## A Convexity Question in Matrix Analysis (Open)

Summary: The reader is asked to prove that for a real matrix $B$ with maximal rank $m \le n$, in the orthant where each $\lambda_i$ is positive, the scalar-valued function ${\cal C}(\lambda_1, \ldots, \lambda_n) = Tr((B^{\ast}\diag(\lambda_1, \ldots, \lambda_n) B)^{-2})$ is convex.

Classification: Primary, Algebra; Secondary, Matrices and Determinants

**Download Problem**[PDF]

**David L. Russell**

Mathematics Department

Virginia Tech

Blacksburg, VA 24061-0123

e-mail: russell@math.vt.edu

**Download Solution**[PDF]

**Antônio Francisco Neto**

DEPRO - Escola de Minas - Universidade Federal de Ouro Preto (UFOP)

Ouro Preto - MG - Brazil

Phone: 55 31 3559-1540

e-mail: antoniofrancisco1975@gmail.com