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Chapter 1

Dimensional Analysis and
Scaling

1.1 Mathematical models
A mathematical model describes the behavior of a real-life system in terms of mathematical
equations. These equations represent the relations between the relevant properties of the
system under consideration. In these models we meet with variables and parameters. In
variables, we discern between dependent and independent. For example, in mechanical
systems one usually is interested in the positions of the different parts as functions of time,
so in these systems the positions act as the dependent variables and time as the independent
variable. Parameters are properties like masses, prescribed temperatures, currents, voltages,
and friction coefficients. Parameters that can be influenced by the observer are referred to
as adjustable. The other parameters act as constants in the model. For example, in atmo-
spherical models used in weather forecasting one is interested in properties like temperature
and humidity (the dependent variables) as functions of position and time (the independent
variables). Important parameters are then the gravity field and the rotational speed of the
earth, and these clearly belong to the class of nonadjustable parameters. The solution of
a mathematical model is known if we can determine the relations between dependent and
independent variables. Since the solution depends on the values of the adjustable parame-
ters, mathematical models are a powerful tool with which to determine which values of the
adjustable parameters yield specific required behavior.

1.2 Dimensions
If the variables or parameters in a model correspond to physical properties, they have physical
dimensions. The fundamental dimensions used in this book are given in the following table:

dimension symbol MKS-unit

length L m (meter)
mass M kg (kilogram)
time T s (second)
temperature � ◦C (degree Celsius)
current I A (Ampere)

1
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2 Chapter 1. Dimensional Analysis and Scaling

The dimension of any physical quantity can be expressed in terms of the fundamental
dimensions. For most quantities this is clear from the definition. For example,

quantity dimension

area L2

volume L3

velocity L/T

acceleration L/T 2

mass density M/L3

mechanical energy ML2/T 2

pressure M/(L T 2)

In other cases the dimensionality of a quantity is deduced from the rule that all terms in a
particular equation must have the same dimensionality. This rule is a consequence of the
condition that the form of any equation in a mathematical model may not depend on the
units used. For example, the dimension of force directly follows from the second law of
Newton, which states that for a single mass, the mass times the acceleration equals the total
force exerted on the mass. In standard notation, F = ma. So, the dimensionality of a force
F , denoted as [F ], equals the dimensionality [ma] of the product of mass m and acceleration
a. Since [ma] = [m][a], we conclude that [F ] = ML/T 2. In this way we arrive at, e.g.,

quantity dimension

force ML/T 2

mechanical energy ML2/T 2

pressure M/(LT 2)

For coefficients, the dimensionality may vary with specific choices made by the modeler.
For example, if a frictional force is introduced with strength proportional to the velocity
of the object, the constant of proportionality will have the dimension of the quotient of
force and velocity. However, if the friction is assumed to be proportional to the velocity
squared, the proportionality constant will have the dimension of force divided by velocity
squared. See also Example 1.3c. For a dimensionless quantity, say, q, we have [q] = 1.
Examples are angles and universal constants like π and e. In dimensional analysis, to be
treated in §1.3, dimensionless quantities play a central role. There it is shown how they can
be constructed. The existence of these so-called dimensionless numbers allows us to draw
important conclusions about the system without solving the governing mathematical model.

Example 1.2a. Driven, damped, harmonic oscillator.
Consider a bead-spring system in one dimension under the influence of friction and a driving
force. The position of the bead with mass m is denoted by its displacement u measured with
respect to its equilibrium position. See Fig. 1.1.

We are interested in u as a function of time t . So, u is the dependent and t the
independent variable of the system. As for the notation, we shall use the convention u̇ ≡
du/dt , ü ≡ du2/dt2, etc. The second law of Newton states that the inertia force, i.e., mass
m times acceleration ü, equals the sum of the forces exerted on the bead. These forces are
the driving force Fd , which is taken harmonic with angular frequency ω and amplitude F0;
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1.2. Dimensions 3

Figure 1.1. A vibrating mass attached to a spring is the prototype of harmonic
motion if the spring response is linear, i.e., if the spring force Fs is linearly proportional to
the deviation u (b) measured with respect to the equilibrium position (a). Apart from Fs ,
often an external driving force Fd and a friction force Ff apply. The latter usually is taken
linearly proportional to the velocity of the mass but in the reverse direction.

the spring force Fs , which is linearly proportional to the displacement and reversely directed
to it; and the frictional force Ff , which is assumed to be linearly proportional to the velocity
and reversely directed to it. This leads to the balance of forces

mü = Ff + Fs + Fd = −cu̇ − ku + F0 sin ωt.

The conventional form in which to write this equation of motion is

mü + cu̇ + ku = F0 sin ωt. (1.1)

Since m, c, k, and F0 can all be influenced, they are adjustable parameters. Every term in
this equation has the dimension of force, so ML/T 2. From this it follows that

[c] = ML/T 2

L/T
= M

T
, [k] = ML/T 2

L
= M

T 2
, [F0] = ML

T 2
.

The argument ωt of the sine function must be dimensionless, so [ωt] = 1. We thus have

[ω] = 1

T
.
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4 Chapter 1. Dimensional Analysis and Scaling

A mathematical model in terms of an ordinary differential equation (ODE) is not yet complete
if the initial values are left unspecified. This introduces two extra parameters into the system:
initial position u0 ≡ u(t0) and initial velocity v0 ≡ u̇(t0). The solution u(t) thus depends
on seven parameters, and we could write it as

u = u(t; m, c, k, F0, ω, u0, v0).

For such a simple system this is a huge number to handle, since in an experiment all these
parameters could in principle be varied. In the following we show that such a system can
essentially be described with fewer parameters, since it does not make sense to vary them
all independently. �

The fact that the variables and parameters have physical dimensions can be fruitfully ex-
ploited. The techniques of nondimensionalizing and scaling are extremely powerful tools in
analyzing the models. Their importance is fully appreciated only through examples, which
account for the largest part of this chapter. The basic idea is to apply a transformation to the
variables and parameters such that simplified equations result. It is often amazing how much
structure is revealed simply by nondimensionalizing, without solving the model explicitly.
Thanks to these techniques it is often known beforehand that the system depends not on all
parameters separately but only on certain combinations. In an experimental situation it is
of great importance to know how the system depends on the parameters, so this insight may
save much time, cost, and energy.

In practice two methods are applied, dimensional analysis and scaling, each having
its own merits. They are dealt with in the subsections below, respectively. Dimensional
analysis fully exploits the information contained in the physical dimensions of the variables
and parameters. Scaling has a more restricted scope and aims at a reduction of the number
of parameters.

1.3 Dimensional analysis
Nondimensionalizing a mathematical model is a constructive way to formulate the model
in terms of dimensionless quantities only. A big achievement is that dimensional analysis
yields insight in the scaling relations of the system without using knowledge of any governing
equation. An advantageous corollary is that the total number of variables and/or parameters
is minimal. Reduction of the number of parameters is also the purpose of scaling, a technique
to be dealt with in the next section. However, dimensional analysis is more general than
scaling in that it is based on a transformation of both variables and parameters on the same
footing, whereas in scaling only the variables are transformed. Another difference is that
scaling starts from the governing equations, whereas dimensional analysis starts much more
basically, namely, from the dimensions involved in the system, and it may even predict from
them some quantitative features of the model without knowledge of the model equations.
The basic idea of dimensional analysis is easily explained. Consider a system with scalar
variables x1, . . . , xk and scalar parameters p1, . . . , p�. So, the total number of quantities
involved is N = k + �. Note that in the model, vectors, matrices, etc., may figure, but for
this analysis all their components have to be treated separately. We now form the products

x
r1
1 . . . x

rk

k , p
rk+1
1 . . . p

rN

�
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1.3. Dimensional analysis 5

and ask for which choices of the ri these products are dimensionless. The answer follows
from replacing each xi and pi with its fundamental dimensions. If, say, m dimensions
d1, . . . , dm are involved, the replacement gives rise to another type of product,

d
s1
1 . . . dsm

m ,

with the numbers si , i = 1, . . . , m, being linear functions of the rj , j = 1, . . . , N . The
procedure is illustrated several times in the examples below. By requiring

si = 0, i = 1, . . . , m,

we obtain a set of m linear equations for the N unknowns r1, . . . , rN . Note that the numbers
rj , j = 1, . . . , N , are rational, since they are solutions of linear equations with rational
coefficients. The rationality of these coefficients stems from the fact that in nature all mea-
surable quantities turn out to have dimensions that are products of integer powers of the
fundamental dimensions, as shown in the tables in §1.2. From linear algebra it follows that
there are (at most) N − m linearly independent solutions, corresponding to N − m dimen-
sionless quantities qi , i = 1, . . . , (N − m). Buckingham formalized this in the following
theorem.

Theorem (Buckingham).

Consider a system with variables x1, . . . , xk and parameters p1, . . . , p�, in which m

fundamental dimensions are involved. Then, k + � − m dimensionless quantities qi can
be defined, which are products and quotients of the original variables and parameters.
Each (scalar) model equation

f (x1, . . . , xk, p1, . . . , p�) = 0

between the xi and pi of a mathematical model can be replaced with a corresponding
relation between the qi:

f ∗(q1, . . . , qk+�−m) = 0 .

Since Buckingham [6] denoted the dimensionless quantities by πi , this theorem is
often referred to as the π -theorem of Buckingham. We shall not follow his notation since
it is no longer common in the literature. As follows from the construction of the qi as
solutions of an underdetermined set of linear equations, they are not uniquely defined by the
procedure. If the procedure yields a set of qi , we can apply a transformation, e.g., by taking
algebraic or even functional combinations of them, obtaining another set of dimensionless
quantities of the system. It is a matter of expertise, and partly of taste, to determine a
convenient set of qi for the system under consideration. If the number of variables and
parameters is not small, the freedom of choice must be especially exploited with care.

We shall work out the nondimensionalizing procedure for a considerable number of
examples, pointing out both the practical aspects of the technique and the insight it may
yield about the behavior of the system without solving the equations explicitly.
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6 Chapter 1. Dimensional Analysis and Scaling

Example 1.3a. Catapulting.
Let us start with an example in which the mathematics is very basic but the ideas behind
dimensional analysis are clearly illustrated. A projectile with mass m is launched vertically.
See Fig. 1.2. At launching it has velocity v0. Its trajectory, i.e., its vertical position z as
a function of time t is assumed to be completely determined by the influence of gravity.
The effect of friction due to the air is ignored here (but dealt with in Example 1.3e). The
projectile will decelerate because of gravity until it reaches its highest position zmax at time
tmax. After that it falls back with increasing velocity and arrives on the earth at time tfinal.
Since we take v0 such that zmax remains small compared to the Earth’s radius, we may take
the gravity field uniform with gravity constant g.

In this system the variables are z and t and the parameters are m, v0, and g. The
relevant physical dimensions are M , L, and T . So, k = 2, � = 3, and m = 3, and
the theorem of Buckingham states that the system has two dimensionless quantities. All
properties of the system can be expressed in only these two quantities. In this simple case the
dimensionless quantities can be easily found from inspection of the dimensions: [z] = L,
[t] = T , [m] = M , [v0] = L/T , and [g] = L/T 2. An evident choice is

t∗ = gt

v0
, z∗ = gz

v2
0

.

Figure 1.2. The main scaling characteristics of a mass m, launched with initial
speed v0, are easily predicted by dimensional analysis.
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1.3. Dimensional analysis 7

z

t

tmax

zmax

tfinal0

Figure 1.3. The height z of a mass, launched at speed v0, as a function of time t .
It will reach a maximum height zmax at time tmax and reach the earth’s surface again at time
tf inal .

Note that the mass m is not present in t∗ and z∗, since the physical dimension M is not
present in one of the other variables and parameters. The Buckingham theorem yields that
its motion is described by a relation between z∗ and t∗. This immediately leads to the
conclusion that the motion of the projectile is independent of its mass. From experimental
evidence we know that the relation between z and t is more or less as sketched in Fig. 1.3.
The function z(t) reaches a maximum zmax at tmax and vanishes at tfinal. Since z∗ and t∗ are
just scaled versions of z and t , z∗ apparently can be written as an explicit function of t∗:

z∗ = f ∗(t∗). (1.2)

The theorem does not specify any information about f ∗ but only ensures its existence and
the insight that the form of f ∗ does not depend on any of the parameters m, v0, and g

separately. The latter property thus also holds for the dimensionless quantities z∗
max, t∗max,

and t∗final. These are just fixed numbers, as shown in Exercise 1.3a. Using the relations
between dimensional and dimensionless quantities, we have that

zmax = v2
0

g
z∗

max , tmax = v0

g
t∗max , tfinal = v0

g
t∗final .

This yields the insight that zmax scales with v2
0 and both tmax and tfinal with v0 for fixed value

of g. We denote this as

zmax ∼ v2
0 , tmax ∼ v0 , tfinal ∼ v0 .

So, launching with a twice-as-large velocity leads to a four-times-larger maximal height of
the projectile. In the same way we conclude that

zmax ∼ 1

g
, tmax ∼ 1

g
, tfinal ∼ 1

g
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8 Chapter 1. Dimensional Analysis and Scaling

for a fixed value of v0. So, catapulting on the moon, where g is (approximately six times)
smaller than on the earth, enhances zmax, tmax, and tfinal all by the same factor. �

Exercise 1.3a.
Check these conclusions on catapulting by explicitly solving the equation of motion

m
d2z

dt2
= −mg.

Show that f ∗ in (1.2) has the explicit form as given in Fig. 1.4. Calculate explicitly the
values of z∗

max, t∗max, and ∗
final. Note that this function cannot be found from dimensional

analysis only.

Example 1.3b. Swinging pendulum.
Consider the motion of a mathematical swing: this pendulum has mass m concentrated in
a point at the end of a rigid rod of length �. The motion is restricted to a vertical plane.
See Fig. 1.5. The position of the swinging pendulum is completely specified by the angle
ϕ with the vertical. This is the independent variable, and time t is the dependent variable.
Parameters are mass m, rod length �, gravitational acceleration g, and the initial position
ϕ0 = ϕ(0). For convenience we take the initial velocity vanishing. So, k + � = 6, and
since the three fundamental dimensions M, L, and T are involved, the system has three
dimensionless quantities. Since ϕ and ϕ0 are already dimensionless, they form an obvious
choice. To find the third, we form the products

t r1�r2mr3gr4 .

z*

t*

1

0.5

20

Figure 1.4. Explicit form of the dimensionless function f ∗ in (1.2). Note that this
function is independent of the parameters m, g, and v0 of the system. The dimensionless
height z∗ reaches a maximum value z∗

max = 1/2 at time t∗max = 1 and hits the earth’s surface
again at time t∗f inal = 2.
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1.3. Dimensional analysis 9

Figure 1.5. Swinging pendulum of mass m and length l. The motion is confined
to a vertical plane, and the position of the pendulum can be indicated by the angle φ with
the vertical.

The condition that this product must be dimensionless leads to the linear equations

r1 − 2r4 = 0,

r2 + r4 = 0,

r3 = 0.

The choice (r1, r2) = (1, 0) then yields

t∗ = t

√
g

�
.

Note that the mass m is not present in any of the dimensionless quantities ϕ, ϕ0, and t∗.
This implies that pendulum motion is independent from m. The movement of the pendulum
is given by some relation between ϕ, ϕ0, and t∗. With ϕ0 constant and t∗ monotonously
increasing, we may write ϕ as an explicit function of t∗:

ϕ = f ∗(t∗, ϕ0).

This allows for a conclusion about the period of the system. One should realize that dimen-
sional analysis as such does not reveal that ϕ is a periodic function of time. However, if
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10 Chapter 1. Dimensional Analysis and Scaling

we take this for granted in view of the observations, we have that f ∗(t∗ + τ ∗) = f ∗(t∗),
with τ ∗ the dimensionless period. Since τ ∗ = τ

√
g/� and τ ∗ does not depend on any of the

parameters, we find that τ scales with
√

�/g, so

τ ∼
√

�

g
. �

Exercise 1.3b.
a. Give the dimensionless form of the exact pendulum equation

m�ϕ̈ + mg sin ϕ = 0.

b. If |ϕ| � 1, the linearized pendulum equation

m�ϕ̈ + mgϕ = 0

is a good approximation. Give its dimensionless form.

c. Write the solution of the equation under b and check that the period indeed scales
with

√
�/g as derived in Example 1.3b. Determine how the period is influenced if

the length is doubled and also when the pendulum is placed on the moon.

Example 1.3c. Harmonic oscillator.
Here, we revisit the harmonic oscillator introduced in Example 1.2a. Setting the initial
values at zero for convenience, the model equation

mü + cu̇ + ku = F0 sin ωt

has the two variables u and t and the five parameters m, c, k, F0, and ω. So, N = 7 in this
case. The fundamental dimensions involved are mass M , length L, and time T . Forming
the products

ur1 t r2mr3cr4kr5F
r6
0 ωr7

and substituting the dimensions, we arrive at the products

Lr1T r2Mr3

(
M

T

)r4
(

M

T 2

)r5
(

ML

T 2

)r6
(

1

T

)r7

.

Collecting powers of M, L, and T , we obtain the following three linear equations for the ri :

r1 + r6 = 0,

r2 − r4 − 2r5 − 2r6 − r7 = 0,

r3 + r4 + r5 + r6 = 0.

Here, we meet with three equations for seven unknowns, so four unknowns can be treated
as free parameters. For example, we could take r1, . . . , r4. The choices (r1, r2, r3, r4) =
(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), and (0, 0, 0, 1), respectively, yield the dimensionless
quantities

u∗ = uk

F0
, t∗ = ωt, m∗ = mω2

k
, c∗ = c ω

k
.
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1.3. Dimensional analysis 11

The dimensionless spring equation then reads as

m∗ü∗ + c∗u̇∗ + u∗ = sin t∗,

where the time derivative is taken with respect to t∗. �

Exercise 1.3c.
The approach used above for the driven spring system is based on the assumption F0 �= 0.
Apply dimensional analysis to the case F0 = 0 but with the initial position u0 and initial
velocity v0 both nonvanishing.

Example 1.3d. Estimating the power of explosions.
Details of the strength of the first atomic bomb in 1945 were classified until the 1960s.
However, the British physicist G.I. Taylor was able to give a very accurate estimate of the
strength from dimensional analysis by using available film of the expansion of the mushroom
shape of the explosion. His arguments proceed as follows (see, e.g., [31] and [3, 4]).

The basic appearance of the explosion is an expanding spherical fireball whose edge
corresponds to a powerful shock wave, as sketched in Fig. 1.6. Let R be the radius of the
shock wave. It will depend on E, the energy released by the explosion; t , the time elapsed
since the explosion; ρ, the initial and ambient air density, and p, the initial and ambient

Figure 1.6. Sketch of a shock wave propagating from an explosion with energy
E. Dimensional analysis shows that the energy E can be estimated from the propagation
velocity of the front.
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12 Chapter 1. Dimensional Analysis and Scaling

air pressure. In total we recognize five variables and parameters. Three dimensions are
involved. Hence two dimensionless quantities can be found.

Exercise 1.3d.
The dimensions of the variables and parameters in Example 1.3c can be looked up in
the tables in §1.2. Show that from requiring the products

Rr1 t r2Er3ρr4pr5

to be dimensionless, the following dimensionless quantities can be derived:

q1 = p

(
t6

E2ρ3

)1/5

, q2 = R5ρ

Et2
.

The Buckingham theorem ensures that the motion of the shock front is governed
by some relation between q1 and q2. Since q1, which is essentially a scaled time, is
monotonously increasing, we may write q2 as an explicit function of q1: q2 = f ∗(q1).
Thus R can be expressed as

R =
(

Et2f ∗(q1)

ρ

)1/5

. (1.3)

From this relation we conclude in the first instance that R depends on t both via the prefactor
of f ∗ and via q1. This complicates the analysis. Taylor found a way out by first plotting
measured values of R as a function of t in a double logarithmic plot. Taking logarithms of
both sides of (1.3) we have

log R = 2

5
log t + 1

5
log

(
Ef ∗(q1)

ρ

)
.

The data turn out to lie nearly on a straight line. This suggested that f ∗(q1) hardly depends
on time so that it can be replaced with its initial value f ∗(0). Then, two unknown parameters
still figure in the model: E and f ∗(0). Taylor estimated the value of f ∗(0) from performing
an experiment under well-defined conditions, for which E was known and R(t) measured.
This led to the conclusion that f ∗(0) ≈ 1. Every shock wave is thus fairly well described
by the model equation

log R = 2

5
log t + 1

5
log

(
E

ρ

)
.

Since ρ is usually known, it is easy to estimate E from fitting this equation into measured
R(t) data. �

Example 1.3e. Estimating train speed from drop tracks.
Let us imagine we are traveling by train on a rainy day. Looking through the window we see
rain drops attached to the glass following straight trajectories along the window downward.
The angle of inclination of the drop paths appears to depend on the train speed. We wonder
whether the speed can be estimated from this angle. To answer this question, the system
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1.3. Dimensional analysis 13

Figure 1.7. The path of a water droplet on a train window yields enough informa-
tion to estimate the train speed, as follows from dimensional analysis.

of a drop sliding along a moving glass plate has to be modeled. See Fig. 1.7. Three forces
act on the droplet: the gravitational force with strength Fg , the drag force with strength Fd

due to friction between the drop and surrounding air, and the adhesion force with strength
Fa between drop and glass. Fg is directed vertically, and its strength is equal to mg with m

the drop mass. Fd is directed horizontally, but its strength is not known beforehand. Fa is a
friction force and directed in the reverse direction of the drop speed. This force influences
the speed of the drop but not its direction. This implies that the angle of inclination ϕ of the
drop trajectory is determined by Fg and Fd . From Fig. 1.7 we conclude that

tan ϕ = Fg

Fd

.

To estimate the train speed vtrain from this relation, we must know how Fd depends on vtrain.
We investigate how dimensional analysis can help us to discover this relation. The friction
between the drop and the passing air will depend on drop diameter D with [D] = L, air
density ρ with [ρ] = M/L3, and air speed given by vtrain with [vtrain] = L/T . Fd is a force,
so [Fd ] = ML/T 2. The friction force exerted by a flow on an object moving through the
flow is measured by the viscosity η with [η] = M/LT . It measures the internal friction.
Common sense tells us that syrup has a larger viscosity than water. The value of η for
a gas or fluid can be measured by dropping an object in the medium. Under influence of
gravity it will initially accelerate. After some transient time its speed will become constant,
since then the friction force comes into equilibrium with the gravitational force. This phe-
nomenon is experienced by, e.g., parachutists. The viscosity can directly be deduced from
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14 Chapter 1. Dimensional Analysis and Scaling

the equilibrium speed of a standardized object. In determining an expression for Fd the five
quantities Fd , vtrain, D, L, and η are involved. Since three physical dimensions play a role,
the system has two dimensionless quantities.

Exercise 1.3e.
Check that we can choose for these quantities:

F ∗
d = Fd

ρ D2 v2
train

, Re = ρ D vtrain

η
.

The dimensionless Reynolds number Re plays an important role in all flow problems.
It measures the ratio of the convective and viscous forces and is named after Osborne
Reynolds, a researcher in fluid mechanics. We expect that for a still unknown function f ∗
it will hold that

F ∗
d = f ∗(Re).

For the drag force we thus have

Fd = ρD2v2
trainf

∗(Re).

From this we cannot deduce how Fd scales with vtrain since Re also contains vtrain. To answer
this intricate question one has to determine the form of f ∗ from measurements. These data
are given in Fig. 1.8. Note that this form is universal and holds for all flows, thanks to the
dimensionless formulation. The conclusion from these data is that

f ∗(Re) ∼


1

Re
if Re < 10,

1 if Re > 100.

The range 10 < Re < 100 is a transition region. To find the order of magnitude of Re for
a moving train, we substitute some data. For air we have ρ ≈ 1.3 kg/m3 and η ≈ 1.5 10−5

kg/(m.s). The size of a droplet is D ≈ 5.10−3 m. The velocity of the train varies from 0 to,
say, 50 m/s. Substituting these numbers we find that Re > 1000 if vtrain > 2.5 m/s (i.e., 10
km/h). This leads to the conclusion that for all relevant train speeds we have that

Fd = c1ρD2v2
train

for some constant c1 which does not depend on ρ, D, and vtrain. Eventually, we arrive at

vtrain =
(

mg

c1ρD2 tan ϕ

)1/2

.

This expression can be reduced a bit by noting that the drop is approximately a half sphere,
so m = 1

12πD3 if we take the density of water equal to unity. Since g and ρ hardly vary,
we may write

vtrain = c2

√
D√

tan ϕ
.
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1.3. Dimensional analysis 15

Figure 1.8. The drag force felt by an object in a flow as a function of the Reynolds
number Re.

Figure 1.9. The dimensionless train velocity as a function of the angle φ indicated
in Fig. 1.7.

The value of c2 can be determined from one observation. This is the relation we were aiming
at. In Fig. 1.9 we plot the dimensionless velocity v∗

train ≡ vtrain/(c2

√
D) as a function of ϕ.

Note that the accuracy with which ϕ must be measured becomes increasingly important if
ϕ becomes smaller and smaller and thus the train speed becomes increasingly higher. �
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16 Chapter 1. Dimensional Analysis and Scaling

Example 1.3f. Ship modeling.
Let us model a ship of length � sailing at constant speed v, as sketched in Fig. 1.10. The
motion of the ship transfers energy from the ship to the water as a result of viscous friction.
This energy is used partly to induce surface waves and partly to overcome the internal friction
of the turbulent motion of the water. In view of these effects, the acceleration of gravity g, the
density of water ρ, and the viscosity η each will play a role, with dimensions [g] = L/T 2,
[ρ] = M/L3, and [η] = M/LT , respectively. If we assume that the ship is streamlined such
that its height and width are not of importance, the system has five variables and parameters.
Because three dimensions are involved, the number of dimensionless quantities is two. We
can choose for these quantities

Fr = v√
�g

, Re = ρ�v

η
.

F r is called the Froude number after William Froude, a famous ship builder. Re is the
Reynolds number that we already met in Example 1.3.e. Because real-life experiments are
difficult to conduct for these systems, it is very attractive to perform experiments on (phys-
ical) models in which all sizes are scaled down by a certain factor. The conclusions from
these experiments are valid for the original system only if both systems are described by the
same dimensionless (mathematical) model. So, Fr and Re have to remain constant upon
scaling. In practice, the values of g, ρ, and η can hardly be adjusted. To keep Fr constant,
v/

√
� may not change, and to keep Re constant, v� must be preserved. The experimenter

must be aware that these requirements can never be managed in the same experiment. This
implies that in one experiment with scaled ship models, only a restricted aspect of the real
situation can be studied. �

Exercise 1.3f.
a. Check that we can indeed choose

Fr = v√
�g

, Re = ρ�v

η

as dimensionless numbers.

b. Why is it not possible to design the test facilities in such a way that both the Froude
and the Reynolds number are preserved? Can you give an argument for why the

Figure 1.10. Study of scaled ship models is useful only if one realizes the conse-
quences of dimensional analysis.
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scaling of a ship is usually determined by the Froude number and not the Reynolds
number? Will this be the same for testing an airplane in a (low-speed) wind tunnel?

c. To conduct experiments on a ship 100 m long that sails with a maximum speed of
35 km/hr, one uses in a laboratory a model of the ship. Towing in the laboratory is
restricted to velocities of at most 7 km/hr. What is the smallest scale of the model that
can be used?

1.4 Scaling
The aim of scaling is to reduce the number of parameters in a given model. So, a pre-
requisite of the technique of scaling is knowledge of the equations governing the system.
Scaling does not necessarily yield dimensionless quantities. We introduce the technique via
examples.

Example 1.4a. The scaled harmonic oscillator.
We apply the scaling technique to the harmonic oscillator introduced in Example 1.2a. As
pointed out in that example and in Example 1.3f, this system has the two variables u and t

and the seven parameters m, c, k, F0, ω, u0, v0. Consider the scaling of variables

η = u

a
, τ = t

b

with the scaling factors a and b still unspecified. Substitution of this transformation into
equation of motion (1.1) leads to

ma

b2
η̈ + ca

b
η̇ + kaη = F0 sin(ω τ),

where the time derivative is now with respect to τ . Dividing all terms by the factor ma/b2

and choosing b = √
m/k and a = F0/k we obtain the reduced equation

η̈ + c′η̇ + η = sin(ω′τ)

with the new parameters c′ = c/
√

km and ω′ = ω
√

m/k. The initial values u0 and v0 have
to be scaled accordingly to u′

0 and v′
0. Note that this reduction reveals that the harmonic

oscillator depends on only four parameters (including the initial parameters). To study the
behavior of the solution as a function of the parameters, it suffices to vary only the friction
coefficient c′ and the angular frequency ω′ (apart from the initial values). We remark that
the scaling procedure does not lead to a unique choice for the scaling factors a and b. An
alternative choice is b = 1/ω and a = F0/(ω

2m), which yields the equation

η̈ + c′η̇ + k′η = sin(τ )

with c′ = c/(ωm) and k′ = k/(ω2m). So, for a complete analysis of the system it suffices
to vary only these c′ and k′ (apart from the initial values). �

Exercise 1.4a.
Compare the methods and results of scaling and dimensional analysis when applied to
the driven, linear spring in Examples 1.3 and 1.3b.
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18 Chapter 1. Dimensional Analysis and Scaling

Figure 1.11. Sketch of the chemical reaction in Example 1.4b. The substances
A and B are continuously supplied so that their concentrations are constant. The inter-
mediate products X and Y are formed in reactions between A and B. C and D are the final
products.

Example 1.4b. Chemical reaction.
Consider a hypothetical chemical reaction, the so-called Brusselator, with substances
A, B, C, D, X, Y involved. The situation is sketched in Fig. 1.11. C and D are produced
from A and B with X and Y as intermediates. The reaction has the following irreversible
stages:

A

k1

−→ X,

B + X

k2

−→ Y + C,

2X + Y

k3

−→ 3X,

X

k4

−→ D.

The capital letters denote reagents, while the constants ki over the arrows indicate the reaction
rates. It is assumed that A and B are excessively available so that the concentrations of A

and B can be taken to be constant. We denote the concentrations of A, B, X, and Y by
a, b, x, and y, respectively. The reaction equations for x and y are then

ẋ = k1a − k2bx − k4x + k3x
2y,

ẏ = k2bx − k3x
2y. �

Exercise 1.4b.
Use scaling of (x, y, t) to (η, ξ, τ ) to show that these equations can be reduced to

η̇ = α − (β + 1)η + η2ξ,

ξ̇ = βη − η2ξ.



main
2007/2
page 1

�

�

�

�

�

�

�

�
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Figure 1.12. Solution sets of (1.5) after scaling.

Note that after this procedure the number of parameters is considerably reduced, since
instead of the original parameters a, b, k1, . . . , k4, the final set of equations contains
only the two parameters α and β.

Exercise 1.4c.
Use the method of scaling to show that the equation

x2 + axy + b = 0 , (1.4)

with variables x, y and parameters a, b, can be reduced to the equivalent equation

η2 + ηξ + sign(b) = 0 (1.5)

with variables η, ξ . This implies that the structure of the solutions of (1.4) can be caught
without varying the parameters. It suffices to study (1.5) for the two cases sign(b) = +1
and −1. These curves are plotted in Fig. 1.12.

1.5 Challenging problems
In this section we challenge the reader to apply the techniques of dimensional analysis
and scaling to situations that are quite difficult to model. For application of dimensional
analysis we need to know only the dimensions of the variables and parameters involved in
the system. For scaling, one needs to start from the governing equations. In the present
cases the reader must take these equations for granted; they will be derived in Chapter 2.
Here, the focus is on the reduction of the models via scaling and not on the derivation of the
models themselves.
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20 Chapter 1. Dimensional Analysis and Scaling

1.5.1 The Prandtl–Blasius problem

The following description of flow above a flat plate is a simple model with which to study,
for example, the following phenomena:

• The disturbance of the air by a thin airfoil of an airplane that cruises at constant altitude
with constant speed U .

• The disturbance of a strong, uniform wind by vegetation, buildings, etc.

• The disturbance of water flowing over a rough surface.

In all these cases, the flow (air, water) near the surface experiences resistance from the
presence of the airfoil, obstacles, etc. In an idealized way, we model the airfoil or the
ground by a horizontal flat plate (standing still) with the air or water flowing over it,
assuming that the flow is uniform before it reaches the plate. We choose coordinates such
that the plate is in the half plane (x ≥ 0, −∞ < y < ∞, z = 0). See Fig. 1.13. Since
the y-coordinate is irrelevant, we shall omit it. In front of the plate edge, where x ≤ 0, the
flow is uniform with velocity U in the positive x-direction. The fluid has mass density ρ

with [ρ] = M L−3 and viscosity η with [η] = ML−1T −1. Close to the plate the friction
between plate and flow decelerates the flow. This friction causes the flow velocity near the

Figure 1.13. Time development of the velocity profile of air flow approaching and
behind a trailing edge.
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plate to drop. For increasing x, the boundary condition will approach the no-slip condition
with the velocity at the plate exactly vanishing. For large x values, the velocity profile will
become independent of x and approach a stationary profile, independent of x and thus t .
We want to know how fast this convergence takes place as a function of time t and thus
of position x. In Fig. 1.13 the velocity profiles above the plate are sketched for different
x-positions. Let the velocity of the flow be denoted by (u, w) with u the velocity in the
x-direction and w the velocity in the normal z-direction. The so-called shear rate is the
variation of the horizontal velocity u in the normal direction. This is commonly denoted as
γ̇ (pronounced “gammadot”):

γ̇ (x, z) = ∂u

∂z
(x, z). (1.6)

Its value at the plate is denoted as

γ̇0(x) = γ̇ (x, 0). (1.7)

This quantity depends only on the distance x from the edge of the plate, and it is this
dependence that we want to investigate. In Fig. 1.13 an angle ϕ(x) is indicated. It is
related to γ̇0(x) via γ̇0(x) = tan ϕ(x). Far from the plate, where z is large, the flow is little
influenced by the presence of the plate, and so there we may take (u, w) = (U, 0).

In addition to the dependence on the distance x from the edge, the shear rate also
will depend on the viscosity, the velocity U , and the density ρ. In the steady state we can
generally write

γ̇0 = γ̇0(x; η, U, ρ).

In the following steps we want to find this relationship as precisely as possible. We first
determine how far we can go with dimensional analysis in the first two exercises, whereas
in the rest of this section we will apply scaling and use information from the governing
equations.

a. Determine two dimensionless variables from the set γ̇0, x, η, U , and ρ.

b. Show that for some function f it holds that

γ̇0 = U 2 ρ

η
f

(
U x ρ

η

)
.

To apply scaling we need information about the governing equations. The actual
equations of motion are given by

∂u

∂x
+ ∂w

∂z
= 0, (1.8)

ρ

(
u

∂u

∂x
+ w

∂u

∂z

)
= η

∂2u

∂z2
. (1.9)

The first equation (vanishing of the divergence of the velocity field) expresses the
incompressibility of the flow. The second equation expresses the balance between the
convection force (at the left-hand side) and the viscous friction force (at the right-hand
side).
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We apply the scalings

ū = u

U
, w̄ = w

W
, x̄ = x

X
, z̄ = z

Z

with U given and X, Z, and W to be chosen later on.

c. Show that in (1.8) and (1.9) the number of parameters reduces if the following two
conditions are satisfied:

X W

Z U
= 1,

X η

Z2 U ρ
= 1. (1.10)

In the rest of this section we assume these relations hold. Given Z, the second
condition determines X, after which W follows from the first condition. So, of the three
parameters W , X, and Z, only Z is still free to be chosen. Note that the scaled variables are
not necessarily dimensionless.

d. Determine a scaling, i.e., choose Z, such that the scaled variables are
dimensionless.

Now, we take Z again as a free parameter. The nonuniqueness of the scaling can then
be exploited to find an explicit expression for the stress. Note that this can be done without
solving the equations explicitly. The strategy is as follows. The scaled shear rate ¯̇γ 0 at the
plate is defined as

¯̇γ 0 := ∂ū

∂z̄
= Z

U
γ̇0 . (1.11)

Since γ̇0 depends only on x, it must hold for some function h that

γ̇0(x) = h(x) . (1.12)

e. Use (1.11), (1.12), and the fact that x = X x̄ to find an expression for ¯̇γ 0(x̄) in
terms of the function h. The resulting relation depends on Z. Since it must identically hold
for any value of Z, we may draw a conclusion about the form of h. Show that for some
positive constant c it must hold that

h(x) = c√
x

.

We emphasize that this argument can be applied only because Z was kept arbitrary. If
Z were fixed, e.g., to make all quantities dimensionless, this relation could not be derived.

f. Now, translating into the original, unscaled, quantities we show that

γ̇0(x; η, U, ρ) = c

√
U 3 ρ

η x
,

which is the relation we aimed at. Compare this with the result under b and determine the
explicit form of the function f mentioned there.
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1.5.2 Heat conduction in a bar

We consider heat conduction in a rod of length �. The rod is assumed to be thermally
isolated everywhere. Starting with a given temperature distribution u(x, 0) over the rod, we
are interested in the time evolution of the temperature profile u(x, t). As will be explained
in Example 2.3d in Chapter 2, the speed of the heat conduction along the rod is determined
by the so-called thermal conductivity κ . The dimension of κ is L2/T . As an initial profile
we take a distribution which is everywhere vanishing except for a peak in the origin:

u(x, 0) = u0 δ(x), (1.13)

where δ(x) is the so-called delta function. Its definition is given in §3.3.3.

a. Determine the dimension of the constant u0. To that end, integrate the initial condition
over some interval including x = 0 and use the properties of the delta function.

The variables are thus u, x, and t , and the parameters are �, κ , and u0.

b. Find three dimensionless quantities, choosing them such that they are just scalings of the
variables u, x, and t .

Now we assume that the rod is infinitely long. This implies that the parameter � is no longer
relevant and that the number of dimensionless quantities equals two.

c. Show that these dimensionless quantities are appropriately chosen as q1 = x2/(κt) and
q2 = u

√
κt/u0.

In view of the expected behavior of the system we may write

q2 = f ∗(q1) (1.14)

for some function f ∗(q1). The important conclusion from dimensional analysis is that
in an infinitely long rod the temperature is a function not of position x separately but of
the quotient x2/t . Note that this does not hold for a rod of finite length �. To find the
explicit form of f ∗, one needs the governing equation. The equation that describes the
time evolution of the temperature in the bar follows from conservation of heat. It will
be derived in Example 2.3d of Chapter 2. The resulting partial differential equation (PDE),
the so-called heat diffusion equation, reads as

∂u

∂t
= κ

∂2u

∂x2
. (1.15)

d. Show that the dimension of κ given above agrees with the dimension following from this
equation.
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e. Use (1.14) to rewrite the heat diffusion equation (1.15) in terms of q1, q2, and f ∗, and
show that this leads to the following ODE for f ∗(q1):

4q1
∂2f ∗

∂q2
1

+ (q1 + 2)
∂f ∗

∂q1
+ 1

2
f ∗ = 0 (1.16)

for 0 < q1 < ∞.

f. Check that

f ∗(q1) = c e− 1
4 q1

is a solution of (1.16) for any constant c.

g. Which conservation principle can be invoked to determine c? Check that the dimensional
solution reads as

u(x, t) = u0√
4 π κ t

e
−x2

4 κ t .

Thus, at each time t the spatial temperature distribution is a Gaussian distribution in
x, with mean 0 and standard deviation determined by κt . The temperature decays with
increasing time, since the initial peak of heat is conducted along the rod. This is sketched
in Fig. 1.14 for different values of t .

Figure 1.14. Temperature profiles for times t1 < t2 < t3 in a long, thin rod.
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1.5.3 Water waves

Consider a layer of fluid, for example, water, above a horizontal bottom. See Fig. 1.15.
When the fluid is set into motion, by whatever cause, the fluid particles will start to move,
interacting with each other, and are influenced by gravity. When the upper surface of the
fluid is free, this surface will also be deformed by the particle motions. Looking only at
the surface, the deformation is often of a characteristic type, like waves that are caused
by throwing a stone in a pond. In principle, the particles below the surface determine
the surface elevation. However, when the fluid is incompressible, and when so-called
irrotational flow is considered, it is possible to describe approximately the elevation of the
surface without reference to the internal motion. We will not derive the governing equations
from first principles, but we will investigate a postulated description of the phenomenon via
dimensional analysis and scaling. We make the following assumptions:

• The fluid is incompressible with uniform mass density, which we set equal to unity for
convenience.

• No forces act from above on the free surface; for instance, effects of wind are neglected.

• In the horizontal plane, the motion is uniform in one direction; that is, we consider plane
waves. This implies that if we take the x-axis, say, as the direction of propagation, the
motion does not depend on the transverse horizontal direction.

We take the z-axis in the vertical direction, opposite to the direction of gravity with
its origin at the undisturbed water surface. The distance between bottom and undisturbed
water surface is H , and g denotes the acceleration of gravity. The modeling focuses on the
elevation u(x, t) of the surface with respect to the undisturbed level z = 0.

Figure 1.15. In the modeling of moving water waves one wants to find the elevation
u(x, t) of the surface with respect to the completely flat rest profile.
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a. With the (constant) mass density removed from consideration, the problem has three
variables (u, x, t), two parameters (g, H ), and two dimensions (length and time). Find
three dimensionless quantities.

A rough idea about wave propagation can be obtained by studying harmonic profiles,
say, of the form

u(x, t) = a cos

(
2π(x + V t)

λ

)
,

where a is the wave amplitude and λ is the wave length. This surface profile propagates at
wave velocity V .

b. Take these three quantities into account, together with the parameters g and H , and
show that the problem is described by a relation between the normalized amplitude, the
wave length, and the dimensionless velocity:

f

(
a

H
,

λ

H
,

V√
gH

)
= 0.

c. From the above result, try to explain the observation—which can be made at any coast
when one looks at the waves running into the shore—that waves approach the coast per-
pendicularly, even when the coastal boundary is irregular.

In 1895 Korteweg and de Vries [17, 24] published an equation for the elevation u(x, t)

that describes the surface elevation in a certain order of approximation. In the derivation of
the equation it was assumed that the waves were “rather low” (small amplitude) and “rather
long.” This equation is known as the Korteweg–de Vries equation (KdV equation). This
equation became famous when it was found to have special mathematical properties. We
do not discuss them here but instead focus on the original purpose of this model. It reads as

∂u

∂t
= −c

∂u

∂x
− cH 2

6

∂3u

∂x3
− 3c

2H
u

∂u

∂x
, (1.17)

where the parameter c = √
gH has been introduced since it plays an important role in the

physical phenomenon, as we shall see later. This equation shows the time evolution of the
free surface: at a fixed position, the time derivative of the elevation depends (in a complicated
way) on the spatial derivatives of the elevation: temporal variations and spatial variations
are coupled, which is characteristic for a PDE. Understanding the coupling would mean that
the meaning of each of the three terms in the right-hand side should be clear, which at this
moment is not possible. The equation is rather difficult in the sense that it is not easy to find
explicit solutions. In the following we will try to interpret the various terms in the right-hand
side and, particularly, try to understand how the underlying modeling assumptions of long
and low waves are shown in this equation.

The starting point is rather characteristic. We perform a scaling of the variables without
specifying at this moment the scaling factors; these will be determined, or chosen, at a later
instance.

x̄ = x

L
, t̄ = t

τ
, ū(x̄, t̄ ) = u(x, t)

a
.
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Note that at this time we do not try to make the new variables ū, x̄, t̄ dimensionless. To
simplify the notation and since confusion is unlikely, we drop the overhead bar, keeping in
mind that the equations below are in terms of scaled quantities.

d. Show that the scaling leads to the following form of the equation:

∂tu + α ∂xu + β ∂3
xu + γ u ∂xu = 0 , (1.18)

where

α = τ c

L
, β = τ c H 2

6 L3
, γ = 3τ c a

2H L
.

Here and often in the following, the spatial derivatives are indicated by ∂xu for ∂u
∂x

and ∂tu for ∂u
∂t

, and similarly for higher-order derivatives. Observe that by the scaling we
introduced three additional parameters (L, τ , and a), which together with H and g (or,
equivalently, H and c) brings the total number of parameters to five. However, the equation
shows that only specific combinations of these parameters (namely, α, β, and γ ) play a role.
We show how scaling can be used for various purposes.

To study the original KdV equation (1.17), it is sufficient to study (1.18). Therefore
we would like to reduce the numbers of parameters in this equation as much as possible.
This can be done by choosing the scaling coefficients in an appropriate way:

e. Determine scaling coefficients such that the KdV equation (1.18) gets the following,
parameterless form:

∂tu + ∂xu + 1

6
∂3
xu + 1

6
u ∂xu = 0 . (1.19)

This shows that by means of scaling, a lot of progress can be made. One needs only
to study (1.19), and the results are directly applicable to various physical situations.

Scaling can be used for another purpose, as we shall show now. In particular we show
how scaling arguments can give insight into the meaning and relative importance of the
three terms in the right-hand side of (1.17) or, equivalently, of (1.18). As for comparisons
in magnitude, it is necessary to make explicit that when dealing with the scaled variables,
we assume these to be of unit order. So, in the following, x, t , and u and all the derivatives
of u are considered to be of order unity. “Small” is then measured with respect to unity.
Below, some limiting cases are considered.

Small amplitude waves
Since u is of order one, the value of a is a measure of the amplitude of the surface elevation:
for large a the physical wave heights are large, whereas the limit a → 0 means that waves
of infinitesimal amplitude are considered. Since a appears only in the coefficient γ , we can
simply take the limit a → 0 by taking γ → 0. The resulting equation is

∂tu + α ∂xu + β ∂3
xu = 0. (1.20)
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Note that this equation is linear. It can be solved by means of Fourier transformation tech-
niques introduced in Chapter 3. This observation explains that the nonlinear term in the
KdV equation describes effects that are due to the finiteness of the wave heights.

Long and short waves
The value of the parameter L determines the length of the physical spatial interval in which
changes take place: for small L this interval is small, whereas for large L changes occur
over a large physical interval. Small and large values of L correspond to short and long
waves, respectively.

g. If we apply the transformation X := L x, a function f (x) transforms into a function
g(x), say, via

f (x) = g(X) = g(Lx).

Relate the derivatives of f to those of g and see the effect of the value of L.

All three parameters α, β, and γ in (1.18) contain the parameter L, and therefore the
effect of taking a limiting value of L is not immediately clear. Thus, we argue as follows.
The appearance of L in α can easily be scaled away by taking τ = L/c. Then

α = 1, β = 1

6

(
H

L

)2

, γ = 3

2

( a

H

)
. (1.21)

h. Show that if L is given the dimension of length, τ will have the dimension of time, and
show that the variables x, t , and u and the parameters α, β, γ are dimensionless.

i. Observe that now L appears only in the coefficient β. Keeping all other parameters fixed,
look at the limit for long waves, and explain that the third order spatial derivative in the
KdV equation describes effects that are due to the length of the waves under consideration;
the longer the waves, the less this term contributes. Find the equation obtained in the limit
for infinite long waves of finite amplitude.

Long waves with small amplitudes

j. Consider the limit of infinitesimally small, infinitely long, waves. Show that by taking the
limits a → 0, L → ∞ in (1.18), the equation reduces to

∂tu + ∂xu = 0. (1.22)

The solutions of this equation are easily found. Show that for arbitrary f it holds that

u(x, t) = f (x − t ).

This solution represents that the profile f is translated into the direction of the positive
x-axis, undisturbed in shape and at unit velocity. For this reason, this equation is called the
translation equation.
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k. Show, by realizing that x and t are scaled variables here, that infinitesimal waves of long
wave length propagate at speed c = √

gH .

Now, let us return to (1.18) with the scaling given by (1.21):

∂tu + ∂xu + H 2

6L2
∂3
xu + 3 a

2H
u ∂xu = 0. (1.23)

In the reasoning of Korteweg and de Vries, the last two terms are improvements of the
translation equation in the sense that (some) effects of the nonlinearity and dependence
on wavelength are taken into account. Being corrections, the coefficients should be small
compared to unity and so of order ε � 1. The KdV equation takes both effects into
consideration. Let us assume that both effects are equally important, say, of the same
order ε.

l. Show that this means that the KdV equation describes waves of amplitude a and wave-
length L such that

a

H
= O(ε),

H

L
= O(

√
ε).

Note that the quotients a/H and L/H are dimensionless and that all length scales
that are relevant for measuring the two effects depend on the (only!) physical length H that
is present in the model. Waves for which amplitude and wavelength are related in this way
are said to satisfy the Boussinesq assumption.

m. For experiments in a towing tank in hydrodynamic laboratories, wave heights (i.e., twice
the amplitude) up to 10% of the depth are considered, for instance, waves of amplitude 0.3 m

on a depth of 6 m. Determine the order of the wavelength of waves that satisfy the Boussinesq
assumption.


