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Abstract
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resenting their school through athletic programs. This leads us to ask how student-athletes’ academic
performance impacts their teams’ athletic success. Utilizing multiple mixed-effects models, we explore the
relationship between academics and athletics measured using Academic Progress Rate (APR) and win per-
centage respectively. In doing so we find that athletic programs with a greater percentage of athletes
remaining eligible and higher rates of athlete retention have higher win percentages on average.
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Introduction

Across the country, there are more than 500,000 college athletes competing for 1,100 different schools in the
National Collegiate Athletics Association (NCAA). These athletes attend their institution not just to play
their respective sport and succeed athletically, but also to pursue a degree and achieve their academic goals.
With college sports being over a $18 billion business, we must ask why would the NCAA and college programs
emphasize the importance of academics when the NCAA and athletics do not benefit. After all, coaches scout
high school athletes nationwide looking for the best talent to bring into their individual programs. However,
in addition to improving the athletes’ life after their athletic career, academics may also improve success
within athletic programs. By using a mixed effect model, we can look at how success in the classroom is
related to how a team performs. In my analysis I will look at Division 1 programs’ Academic Progress Rate
(APR), measuring the eligibility and retention of athletes, and win percentage from nine different sports
from 2010 to 2018.

Intuitively, I expect to find that programs with higher academic performance will result in higher win
percentages. A program with higher academic performance will be more attractive for prospective high
school athletes in their search to further their athletic and academic careers. More competition at a school
due to more attraction from increased academics will increase the skill levels of its athletes (Lawrence et al.,
2006). Furthermore, outstanding work in the classroom will directly show in outstanding work in the students’
respective sports. Higher academic performing programs will have athletes that are better at studying and
preparing. If a program’s athletes consistently are able to prepare for tests and assignments, then they
will give more effort into their game preparation. Students that have a desire and passion for continuous
learning will undoubtedly do better in school than students that lack the same motivation. When these high
performing students take this mentality to sports, they will be more coachable players and do better with
the constructive criticism that comes with it (Battle, 2020). Such a player will strive to improve daily and
use the teaching from coaches to do so. Also, these high performing student-athletes will want to learn more
about every aspect of their sport, raising their awareness and improving performance.

Data

The data in this research merged two datasets from the NCAA and data from the College Scorecard. The
resulting dataframe is panel data that contains data from 394 schools and nine different sports over eight
years. This study focuses only on Division 1 team sports and the relationship between team academic
performance and that team’s athletic success. Specifically this data was filtered to focus on nine team sports:
Men’s Soccer, Women’s Soccer, Baseball, Softball, Men’s Basketball, Women’s Basketball, Football, Men’s
Ice Hockey, and Women’s Ice Hockey. In total there are 17,700 observations with 17 variables. Table 1 shows
the first five rows of the data and the 12 main variables that are important to this research, excluding ID
numbers, shifted variables for year and APR score and the specific state of the school.

Table 1: Selected variables from the first five observations in the dataset.

School Region | % Comms | Enrl | % Male | % White | Avg Cost | Avg Age Enrl | Sport Win % | APR | Year
University of Virginia 5 0.00 | 14232 44.33 59.84 21142 20 | Baseball 82.4 986 | 2010
Vanderbilt University 5 2.91 6836 48.96 63.91 54718 19 | Baseball 81.8 996 | 2010
University of South Carolina, Columbia 5 7.29 | 21033 46.53 78.23 21490 21 | Baseball 79.7 953 | 2010
Stony Brook University 2 0.88 | 16044 52.50 38.23 18319 21 | Baseball 77.8 959 | 2010
University of North Carolina, Chapel Hill 5 14.86 | 17943 40.98 66.14 1777 20 | Baseball 76.1 969 | 2010

Academic Progress Rate

The first dataset used is the NCAA Academic Progress Rate Database. From this the variables of interest are
the schools, the state each school is in, the various sports, the individual years, and each specific program’s
APR score. Each athlete on the team can receive at most 2 points, one for remaining eligible over the semester
and another for staying at the institution. So, each athlete can have anywhere between zero and two points
for a given semester. The APR score for each Division I team is calculated by adding all points earned by
the team and dividing that total by the maximum possible number of points that could have been earned.
This percentage is then multiplied by 1,000 to return the team’s APR score. Thus, an APR of 950 means
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that the student-athletes in the cohort earned 95 percent of the eligibility and retention points that they
could have earned. It is important to note that APR in this dataset represents a four-year rolling average
of APR scores. Figure 1 shows the variation in APR scores between sports and years. Men’s Basketball,
Baseball, and Football all have lower APR scores on average from the other sports (a), where Men’s and
Women’s Ice Hockey has higher APR scores on average. We can also see that over the 8-year time period in
our data (b) APR scores on average have increased.
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Figure 1: Distribution and trend of Multi-Year APR scores. Plot (a) is based on all 17,700 observations
from all 2,168 programs over all years separated by sport. Plot (b) tracks the increasing trend of APR scores
from the year 2010 to 2018.

Athletic Performance Data

The second NCAA dataset is a combination of datasets of the nine different team sports and their athletic
performance in each year from 2010-2018. The important variables from this database are the team name,
the team’s win percentage, and the year of observation. With each dataset, it was necessary to create a
new variable for the sport to keep track of which program is being observed when all datasets are merged
together. In some cases, the individual sports reported win percentage differently than others. Multiple
sports reported win percentage as a percentage with range from 0 to 100, while other sports reported it as
a decimal 0.00 to 1.00. For uniformity and ease of interpretation, all percentages were changed to a scale of
0 to 100.

College Academic Data

The final data accessed is the College Scorecard data. This database provides information about each specific
institution not specific to athletics. Each observation has the school’s ID number and the name of the school.
For each school in each year the variables that were considered for their relevance are the geographic region
of the school, the percentage of degrees awarded in Communication, Journalism, And Related Programs,
the total enrollment, the percent of the student body that is white, the percent of the student body that is
male, the average cost of attendance in each year, and the age at which students enroll at the institution. As
with any form of modeling it is important to hold constant variables that may bias results and affect their
validity. The College Scorecard data is used to include school-level variables and to determine what aspects
of a school would have an effect on its sports’ win percentages.
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Table 2: Summary Statistics

Statistic Mean St. Dev. Min Pctl(25)  Median  Pctl(75) Max
Percent Communication Major 5.4 4.0 0.0 2.8 4.9 7.7 23.3
Total Enrollment 13,404.3  10,200.8 947 5,099.2 10,173 19,606 59,183
Percent Male 46.0 7.9 0.0 41.6 45.6 49.8 93.2
Percent White 58.8 21.8 0.0 48.0 64.6 75.2 92.8
Average Cost of Attendance 32,295.2 15,949.0 10,605 19,988 24,441 46,143 72,960
Average Age at Enrollment 21.2 1.7 19 20 21 22 32
Win Percentage 50.1 17.7 0.0 38.0 50.0 62.5 100.0
Multi-Year APR 974.4 22.8 451 963 979 990 1,000

Geographic Variable

The first variable that was considered for its relevance was geographic region. In Minyong Song and Yang
Zhang’s Study, Research on the Relationship between Geographical Factors, Sports and Culture (2018), they
conclude that “The geographical environment influences the emergence and development of sports events in
different ways, Climate changes will affect the conditions of sports, but also interfere with the athletes’ body
mechanism and emotion, thereby affecting athletic ability”. Their findings give merit to consider geographic
region as a possible influence on win percentage. The breakdown that follows is the classification of the
geographic regions:

e 0 U.S. Service Schools

e 1 New England (CT, ME, MA, NH, RI, VT)

o 2 Mid East (DE, DC, MD, NJ, NY, PA)

o 3 Great Lakes (IL, IN, MI, OH, WI)

« 4 Plains (IA, KS, MN, MO, NE, ND, SD)

« 5 Southeast (AL, AR, FL, GA, KY, LA, MS, NC, SC, TN, VA, WV)
o 6 Southwest (AZ, NM, OK, TX)

o 7 Rocky Mountains (CO, ID, MT, UT, WY)

o 8 Far West (AK, CA, HI, NV, OR, WA)

Major Clustering

One other variable that needs to be considered is the percentage of the student body majoring in communi-
cation. This is a very specific variable, but its potential inclusion in our data stems from the phenomenon
of major clustering. Programs and schools that cluster their student athletes into an easier, or less time-
intensive major may have more energy to focus on athletics. In addition, this may allow more student-athletes
to remain eligible with the smaller work-load that some majors may offer. Different institutions have been
accused of clustering into different majors, but Schneider, et al. (2010) reinforce communications as one of
the common majors subject to clustering. As such we would expect that as the percentage of the student
body majoring in communication increases we would see a corresponding increase in those programs’ win
percentages. Kaydee McCormick (1970) found in their research that although clustering appears to have the
possibility to occur among all college students, it seems to be more prevalent within intercollegiate athletics.
As such, if we find clustering in the general student-body it is reasonable to assume that the athletic pro-
grams at that institution are subject to clustering as well. Although major clustering may be an issue in the
data, there is no precise measurement of it, but this variable is our attempt to control for it. For uniformity
and ease of interpretation, all percentages were changed from a scale of 0.00 to 1.00 to a scale of 0 to 100.

Demographics and Enrollment

Three other variables of the student body are potentially relevant for this research: The percent of the
student body that is white, the percent of the student body that is male, and the average age of enrollment.
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Analysis performed by Zippia and BBC show much variation within these specific demographics. Collegiate
student-athletes are a sample of the general student body, and as such we assume the demographics of
the student body are representative of their student-athletes. Ethnicity, gender, and age all impact sport
participation, so we must consider them as possible controls. Again for uniformity and ease of interpretation,
the percentage male and percent white were changed from a scale of 0.00 to 1.00 to a scale of 0 to 100.

Cost of Attendance

The final institution level variable considered is the average cost of attendance. Studies by Battle (2020),
Ayers et al. (2012), and Gurney (2009) analyze the relationship between academics and athletics considering
the extreme burden and time commitments that student-athletes have. Regardless of their concluding
argument, they rely on this connection. With such extenuating circumstances and limited time commitments,
athletes do not have time and are often not allowed to work full-time and only in 2007 did the NCAA enact
a policy allowing student athletes to work part-time jobs during the off-season. With that said, other than
financial aid many student-athletes cannot be expected to afford the large tuition fee most institutions
charge, not including student loans. Controlling for financial aid in this way adds value to the model by
incorporating the affordability of different institutions, particularly for student-athletes who cannot, due to
time restrictions, handle full-time employment.

Variable Modifications

In the merged dataset there were multiple of the included variables that needed to be modified. The first
of these was the variable for each Academic Year. This variable was a strain that contained the two years
(the start of the year and the end of the year) connected by a hyphen. In order to model over time, it was
necessary to convert the year variable to an integer. The year used in this research is year from the start of the
academic year. For example, the year 2010 is the 2010-2011 academic year. It was also important to rescale
APR and years for later interpretation. From the APR score a new variable was created to demonstrate the
centered APR score, or each observation’s distance from the mean APR score of 974.4. The year variable
also needed to be centered; a new variable is created where the first year in the data, 2010, is represented as
0 and years are measured as years since 2010. For example, the year 2018 would be represented as 8. There
was also a need to create a unique identifier variable for each program, i.e. a specific sport team at a specific
institution.

Methodology

Our main purpose is to interpret how program’s APR scores, measuring academic success, impact program’s
win percentages. Using Ordinary Least Squares regression and multiple mixed-effects models, we can evaluate
this relationship. However, it is important to include variables in our models that impact a program’s win
percentage outside of APR scores. By looking at each variable from the College Scorecard Database and its
correlation with win percentage we can see if it is valuable to the models. Figure 2 explores this correlation
between each variable, where a darker red shading of the box and a more negative number indicates a
stronger, negative correlation and a larger positive number with a darker blue shading indicates a stronger
positive correlation. Looking at the column for win percentage in Figure 2, we can see that APR Scores, the
percent white, and the total student enrollment are the most correlated with win percentage, the percent
communication and percent male have very small correlation, and the average cost and average age have
essentially no correlation. With no correlation, the average cost and average age of enrollment will not
be included in the models as they add no value to our results. We will include models that include these
variables, and models that do not to determine the effect these controls may have based on the differences
in our results.

It is also important to explore the possibility of differences in location. Perhaps programs in the Southwest
have higher win percentages on average than programs in New England. Figure 3 demonstrates differences
in win percentage for the different geographic regions. Generally speaking, all regions have a median win
percentage of roughly 50%. Without major differences between regions, they may not contribute to our final
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Figure 2: The correlation between variables

results, but we will look at our models with and without a variable controlling for the geographic region and
compare the estimates.

To begin with we can look at an Ordinary Least Squares (OLS) regression of Multi-Year APR scores on Win
Percentages. Model 1 below is the equation used in our research to calculate the OLS regression coefficients.
Y, ;x represents the Win Percentage of program j at school ¢ in year k. The 8 terms in this model are
the regression coefficients corresponding to each variable in the model. ¢;;;, then represents the error term
capturing the unexplained variability in the model; the random difference of everything from its expected
value. This error term is expected to be normally distributed where €, ~ N (0,02) or in other words,
everything deviates from its predicted win percentage randomly and independently. Model 1 is the standard
OLS model using only APR scores to predict program’s win percentage. The second model uses APR in
addition to the most correlated variables from the College Scorecard Database. Model 3 depicts a model that
also includes the variables that are very slightly correlated in addition to dummy variables for the different
geographic regions. For OLS regression results, see Appendix Table 6.

Model 1: Y, = ag + B1APR, j;, + €5,
Model 2: Y, = ag + 81 APR;j;, + ByEnrollment; + B3 PercentW hite; + €
Model 3:

ijk

Y, =ag + B1APR,j;, + By Enrollment; + B3 PercentW hite,
+ B,PercentMale; + 5 PercentCommunication; + BgNewEngland,
+ B8, MidEast, + fgGreatLakes,; + BqPlains; + BpSouthEast,
+ B11SouthWest, + 51, RockyMountains; + B3 FarWest,
+ B14Outlying; + €y,

However, our data violates a vital assumption of OLS models: that all entries in the data are independent.
There are three levels in our model in which the entries have the potential to be correlated to one another: the
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school or institution level, the level containing each athletic program, and the year level. The key difference
between an OLS model and a mixed effects model is the inclusion of random effects, variables that control
for the random variability within each level in our model (Legler, 2021). The first level, the schools, are very
important to consider. Any entries from a specific college or university have the potential to be correlated
with other entries from the same school. For example, the win percentage of any program at the University
of Michigan is going to be correlated with the win percentage at the University of Michigan in other entries,
therefore not all entries are independent. The second level in our model is the program level. In this level it
is important to take note that the win percentage of a specific program in one year is going to be correlated
with other entries from the same program. The University of Alabama historically has a very successful
football program, and we can expect that the win percentage of the University of Alabama in 2010 is not
completely independent from its win percentage in 2011. The third and final level in this model is the year.
For this level we need to consider that for any one program at any specific school, there will be random
difference from year to year.

When using a linear mixed effects model, there are both fixed effects and random effects. In our models, the
[ terms represent the fixed effects. These variables will be constant over the program or school it represents.
In our mixed effect models the random effects, that vary over each program or school, will be represented
by s;, pij, My, my; and €, .
Instead of using least squares to estimate our regression coefficients, the linear mixed effects model uses
restricted maximum likelihood, or REML. This separates the part of the data used to calculate the variance
estimates from that used to calculate the fixed effects, producing an unbiased variance estimate (Oskolkov,
2020).

The first random effect our mixed effects model will include is s;. This is a random effect allowing for
deviation from each specific school after accounting for APR score and other fixed effects. Compared to the
OLS model which only has the single error term where everything is expected to deviate at random from the
expected value, this only represents the random deviations for each school. s, is distributed s; ~ N(0,02)
where o, is the standard deviation of differences of each school’s win percentage relative to its predicted
value based on APR scores and other fixed effects. It is also important to add a similar random effect, Pijs
that allows for deviations between programs at the same school after accounting for APR and other fixed
effects. p;; is distributed p;; ~ N (0, ag) where o, is the standard deviation of differences of each specific
program’s win percentage relative to its predicted value based on APR scores and other fixed effects. As
in the OLS model, the mixed effect models still have an error term ¢;;;,, however now this random effect

,
represents the unexplained variability in win percentage within a program from year-to-year.

We have considered random effects allowing for random deviations for schools, programs, and years, but
the inclusion of another random effect is important: one associated with differences in rates of change
from school-to-school or program-to-program. In figure 4 we can see a sample of schools (a) and how their
average APR score has a large variation in slopes, some being moderately positive and some being slightly
negative. In (b) we can see from a sample of programs from 2 different schools that programs can have slight

variations in slope as well. In our models this will be the m; and m,; variables. Both of these are again
2

normally distributed with mean 0 and variance o7,.

Model 4: Y, = ag + B1APRjj, + s, + pij + €
Model 5: Y}, = ag + B1APR, j;, + s; + m;APR + p;; + €5,

Model 6: Y, = ag + BiAPR, . + 8; + p;; + m;APR + €,

When we add these random effects to the fixed effects in Model 1, we have 3 different base models. Model
4 includes only intercept random effects, while Model 5 and 6 include slope random effects for schools and
programs respectively. In other words, this allows for the rate of change in Win Percentage to differ based on
the school or program’s average APR score. A school or program with a lower APR score may see a sharper
increase in Win Percentage than schools or programs with a higher APR score. We can use likelihood ratio
tests to compare our models. In doing so, the models are refitted using full maximum likelihood, since we
are focusing on model parameters and not random effects. We can see the comparison in Table 3. In this
case, the AIC favors Model 6 (145425) over Model 5 (145538) and Model 4 (145615). The BIC favors Model
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Figure 4: Differences in slopes (a) from school to school selecting at random 10 schools, and (b) from program
to program selecting all programs from 2 schools at random

Table 3: Likelihood Ratio Test using anova

npar AIC BIC logLik dev Chisq Df pval
Model 4 5 145615.3 145654.2 -72802.64 145605.3 NA NA NA
Model 5 7 145538.4 145592.9 -72762.21 145524.4  80.86436 2 0

Model 6 7 145425.2 145479.7 -72705.62 145411.2 113.18540 0 NA

6 as well (145480) over Model 5 (145593) and Model 4 (145654). We can conclude that Model 6 outperforms
both Model 4 and Model 5.

Model 6.a: Y, = ag + 81 APR, ;. + By Enrollment,; + B3 PercentWhite; + s, + p;; + m;;APR + €,
Model 6.b:

Y, =ag + B1APR,j;, + By Enrollment; + B3 PercentW hite,
+ B,PercentMale; + B5PercentCommunication; + BgNewEngland,
+ B8, MidFEast; + psGreatLakes,; + BgPlains; + B1gSouthEast,
+ B SouthWest, + 51, RockyMountains; + B3 FarWest,
+ B14Outlying; + s; + p;; + mijAPR + €k

We can also further analyze model 6 to see if it can be improved by adding more fixed effects, other than
APR Score, from the College Scorecard Database. Similar to models 2 and 3, the second equation uses APR
in addition to the most correlated variables from the College Scorecard Database and Model 3 depicts a
model that also includes the variables that are very slightly correlated in addition to dummy variables for
the different geographic regions.
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Table 4: AIC and BIC Comparisons

df AIC BIC

Model 6 7 145432.6  145487.0
‘Model 6.a° 9 145162.5 145232.5
‘Model 6.b¢ 19 145123.7 145271.6

5,2 (Model 6) — &,>(Model 6.a)  41.21 — 24.95

Pseudo R?, = = 0.3946
b3 .2 (Model 6) 41.21
.2 2
"(Model 6.a) — o, (Model 6. 24.95 —21.1
Pseudo RZ, — a, (Mode Sa) 7, (Model 6.b) _ 249 0_ 0.1543
: 7, (Model 6.a) 24.95

In an ordinary Pseudo R? calculation, we would be looking at ¢? to determine the impact of the different
models on year to year variability within programs, however no variables are added at the yearly, or program
level, so when adding College Scorecard variables to Model 6, there will be no change in program slope or
intercept terms. To analyze the addition of these variables to the model we can look at the Pseudo R%:ag
using 02 to describe the improvement from model to model in explaining school-to-school variability in
intercepts. The addition of these variables at the school level has decreased the between-school variability in
win percentage by 39.46% from model 6 to 6.a and an additional 15.43% from model 6.a to 6.b. Using AIC
and BIC tests in Table 4, we see that AIC favors model 6.b, but BIC favors model 6.a due to the fact that
BIC has a larger penalty for each additional variable and more model complexity. Due to the improvement
in models using Pseudo R?, and the slight favoritism of Model 6.b with AIC, Model 6.b is the final model
that will be used throughouf the remainder of our research.

Results

As stated in the methodology section, Model 6.b (shown below) is the model that will be analyzed to draw
our results. This three-level mixed effects model includes fixed effects for APR Score and all the variables
that are slightly correlated, dummy variables for the different geographic regions, and random effects for
school-to-school variability, program-to-program variability, changes in rates of change from program to
program, and an error term for unexplained year-to-year variability.

Model 6.b:

Y, =ag + B1APR,j;, + By Enrollment; + B3 PercentW hite,
+ B,PercentMale; + B5 PercentCommunication; + BgNewEngland,
+ B8, MidFEast, + fgGreatLakes,; + BqPlains; + B9SouthEast,
+ B SouthWest; + 515 RockyMountains; + 13 FarWest,

+ B14Outlying; + s; + p;; + m;APR + €y,
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Table 5: Mixed Effects Model 6.b Results

Win Percentage

Predictors Estimates SE T Stat
Intercept 38.572 4.895 7.879
Centered APR Score 0.104 0.010 10.544
Total Enrollment 0.000 0.000 7.905
Percent Male 0.011 0.043 0.263

Percent Communication Majors  0.226  0.070 3.213

New England -3.744 4025 -0.930
Mid East -3.618 3.933 -0.920
Great Lakes -3.528 3.977 -0.887
Plains -0.444 4095 -0.108
Southeast 0.560 3.931 0.142
Southwest 1978 4.071 0.486
Rocky Mountains -1.894 4187 -0.452
Far West 1.626 4.030 0.403

Random Effects

o2 167.14631
Too Program 85.67472
Too School 21.10242
T11 Program.centeredAPR 0.05187
Po1 Program 0.14454

N school 374

N Program 2168

Observations 17661
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From the model results shown in Table 5, a total 17,661 observations from 374 different schools and 2,168
different programs were used to estimate our model. We can begin to interpret our results by looking at the
fixed effects estimates. o = 38.572 and is the mean win percentage of an athletic program with a mean
APR Score of 974.4 at a U.S. service school where enrollment is 0 students, 0 percent of which are white,
0 percent of which are male, and 0 percent are communication majors. Of course there is no school in our
data where this holds, so this estimate is not a valid interpretation of any school in our dataset. 8, = 0.104.
This is the estimated increase in a program’s win percentage for a 1 point increase in APR score after
controlling for total enrollment, the percent white, the percent male, the percent communications majors,
and the geographic region. With a T-Statistic of 10.544, this is statistically significant and is the variable
of interest in our research. §, = 0.000267 and corresponds to the estimated increase in win percentage for
one more enrolled student at the school after controlling for APR score, the percent white, the percent male,
the percent communications majors, and the geographic region. A single student increase is not reasonable,
so we can say that a 1,000 student increase in enrollment corresponds to 0.267 percentage point increase
in win percentage. With a T-Statistic of 7.905, this is also statistically significant. We can see 85 = 0.118
which is the estimated increase in win percentage for a 1 percentage point increase in the percentage of
the student body that is white after controlling for APR score, total enrollment, the percent male, the
percent communications majors, and the geographic region. The T-Statistic of 7.494 shows that this is
significant. 8, = 0.011 and is the estimated increase in win percentage for a 1 percentage point increase in
the percentage of the student body that is male after controlling for APR score, total enrollment, the percent
white, the percent communications majors, and the geographic region. The small T-Statistic of 0.263 shows
this is insignificant. Sy = 0.226. This is the estimated increase in win percentage for a 1 percentage point
increase in the percentage of the student body that is majoring in communications or a related field after
controlling for APR score, total enrollment, the percent white, the percent male, and the geographic region.
The T-Statistic of 3.213 is significant, but not as much as APR Score, Enrollment, or Percent White.

We can continue our results interpretation by looking at the variables corresponding to the difference in
win percentage for different geographic regions, compared to U.S. Service Schools. The low T-Statistics
demonstrate that these variables are statistically insignificant, as they don’t significantly vary from region
to region compared to U.S. Service Schools. B3 = —3.744 and is the estimated decrease in win percentage
for schools that are in the states of Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island,
and Vermont compared to the U.S. Service Schools. 3, = —3.618, which is the estimated decrease in win
percentage for schools that are in the states of Delaware, District of Columbia, Maryland, New Jersey, New
York, and Pennsylvania from U.S. Service Schools. g = —3.528; this corresponds to the estimated decrease
in win percentage for schools that are in the states of Illinois, Indiana, Michigan, Ohio, and Wisconsin when
compared to U.S. Service Schools. g = —0.444 and is the estimated decrease, compared to U.S. Service
Schools, in win percentage for schools that are in the states of lowa, Kansas, Minnesota, Missouri, Nevada,
North Dakota, and South Dakota. £,, = 0.560 and is equal to the estimated decrease in win percentage from
U.S. Service Schools for schools that are in the states of Alabama, Arkansas, Florida, Georgia, Kentucky,
Louisiana, Mississippi, North Carolina, South Carolina, Tennessee, Virginia, and West Virginia. 8;; = 1.978;
the estimated decrease, compared to U.S. Service Schools, in win percentage for schools that are in the states
of Arizona, New Mexico, Oklahoma, and Texas. ;5 = —1.894 and equals the estimated decrease in win
percentage for schools that are in the states of Colorado, Idaho, Montana, Utah, and Wyoming compared to
U.S. Service Schools. ;53 = —1.626; the estimated decrease in win percentage, in comparison to U.S. Service
Schools, for schools that are in the states of Alaska, California, Hawaii, Nevada, Oregon, and Washington.

It is also important to interpret the random effects estimates we see in Table 5. ¢ = v/167.146 = 12.929. This
is the standard deviation in within-program residuals from year-to-year after accounting for APR score, total
enrollment, the percent white, the percent male, the percent communications majors, and the geographic
region. o, = V/85.675 = 9.256 and corresponds to the standard deviation of differences of each program’s
win percentage at a specific school relative to its expected win percentages based on APR score, total
enrollment, the percent white, the percent male, the percent communications majors, and the geographic
region. o, = v/21.102 = 4.954; the standard deviation of differences of each school’s win percentage relative
to its expected win percentages based on APR score, total enrollment, the percent white, the percent male,
the percent communications majors, and the geographic region. o, = v/0.052 = 0.228 and is equal to the
standard deviation in rates of change in win percentage relative to APR scores. py; = 0.145 and equals the
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correlation in programs’ random intercept and their random rates of change. This means that programs with
an above average APR score see sharper increases in Win Percentage on average, however this is a small
correlation.

Based on T-values produced by Model 6.b, APR scores have the most significant effect on a program’s win
percentage. As stated above, on average a 1 point increase in APR score corresponds to a 0.104 percentage
point increase in win percentage after controlling for all other factors. However, a 1 point increase is not
a reasonable scale when the range of APR scores in our dataset are from 451 to 1,000. Instead we can
interpret this by saying a 10 point increase in APR score is associated with a 1.04 percentage point increase
in a program’s win percentage, and a 100 point increase corresponds to a 10.4 percentage point increase
in win percentage. A 100 point difference in APR score is therefore equivalent to roughly winning 1 more
game out of every 10 games. From our results and the corresponding T-Statistics, the estimates for APR
Score, Total Enrollment, Percent White, and Percent Communication Majors are statistically significant.
Percent male along with the differences between geographic regions are statistically insignificant; they do
not significantly differ from 0.

Controlling for school level variables provided more reliable estimates of the effects of APR scores, while
also providing interesting insights. For example, schools with larger enrollment and schools with a larger
percent of the student body being white had higher win percentages on average. In addition, the inclusion
of random effects in our model makes our variance and standard deviation estimates more precise. However,
it is still important to note that the largest amount of deviation occurs from year-to-year within programs
rather than from school-to-school or program-to-program within school.

Key Takeways

e There is a significant estimated increase in a program’s win percentage of 0.104 for a 1 point increase
in APR score after controlling for all other variables.

e With a 1,000 student increase in enrollment there is a significant 0.267 percentage point increase in
win percentage when controlling for other variables.

e A 1 percentage point increase in the percentage of the student body that is white has a corresponding
significant increase in win percentage of 0.118 with all other variables held constant.

e We find a significant estimated increase of 0.226 in win percentage for a 1 percentage point increase
in the percentage of the student body that is majoring in communications or a related field after
controlling for other variables.

o No significant relationship exists differentiating the impact of geographic regions on win percentage
when comparing to U.S. Service Schools.

e Athletic programs with an above average APR score see sharper increases in Win Percentage on average,
however this is a small correlation.

e APR scores have the most significant effect on a program’s win percentage.

Conclusion

Transitioning from the OLS model and comparing various mixed effects models using AIC, BIC, and like-
lihood ratio tests allow our final model to yield the most accurate results. Using our final mixed effects
model of 2,168 different programs over eight years, we see the direct positive relationship between academic
success, measured through APR scores, and program’s win percentage, a measure of athletic performance.
Of the numerous covariate factors included in this model, academics have the most significant effect on
athletics. The NCAA and all college coaches and recruiters for team sports should be looking not just for
the best athletes, but for the best student-athletes. In addition, the NCAA and colleges should consider this
as an incentive for programs to encourage and develop higher academic performance, as it will benefit the
competition at the college-level and create better students, better athletes, and in general people who are
better prepared for their life after college.

This significant finding is intuitively the results we expected to find in our research. The mentality of hard-
working students is directly reflected in their athletic preparation and performance. Future research on the
relationship between academics and athletics could look at the relationship for non-team related sports, such
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as track and field or swimming. This relationship could also be viewed at different levels of competition,
perhaps at the high school, or NCAA Division 2 or Division 3 level. It would also be important to look at
the impact of any eligibility differences between schools and whether this difference would impact the win
percentages for those programs as it may make it easier for athletes at certain schools to maintain eligibility.
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Table 5: OLS Results

Dependent variable:

Win Percentage

Model 1 Model 2 Model 3
(1) (2) (3)
Centered APR Score 0.119** 0.090*** 0.105***
(0.006) (0.006) (0.006)
Total Enrollment 0.0003*** 0.0003***
(0.00001) (0.00001)
Percent White 0.090*** 0.105***
(0.006) (0.007)
Percent Male 0.024
(0.019)
Percent Communication Majors 0.255"
(0.033)
New England —3.445**
(1.492)
Mid East —3.434**
(1.466)
Great Lakes —3.497**
(1.487)
Plains 0.013
(1.541)
Southeast 0.718
(1.475)
Southwest 2.101
(1.532)
Rocky Mountains —1.818
(1.588)
Far West 1.258
(1.510)
Constant 50.089*** 40.089*** 38.303***
(0.132) (0.426) (1.957)
Observations 17,685 17,661 17,661
R2 0.023 0.073 0.089
Adjusted R? 0.023 0.073 0.088

Residual Std. Error

F Statistic

17.533 (df = 17683)
423.779** (df = 1; 17683)

17.079 (df = 17657)
466.037"** (df = 3; 17657)

16.941 (df = 17647)
132.306™* (df = 13; 17647)

Note:
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*p<0.1; *p<0.05; **p<0.01





