameters and i nformation l oss. This can b e the 
focus of future research.

When finding t he p rincipal c omponents ( and e igenvectors), i t i s i mportant t o recognize 
that what matters is the line along which the variance is maximized. The direction along that 
line is arbitrary and can change depending on how the eigenvectors are computed. Therefore, 
The utility of the principal components (and eigenvectors) remains unchanged if we reverse 
their direction by multiplying them by -1. As an example, consider the definition o f the 
Combined Cognitive Score (CCS) for Alzheimer’s disease diagnosis in Section 4 based on 
the first p rincipal c omponent. I n t his c ase, C CS i s c alculated b y multiplying MMSE and 
ANIMALS by negative numbers (-0.57 and -0.61 respectively), and multiplying TMTB by a 
positive number (0.55). This way, PCA aligns MMSE and ANIMALS with TMTB, so the 
overall score, CCS, is also aligned with TMTB (i.e., lower scores are better). The overall 
results would remain unchanged if we reverse the signs of the three multipliers, resulting in 
an overall score aligned with MMSE and ANIMALS, where higher scores are indicative of 
better cognitive performance. While this changes the interpretation of the score, our results 
and findings remain the same.

For the IR model discussed in this paper, one needs to account for multiple hypothesis 
testing, since the error rate of individual tests no longer accurately represents the overall 
error rate. While this is outside of the scope of this current paper, it is common practice 
to address this issue by employing methodologies that adjust the p-values. Popular methods 
include: Bonferroni [5] Holm-Bonferroni [10], and False Discovery Rate (FDR) [3]. Future 
research could involve comparing our proposed approach to various methods designed for 
taking multiple hypothesis testing into account.
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