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Multiscale Models Shed Light on Tuberculosis
By Matthew R. Francis

As demonstrated by the ongoing 
COVID-19 pandemic, a thorough 

understanding of infectious diseases requires 
data and models on multiple interconnected 
levels. Epidemiology addresses population-
level issues, transmission models describe 
individuals within their environments, and 
a variety of biomedical approaches help 
researchers comprehend the way in which 
pathogens infiltrate the body — and the 
body’s ability to fight back.

Tuberculosis (TB) is one of the deadli-
est infectious diseases in the world. It 
accounts for roughly 1.5 million deaths 
per year1 and causes the most HIV-related 
casualties. While decision-makers know 
in principle how to slow the spread of 
certain illnesses, TB is more stubborn than 
most. “TB is unique compared to many 

1 https://www.who.int/health-topics/
tuberculosis

other diseases and the way we treat them,” 
Denise Kirschner, a mathematical biolo-
gist at the University of Michigan Medical 
School, said. During her plenary talk at 
the hybrid 2022 SIAM Conference on the 
Life Sciences2 (LS22), which took place 
concurrently with the 2022 SIAM Annual 
Meeting3 in Pittsburgh, Pa., this July, 
Kirschner described the major challenges 
that surround TB’s characterization.

“Bacteria induce the formation of struc-
tures in the lungs known as granulomas,” 
she said. “These structures are important, 
and how cells move around within the gran-
uloma structure is important.” Granulomas 
are roughly spherical clusters of immune 
cells that form around invading bacteria, 
most likely as an immunological response 
(see Figure 1). While the human body builds 
these structures in response to certain other 
types of infection as well, their presence in 
the case of TB partly explains why many 
people who are exposed to Mycobacterium 

tuberculosis bacteria 
remain asymptomatic.

TB is notoriously 
challenging to treat, and 
granulomas are partly 
responsible for this dif-
ficulty because most of 
the pathogens are isolated 
from the rest of the body. 
An infected lung might 
have between 10 and 30 
granulomas, which gener-
ally do not seem to interact 
directly with each other. 
Medical data on patients 
and experiments on mon-
keys have revealed several 
distinct types of granulo-
mas, including stable clus-
ters wherein the surround-
ing cells contain bacterial 

2 https://www.siam.org/
conferences/cm/conference/
ls22

3 https://www.siam.org/
conferences/cm/conference/
an22

growth, and broken granulomas that spill 
bacteria into the rest of the lung.

“Only one granuloma has to go south to 
cause active disease,” Kirschner said. “We 
have to understand what ‘go south’ means, 
and usually it means the granuloma is 
unable to control bacterial growth. Our goal 
is to really determine which factors within 
the granuloma lead to overgrowth, control, 
or clearance of the bacteria.”

Granular Approach to Granulomas
TB’s complexity requires that Kirschner 

and her collaborators simultaneously 
build models on multiple scales that range 
from molecular and cellular interactions 
to whole-lung and whole-patient analy-
ses. The current state of the art involves 
agent-based models that simulate the way 
in which independent “agents” organize 
into larger associations. In the context of 
Kirschner’s TB research, these agents can 
take the form of granulomas, individual 
cells (bacteria and T-cells), and even regu-
latory proteins known as cytokines and che-
mokines. “We are interested in starting at 
the scale of most interest, where the data is 
most plentiful,” she said. “In this case, that 
scale happened to be the granuloma. We let 
the biology drive how deep we drill down 
and what the biological questions are.”

In other words, the unique nature of 
granulomas means that they are located at 
the metaphorical center of the picture; their 
formation, growth, propagation, and fate 
hold the key to modeling and hopefully 
treating TB. Many of the multiscale simu-
lations that Kirschner and her team devel-
oped begin at the granuloma, then extend in 
both directions to encompass smaller- and 
larger-scale phenomena. The lung compris-
es the overall environment of these models, 
and the group tests the modeling outcomes 
against biological data from either TB 
patients or monkeys — which provide the 
closest known analog to humans.

To complicate matters, M. tuberculosis 
bacteria can also infect immune system 
cells. As such, complete multiscale models 

Figure 1. Non-human primate granuloma. Figure courtesy of the 
laboratory of JoAnne Flynn at the University of Pittsburgh. See Tuberculosis on page 3

Control and Machine Learning
By Enrique Zuazua

Two recurring questions pertain to the ori-
gin, history, and present state of math-

ematics. The first relates to math’s incredible 
ability to describe natural, industrial, and 
technological processes, while the second 
concerns the unity and interconnectedness of 
all mathematical disciplines. Here I describe 
some of the gateways that link two particular 
mathematical branches: control theory and 
machine learning (ML). These areas, both of 
which have very high technological impacts, 
comprise neighboring valleys in the complex 
landscape of the mathematics universe.

Control theory certainly lies at the ped-
estal of ML. Aristotle anticipated control 
theory when he described the need for auto-
mated processes to free human beings from 
their heaviest tasks [3]. In the 1940s, math-
ematician and philosopher Norbert Wiener 
redefined the term “cybernetics”—which 
was previously coined by André-Marie 
Ampère—as “the science of communica-
tion and control in animals and machines,” 
which reflected the discipline’s definitive 
contribution to the industrial revolution.

Wiener’s definition involves two essen-
tial conceptual binomials. The first is con-
trol-communication: the need for sufficient 
and quality information about a system’s 

state to make the right decisions, reach a 
given objective, or avoid risky regimes. 
The second binomial is animal-machine. As 
Aristotle predicted, human beings rationally 
aim to build machines that perform tasks 
that would otherwise prevent them from 
dedicating time and energy to more sig-
nificant activities. The close link between 
control and/or cybernetics and ML is thus 
built into Wiener’s own definition.

The interconnections between different 
mathematical disciplines are split by con-
ceptual and technical mountain ranges and 
have often evolved in different communities. 
As such, they are frequently hard to observe. 
Building the connecting paths and identify-
ing the hypothetical mountain passes requires 
an important level of abstraction. Let us take 
a step back and consider a wider perspective.

The notion of controllability helps us 
disclose one of the gateways between dis-
ciplines. Controllability involves driving 
a dynamical system from an initial con-
figuration to a final one within a given time 
horizon via skillfully designed and viable 
controls. In the framework of linear finite 
N -dimensional systems

      
′ + =x Ax Bu,

the answer is elementary and classical (it 
dates back to Rudolf Kalman’s work in the 

1950s, at least) [6]. The system is control-
lable if and only if the matrix A that gov-
erns the system’s dynamics and the matrix 
B  that describes the controls’ effects on 
the state’s different components verify the 
celebrated rank condition

         rank[ , ,... ] .B AB A B NN− =1

The control’s size natural-
ly depends on the length 
of the time horizon; it 
must be enormous for 
very short time horizons 
and can have a smaller 
amplitude for longer ones.

In fact, as John von 
Neumann anticipat-
ed and Nobel Prize-
winning economist Paul 
Samuelson further ana-
lyzed, the “turnpike” 
property manifests itself 
over long time horizons; 
controls tend to spend 
most of their time in the 
optimal steady-state con-
figuration [5]. We apply 
this lesser-known prin-
ciple systematically (and 
often unconsciously) in 

our daily lives. When travelling to work, 
for instance, we may rush to the station to 
take the train—our turnpike in this ride—
on which we then wait to reach our final 
destination. Medical therapies for chronic 
diseases also utilize this principle; physi-
cians may instruct patients to take one pill 

Figure 1. Simultaneous control of trajectories of a neural ordi-
nary differential equation (NODE) for classification according to 
two different labels (blue/red), exhibiting the turnpike nature of 
trajectories. Figure courtesy of [5].

See Machine Learning on page 4
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5  GraphBLAS and 
GraphChallenge Advance 
Network Frontiers

 Many factors inspire inter-
est in networks and graphs. 
Jeremy Kepner, David Bader, 
Tim Davis, Roger Pearce, 
and Michael Wolf discuss the 
ways in which the Graph Basic 
Linear Algebra Subprograms 
(GraphBLAS)—along with other 
graph innovations that appear in 
GraphChallenge—have enabled 
new capabilities for networks.

6  The Value of Applied 
Mathematics Internships 
in Business, Industry,         
and Government

 Summer internships in applied 
mathematics and computational 
science provide opportunities 
for students to explore possible 
career paths and apply their 
coursework to real-world sce-
narios. Margaret Cheney, Andre 
Celestin, Jerett Cherry, Cole 
Moore, and Danny Long address 
various aspects of internships 
and share personal anecdotes.

9  Rules, Algorithms,         
and Models: An  
Intellectual History

 Ernest Davis reviews Lorraine 
Daston’s Rules: A Short History 
of What We Live By, which 
surveys the vast landscape 
of societal rules in terms of 
their appearance; evolution; 
creation, perception, and 
enforcement; and the ways 
in which people respond to 
them. The text combines con-
ceptual and historical analysis 
with a wealth of examples.

10  Virginia Commonwealth 
University SIAM Student 
Chapter Celebrates 
Successful Year of Activities

 The Virginia Commonwealth 
University (VCU) SIAM 
Student Chapter had a success-
ful 2021/2022 academic year. 
Henry Ogu—treasurer of the 
VCU SIAM Student Chapter—
recounts several engaging 
chapter activities, including 
an outreach visit to a local 
elementary school and atten-
dance at multiple conferences.

11  Academia or Industry…
Why Not Both?

 Giovanna Guidoboni details 
the journey to her current posi-
tion as both a faculty member 
and mathematical consultant. 
She overviews her experiences 
in balancing both pursuits and 
provides useful tips for any-
one who enjoys the academic 
environment but would also 
like to explore consulting.
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Living Matter and Active Cells
By Michael Shelley

Living things assemble themselves to 
a remarkable degree in a coordinated 

and hierarchical manner. A driving ques-
tion in biology seeks to explore the factors 
that underlie and guide this astonishing 
capacity for self-assembly and self-organi-
zation, which is also the animating force for 
the multidisciplinary field of active matter. 
The back-and-forth conversation between 
cell biology and active matter physics has 
been fruitful and intense.

In their study of multicellular life, biolo-
gists naturally turn to its earliest stages and 
investigate the lively processes through 
which egg and embryonic cells develop. 
Figure 1a shows how a nematode embryo—
composed of only a single cell—moves, 
combines, and segregates genetic mate-
rial as it proceeds towards its first division. 
This dance is choreographed by elements 
of the spindle complex: a self-assembled 
organelle that comprises stiff biopolymers 
(microtubules), microtubule nucleating sites 
(centrosomes), molecular machines (motor 
proteins), and other specialized proteins 
(see Figure 1b). The spindle complex ful-
fills several tasks, and its form adapts and 
changes as it moves through each one. 
Its centrosomes negotiate the joining of 
the male and female nuclei and properly 
position the subsequent conjoined nuclei. 
The complex then elongates, separating the 

duplicated chromosomes on opposite sides 
of the soon-to-be divided cell.

All of this activity takes place over 10 
or 15 minutes, but the complex’s structural 
elements—its microtubules—constantly dis-
assemble and are replaced approximately 
every 20 seconds. While such transience 
might seem weird and counterintuitive, 
this ephemeral quality provides the com-
plex with some of its necessary adaptivity. 
Because the spindle complex moves through 
the cell’s fluidic cytoplasm, the sequence 
is also a wonderfully complicated fluid-
structure interaction problem. It involves 
mobile structures—many of which are tran-
sitory and flexible—that interact with each 
other hydrodynamically and through motor 
proteins in a confined space. Very special-
ized computational fluid dynamics methods, 
which assume that the cytoplasm is a simple 
Stokesian fluid, have helped unravel some 
of these mysteries (see Figure 1c).

Yet where does active matter come into 
play? First, the cell assembles the spindle 
complex—which is maintained and moved 
by a constant expenditure of energy—from 
many copies of the same molecules. The 
microtubules are coupled by molecular 
motors that walk along them, dragging 
along anything to which they are attached. 
For example, one motor might be attached 
to another molecular motor that is walk-
ing along another microtubule (see Figure 
1d). At any rate, the motors need energy 

in order to move; the hydrolysis of adenos-
ine triphosphate, a primary fuel source 
for the cell, provides this energy. Finally, 
Newton’s third law has to be obeyed in that 
the total force that a motor exerts must be 
zero. If a motor exerts a force F  on the 
microtubule, it must also exert a force -F  
somewhere else — perhaps on the cyto-
plasm by the drag of a payload. This puts 
cytoskeletal assemblies on the turf of active 
matter, which in its purest form concerns 
itself with multiscale systems whose mobile 
microstructure converts a local energy 
source into mechanical work on the sys-
tem. Passive matter systems are equilibrium 
systems where work is performed on the 
system from the outside, while active matter 
systems perform work on themselves.

Figure 1e depicts the outcome of the 
extraction and purification of these cellular 
ingredients [8]. Freed from the confines 
and regulation of the cell, microtubules 
and motors organize to form biologically 
active materials that undergo self-driven, 
complex, and large-scale dynamics called 
active turbulence. Applied mathematicians 
and physicists model these systems, some-
times based on symmetry principles and 
sometimes via micro-to-macro (and back 
again) coarse-graining methods. One fun-
damental idea of the physics that governs 
the systems is that of an “active stress” — 
particularly an extensile active stress from 
collective microscale activity.

Continuum models for suspensions of 
active rod-like particles illustrate this con-
cept [3, 6]. We describe the system’s state 
with a distribution function Y( , , )x p t  
of particle positions x  and orientations 
p p(| | ),=1  which evolve through a Fokker-
Planck equation. This evolution requires 
conformational fluxes x  and p  that capture 
the microscopic particle dynamics; here, they 
are composed of active particles that swim, 
or stretch, or stretch the surrounding fluid — 
all while they are translated and rotated by a 
background flow u, which results from their 
own ensemble activity. Each active particle 
contributes a tensorial stress that is propor-
tional to pp.  Consequently, the background 
velocity u  solves a Stokes equation that is 
forced by the distributional average of pp 
(among other things). That is,

  
−∇ + = −∇ +q ∆u D· ( ...)a

              

and · , u∇ = 0

where D x t pp( , )
| |

=
=∫ dS
p 1

Ψ  and a 

measures the strength of particle activity. 
An extensile active stress has a<0,  which 
corresponds to fluid being stretched along 
the particle axis by particle activity. This 
stretching flow causes nearby active par-
ticles to align — eventually yielding the 
large-scale, self-organized flows that are 
commonly associated with active turbulence.

The kinetic theory outlined here first 
described experiments on suspensions of 
swimming bacteria that demonstrated simi-
larly complex dynamics [2]. It has provided 
a first-principles basis for the analysis and 

Figure 1. Active dynamics and structures within cells, and the dynamics of their extracted 
components. 1a. The spindle complex’s dynamics in a single-cell nematode embryo. 1b. 
Tomographic reconstruction of the spindle complex and chromosomes (blue) in a nematode 
embryo. 1c. Simulation of a payload that is positioned by peripherally bound motors, which 
pull on microtubules. 1d. A schematic of aligned microtubules that are pulled past each other 
by double-headed kinesin motor complexes. 1e. An active in vitro assembly of microtubules 
and molecular motors. 1f. The steady rotational flow that can arise from confinement of 
an active suspension. The left side illustrates mean particle alignment and the right side 
illustrates particle streaklines. 1g. Detail from a large-scale simulation of active turbulence. 
Figure 1a adapted from [9], 1b adapted from [4], 1c adapted from [5], 1d adapted from [3], 
1e adapted from [8], 1f adapted from [12], and 1g adapted from [11].

See Active Cells on page 5
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Tuberculosis
Continued from page 1

should include blood vessels and the lymph 
nodes that produce T cells to fight the 
infection. Simply put, TB simulations must 
span wide spatial and temporal resolutions 
and employ sophisticated tuning to capture 
the right details in every regime.

The earliest agent-based granuloma 
model describes bacteria, immune cell pop-
ulations, and protein responses on a two-
dimensional (2D) lattice [2]. This simula-
tion also breaks time into discrete chunks 
via a time scale that is based on reasonable 
biological constraints of cell division and 
protein decay rates. The resulting model 
contains four basic entities—bacteria that 
reside outside of cells, T cells, macro-
phages, and chemokine levels—with 27 
parameters that researchers either obtain 
from the simulation or measure experi-
mentally. The generic form of the stepwise 
equations within each lattice box is

    w w w w
k k k k j
t t f( ) ( ) ( , ),+ = +1

where w
k
 is one of the entities and fk  is a 

nonlinear term that describes the interac-
tions between entities.

Despite the number of simplifying 
assumptions, this model spontaneously 
generates granulomas unprompted. But cell 
motion in three dimensions is far more 
complicated than in two dimensions, and 
hence extending this model leads to pro-
hibitively long computer runtimes. Though 
2D models are still useful in some con-
texts—“Should we feel guilty about this?” 
Kirschner quipped during her presenta-
tion—scientists must look for other pos-
sible angles to the problem if they wish to 
involve biological experiments.

A more recent, promising approach treats 
granulomas themselves as the agents on a dis-
cretized model of the lung [3]. Louis Joslyn, 
a former graduate student in Kirschner’s 

group, worked with Kirschner’s colleagues 
to model growth, reproduction, and decay of 
bacteria, various cell types, and proteins with 
15 coupled nonlinear ordinary differential 
equations for each block of the lattice:

 
              

d

dt
Fk
k k j

w
w w= ( , ),

with nonlinear interaction terms F
k
.  The 15 

entities wk  include cell division, cell death, 
bacterial growth, and protein decay, among 
other factors (see Figure 2).

Early results of this technique have 
allowed Kirschner and her collaborators to 
link specific biomarkers in the blood of 
infected subjects with early immune respons-
es [1]. She is thus hopeful that the model 
might improve future therapeutic outcomes.

From Models to Treatment
Roughly 25 to 33 percent of the global 

population carries M. tuberculosis bacteria 
(mostly without symptoms), and poorer 
countries bear a heavier burden from the 
disease. M. tuberculosis also grows very 
slowly by bacterial standards, producing 
a new generation every eight to 24 hours. 
This relatively sedate growth rate means 
that researchers can only detect growth 
in the laboratory after one to six weeks, 
depending on the method of observation.

To further complicate matters, the widely 
used TB vaccine does not effectively pre-
vent transmission or infection. In addi-
tion, antibiotic treatment is a lengthy and 
expensive process. Due to the duration of 
treatment and unpleasant side effects, many 
patients do not complete the entire course of 
antibiotics; in response, some strains of TB 
have become drug resistant. “We have to 
use multiple drugs for long periods of time 
because it’s really hard to penetrate granulo-
mas,” Kirschner said. “We need to shorten 
the treatment, make the drugs less toxic 
so there are not as many side effects, and 
maybe reduce the number of drugs that one 
takes to make them more cost effective.”

whole-body—disease models will lead to 
new frontiers in vaccination and drug 
development for TB.
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During her presentation at LS22, 
Kirschner noted that researchers essential-
ly identified the current four-drug, nine-
month regimen through trial and error. 
Mathematical models of infected lungs 
could help scientists determine why the four 
antibiotics do not work individually but are 
somehow effective in combination.

Kirschner reiterated that biology and 
medicine are the primary drivers of her 
mathematical models. “They’re very itera-
tive for many reasons,” she said. “As we 
learn that certain things are important, we 
may go back and fine-grain the model in 
places where we coarse-grained it earlier. 
And biologists may discover the absence of 
something they now know is really crucial, 
so we want to add that in.”

After all, while studying TB in the 
abstract is interesting and useful, the ulti-
mate goal is to save lives and improve 
treatment outcomes. Catching infections 
early, controlling bacteria before they 
burst out of granulomas, and develop-
ing new therapies are ambitious goals, 
but the stakes are high. Kirschner hopes 
that biology-based whole-organ—or even 

Figure 2. Simulated lungs with tuberculosis (TB) granulomas that were created using an 
agent-based model. The lungs on the left have a latent asymptomatic infection, while the 
lungs on the right are experiencing full-blown TB symptoms because the granulomas have 
decayed and spilled their bacteria. Figure courtesy of [1].

Stories From a Scientist Affecting 
Science Policy in Washington, D.C.
By Samantha Erwin

Ever since college, I have continual-
ly been involved in public service. I 

enjoy working towards broader community 
improvement, whether it be through efforts 
to secure dental insurance for graduate 
students at Virginia Tech or fundraising for 
facilities to rehome retired thoroughbred 
racehorses. As an undergraduate student at 
Murray State University, I joined the SIAM 
student chapter and served as an officer; I 
was also an active member of the Virginia 
Tech SIAM Student Chapter1 throughout 
graduate school. Due to my involvement 
with these chapters, I received multiple 
travel grants to attend and present at SIAM 
conferences over the years. In addition, 
my participation in networking events and 
career fairs led to several job opportunities. 
These experiences collectively introduced 
me to SIAM’s far-reaching impact in fos-
tering the development of applied math-
ematics through publications, research, and 
camaraderie. When I saw the call for appli-
cations for the two-year SIAM Science 
Policy Fellowship Program,2 I was thus 
excited at the prospect of utilizing my pub-
lic service background to positively impact 
the SIAM community.

I applied to the SIAM Science Policy 
Fellowship Program because I wanted to 
understand the underpinnings of science 
policy and make meaningful contributions to 
the scientific endeavor both in the U.S. and 
globally. The SIAM Committee on Science 

1 https://sites.google.com/vt.edu/siam
2 https://www.siam.org/students-education/

programs-initiatives/siam-science-policy-
fellowship-program

Policy3 (CSP) focuses on promoting the 
visibility and value of applied mathematics 
research to policymakers by personally shar-
ing information about SIAM and its mem-
bers with congressional offices. The CSP 
maintains a steady presence in Washington, 
D.C., to understand and advocate for science 
policy issues that affect 
the entire SIAM com-
munity through the cre-
ation of white papers 
and position statements 
on topics like efficient 
power grid design and 
climate change. The 
Committee also com-
municates with poli-
cymakers regarding 
specific issues of inter-
est, such as funding for 
the National Science 
Foundation (NSF) 
or the Department 
of Energy’s (DOE) 
Advanced Scientific 
Computing Research 
(ASCR) program.4 In 
order to ensure that 
SIAM upholds its 
footing in Washington, D.C., Lewis-Burke 
Associates LLC serves as SIAM’s govern-
mental relations partner and liaison between 
the Society, federal agencies, and Congress 
members and their staff for issues that are 
important to applied mathematicians and 
computational scientists.

3 https://www.siam.org/about-siam/
committees/committee-on-science-policy-csp

4 https://www.energy.gov/science/ascr/
advanced-scientific-computing-research

After submitting my application, which 
included a personal statement and a write-
up of a policy issue (I discussed bio-
medical data availability), I received the 
Fellowship in 2020 along with nine other 
early-career researchers. As a Science 
Policy Fellow, I attended CSP meetings 

with 21 senior mem-
bers of SIAM from 
academia, industry, 
and the National 
Laboratories. Travel 
restrictions due to the 
COVID-19 pandemic 
limited the meetings 
in 2020 and 2021 
to virtual platforms, 
though SIAM extend-
ed my Fellowship for 
an additional year — 
enabling me to travel 
to Washington, D.C., 
for in-person gath-
erings in 2022. The 
CSP meetings occur 
biannually in the 
spring and fall and 
include a half-day 
orientation that briefs 

Fellowship recipients on the basics of 
SIAM’s history with science policy as 
well as the fundamentals of the federal 
budget, legislative process, and science 
policy advocacy. Staff from Lewis-Burke 
guided our efforts to highlight important 
topics in the federal budget that pertain 
to mathematics research. We also learned 
about strategies to better connect with poli-
cymakers and their staff when presenting 
compelling cases of the value of scientific 

research endeavors across the nation, rang-
ing from the work of the Tennessee Valley 
Authority5 to ongoing projects at Pacific 
Northwest National Laboratory.6

During the general CSP meetings, 
directors from mathematical research-
focused scientific offices—such as NSF 
and DOE—present their current and pro-
jected budgets and share scientific pri-
orities for the upcoming year. At the 2022 
spring meeting in Washington, D.C., the 
CSP met with David Manderscheid and 
Junping Wang, respectively the Division 
Director and Deputy Division Director of 
the Division of Mathematical Sciences7 
within NSF’s Directorate for Mathematical 
and Physical Sciences.8 Manderscheid and 
Wang emphasized the need for increased 
funding to support initiatives for epide-
miological modeling of human behav-
ior and digital twins research. Similarly, 
we conversed with Barbara Helland—
Associate Director of the ASCR program 
within DOE’s Office of Science9—who 
also highlighted new focus areas in dig-
ital twins, the novel Energy Earthshot 
initiative,10 and DOE’s Reaching a New 
Energy Sciences Workforce11 (RENEW) 

5  https://www.tva.com
6  https://www.pnnl.gov
7 https://www.nsf.gov/div/index.jsp?

div=DMS
8 https://www.nsf.gov/dir/index.jsp?

org=MPS
9 https://www.energy.gov/science/office-

science
10 https://www.energy.gov/policy/energy-

earthshots-initiative
11 https://science.osti.gov/Initiatives/

RENEW

See Science Policy on page 6

Samantha Erwin of Pacific Northwest 
National Laboratory was a SIAM Science 
Policy Fellowship recipient in 2020. Photo 
courtesy of the author.
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a day after breakfast, rather than follow a 
sharper but much more complicated dos-
age. This property even arises in the field of 
economics when national banks set interest 
rates in six-month horizons and only revisit 
the policies to adjust for newly emerging 
macroeconomic scenarios.

Are these ideas and methods at all rel-
evant to ML? Let us start with George 
Cybenko’s seminal result: the so-called 
universal approximation theorem (UAT). 
The UAT states that a finite combination 
of rescaled and shifted activation functions 
(i.e., neural networks) are dense in a variety 
of functional classes [1]. This functional 
analysis result complements other funda-
mental outcomes in analysis, including the 
density of polynomials, Fourier series, and 
compactly supported smooth functions.

The UAT serves regression and clas-
sification purposes in the context of super-
vised learning (SL). Roughly, we can clas-
sify any data set by simply approximating 
the characteristic function—taking value 
1 in one set of items and 0 in the comple-
mentary one—to ultimately allocate the 
correct label to each item.

Cybenko’s beautiful result, which was 
proven as a corollary of the Hahn-Banach 
theorem, opened the door for a variety of 
methods that now play an essential role 
in ML. Because the UAT guarantees the 
achievement of all goals by simply identify-
ing the right parameters in Cybenko’s ansatz

      
f x W A x b

k
k

n

k k
( ) ( · ),= +

=
∑

1

s

we may adopt the least squares point of 
view and search for parameter values that 
minimize the distance to the needed func-
tion during the so-called training phase. Of 
course, such a naive and natural approach 
leads to great challenges — we must simul-
taneously face the devil of the lack of con-
vexity and the curse of dimensionality!

Eduardo Sontag and Hector Sussmann 
explored the control consequences of 
dynamical systems properties of the form

 
x t W t A t x t b t t( ) ( ) ( ( )· ( ) ( )), ,= + ≥s  0

a concept that Weinan E later revisited 
[2, 9]. This form is a neural ordinary dif-
ferential equation (NODE) that is driven 
by activation functions s, like the sigmoid 
functions (monotonic continuous functions 
that take value 0 at −∞ and 1 at +∞). 
Cybenko introduced these functions—
which are rather atypical in mechanics—for 
approximation purposes.

It took the mathematical control commu-
nity many years to understand how to apply 
control methods to the real challenges of 
SL. Recent works have finally proved that 
deep residual neural networks (ResNets)—
time discretizations of NODEs—enjoy the 
amazing and unexpected property of simul-
taneous or ensemble control [8]. We can 
build controls (i.e., train parameters) in 
such a way that an arbitrarily large number 
of trajectories simultaneously arrive almost 
exactly at their targets: the labels that cor-
respond to the items of the data set to be 
classified (see Figure 1, on page 1).

This dynamical systems perspective 
presents some interesting advantages by 
offering better dependence of available data 
and the opportunity to tune classification 
methods for improved stability proper-

ties. It can also exploit plenty 
of the existing knowledge in 
more mature areas of applied 
mathematics. In fact, the activa-
tion function s’s very nature is 
responsible for the exception-
ally powerful property of simul-
taneous control that ensures the 
requirements of SL. The most 
paradigmatic example is the 
Rectified Linear Unit (ReLU) 
activation function, which 
simply takes the value 0 when 
x<0 and 1 when x>0. When 
driven by the ReLU, a NODE 
behaves like a Rubik’s Cube — 
it is solvable via a finite number 
of smart operations for which 
part of the cube is frozen while 
the other part rotates in the 

appropriate direction and sense. The goal 
of a Rubik’s Cube is to ensure that all faces 
are homogeneous in color. This objective is 
similar to the task of a NODE, which drives 
each initial item to a given distinguished 
reservoir according to its label.

The proofs in previous studies are induc-
tive, and researchers build the controls 
(or parameters) to be piecewise constant 
in order to exploit the ReLU’s essence 
[8]. At each time instant, the ReLU splits 
the Euclidean space into two half-spaces: 
(i) one that is frozen along the dynam-
ics because the nonlinearity vanishes and 
(ii) one that evolves exponentially where 
the ReLU is active. A strategic, inductive 
choice of the different hyperplanes/equa-
tors (via selection of the values of the con-
trols/parameters A and b) and the direction 
of the dynamics/wind (via the control W ) 
guarantees classification in a finite number 
of steps (see Figure 2).

These results provide the 
backbone theory to ensure 
that NODEs fulfill the 
ensemble controllability 
properties that are necessary 
for classification. Of course, 
the controls that we observe 
in numerical simulations are 
often less complex, since 
they are computed as mini-
mizers of a suitably penalized 
loss functional. Such find-
ings rely fundamentally on 
the nonlinearity of the acti-
vation functions s. Indeed, 
the ensemble controllability 
property is impossible for 
a linear system that would 
rather behave like the system 
in Figure 3, unable to classify 
items according to labels.

We can transfer this con-
trol result for ResNets and 
NODEs to the framework of transport equa-
tions (advection, convection, and so forth) 
via the classical principle that the trajec-
tories of the first equations constitute the 
characteristics of the latter:

  ′ = →x t x t t( ) ( ( ), )s

        
∂ + =
t x
v x t vdiv ( ( , ) ) .s 0

Approximating the distributions of masses 
to be transported with atomic measures—
whose supports play the role of items 
in classification—accomplishes this trans-
fer. Control and ML also come together 
in the traditional problem of mass trans-
port, though not exactly in the same way 
as in optimal transport or the Monge-
Kantorovich problem. Rather, these disci-
plines align by means of time-dependent 
vector fields with the oversimplified geom-
etry of the activation function.

My colleagues and I are not the first 
researchers to claim the tight connections 
between control and ML [4, 7]. But now 
that we have been working on this topic 
for several years, we realize that there is 
still much to discover in the vast forest 
that connects these two areas. Although 
finding the paths through the dense grove 
will be intellectually challenging, doing 
so may add additional detail to the fas-
cinating global map of the mathematical 
sciences. These paths will likely take a 
zigzagged course that resembles the strate-
gies for solving a Rubik’s Cube or the tra-
jectories that assure the needs of learning 
through ResNet control.

Many other unexplored realms merit the 
attention of the applied mathematics com-
munity as well. One such topic is federated 
learning — a subject that is closely related 
to the classical splitting and domain decom-
position methods in numerical analysis. We 
are currently investigating federated learn-
ing in cooperation with the artificial intel-
ligence company Sherpa.ai,1 but we leave 
this topic for another occasion.

1 https://www.sherpa.ai

This article is based on Enrique Zuazua’s 
W.T. and Idalia Reid Prize Lecture2 at the 
2022 SIAM Annual Meeting,3 which took 
place this July in Pittsburgh, Pa.
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Figure 2. Canonical iterative motion leads to classification by 
induction with piecewise-constant switching controls. Figure 
courtesy of Domènec Ruíz-Balet of Imperial College London.

Figure 3. Motion generated by a linear control system. All 
points move simultaneously without the possibility of classifica-
tion according to their labels. Figure courtesy of Daniël Veldman 
of Friedrich-Alexander-Universität Erlangen-Nürnberg.
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GraphBLAS and GraphChallenge Advance Network Frontiers
By Jeremy Kepner, David A. 
Bader, Tim Davis, Roger      
Pearce, and Michael M. Wolf

Many factors inspire interest in net-
works and graphs. The Internet is 

just as important to modern-day civiliza-
tion as land, sea, air, and space; it connects 
billions of humans and is heading towards 
trillions of devices. Deep neural networks 
(DNNs)—which are also graphs—are key 
to artificial intelligence, and biological net-
works underpin life on Earth. In addi-
tion, graph algorithms have served as a 
foundation of computer science since its 
inception [3]. One can represent and oper-
ate on graphs in many different ways. A 
particularly attractive approach exploits the 
well-known duality between a graph as 
a collection of vertices and edges and its 
representation as a sparse adjacency matrix.

Graph Algorithms in the Language of 
Linear Algebra,1 which was published by 
SIAM in 2011 [6], provides an applied math-
ematical introduction to graphs by address-
ing the foundations of graph/matrix duality 
(see Figure 1). This fundamental connec-
tion between the core operations of graph 
algorithms and matrix mathematics is quite 
powerful and represents a primary viewpoint 
for DNNs. Yet despite its widespread use in 
graph analysis, basic graph/matrix duality is 
still only a starting point. For instance, the 
final chapter of Graph Algorithms in the 

1 https://epubs.siam.org/doi/book/10.1137/
1.9780898719918

simulation of active suspensions, shedding 
light on their peculiar flow instabilities [7] 
and the way in which confinement sculpts 
their behaviors (see Figure 1f, on page 2). 
Recently, scientists have used reductions 
that are based on thermodynamically consis-
tent moment closures to simulate large-scale 
active turbulence (see Figure 1g, on page 2). 
Looping back to the cell, similar active mat-
ter theories that stem from symmetry princi-
ples have successfully described the internal 
structure of the spindles themselves [1].

Another example with the same ingredi-
ents of microtubules and molecular motors 
occurs in egg cells, or oocytes: the largest 
cells that animals produce. Raising an egg 
is a community effort, and its production 
can require the movement of specialized 
proteins—supplied by other cells—around 
and across the oocyte. Molecular diffusion 
does so efficiently in small cells, but dif-
fusive transport can be exceedingly slow in 

large ones. How might an oocyte overcome 
this supply chain issue? The shortcut is 
flow. Figure 2a shows the streamlines of a 
cell-spanning cytoplasmic vortex in the 300 
micrometer-scale oocyte of the common fruit 
fly. With speeds of roughly 100 nanometers 
per second, these flows can transport proteins 
from one end of the cell to the other in 30 
minutes; diffusion alone takes about a day.

What drives this little hurricane in a near-
ly microscopic egg? Fluorescent microscopy 
reveals that microtubules are attached to the 
cell wall and bent sideways, like seaweed 
in a running tide. Here, however, the sea-
weed pushes the flow. Figure 2b provides 
the basic physics. Kinesin-1 motor proteins 
carry payloads along microtubules towards 
their free “+” ends. According to Newton’s 
third law, the motors must push down on 
the microtubules—perhaps causing them to 
bend—and simultaneously push the cargo 
up through the fluid, causing it to flow. 

To better understand how this phenome-
non might work, we developed a continuum 
model of the microtubule bed as an active 

porous medium [10]. A microtubule with 
position X( , )s t  (s  is the arclength from 
the base) evolves relative to a background 
flow u  under its internal elastic forces and 
under a tangentially aligned motor load 
-sXs ,  which is a distributed follower 
force. Assuming that the microtubule bed is 
locally well aligned yields a coarse-grained 
bed velocity v,  which itself creates the 
background fluid flow u  as the solution to 
a Brinkman-Stokes equation:

   −∇ +∆ = − −q J su u v Xρ σ[ ( ) ]L

              and · .∇ =u 0

Here, r  is the areal density of anchored 
microtubules, L  is a geometric tensor that 
captures the effect of microtubule orienta-
tion on fluid drag, and J  is a Jacobian that 
handles the transition from the Lagrangian 
bed frame to the Eulerian fluid frame. Our 
model shows that the motors’ compressive 
load upon the microtubule bed can drive 
a novel, collectively organized buckling 
instability of the bed wherein the microtu-
bules all bend as one, inclining themselves 
and letting the motor proteins drive the flow 
(see Figure 2c). The instability’s collective 
nature is revealed by the fact that it can 
only occur at sufficiently high microtubule 
density r (see Figure 2d).

While this fluid-structure problem yields 
new physics, models, and simulations, our 
contributions still leave many questions 
unanswered. What is the effect of the three-
dimensional cell shape and bed inhomogene-
ity? Which cellular determinants initiate a 
transition to flow? What precise biological 
purpose is being served? We are working 
with experimentalists on these queries and 
hope to ultimately solve them. Many of the 
tools that we discuss here—i.e., multiscale 
modeling and coarse graining, continuum 
mechanics, partial differential equations that 
evolve in evolving domains, large-scale sim-
ulations, and stability analyses—have appli-
cations in other problems where cell biology 
and development meet active matter physics.
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Figure 2. Internal flows within the developing egg (oocyte) of the fruit fly. 2a. Measured 
streamlines of cytoplasmic flows in the oocyte. 2b. A schematic of kinesin-1 motors carry-
ing cargos up peripherally bound microtubules and generating flow. 2c. A bed of motor-laden 
microtubules undergoes a collective bending instability and produces a steady streaming flow. 
2d. Phase diagram that shows the nature of flow instabilities as a function of dimensionless 
motor forcing s and microtubule density r. Microscopy data for 2a supplied by Wen Lu and 
Vladimir Gelfand and analyzed by Reza Farhadifar and Sayantan Dutta. Figure 2b courtesy of 
Reza Farhadifar, and Figures 2c and 2d adapted from [10] and courtesy of David Stein.

Active Cells
Continued from page 2

Language of Linear Algebra posed several 
fundamental questions about the analysis of 
large graphs in ontology/data modeling; time 
evolution (or streaming); detection theory 
(or graph modeling in general); and algo-
rithm scaling [6]. These questions—along 
with the emergence of important applica-
tions in privacy, health, and cyber con-
texts—set the stage for the 
subsequent decade of work.

Since 2011, research-
ers have written thousands 
of papers that explore the 
aforementioned topics from 
a graph/matrix perspective. 
Interestingly, previous prototyping efforts 
that began in the mid-2000s recognized that 
existing computer architectures were not a 
good match for a variety of graph and sparse 
matrix problems [10]. The prototypes intro-
duced several innovations: high-bandwidth 
three-dimensional networks, cacheless 
memory, accelerator-based processors, cus-
tom low-power circuits, and—perhaps most 
importantly—a sparse matrix-based graph 
instruction set. Today, many of these inno-
vations are present in commercially avail-
able systems like Cerebras,2 Graphcore,3 
Lucata,4 and NVIDIA.5

The challenges associated with graph 
algorithm scaling led multiple scientists to 
identify the need for an abstraction layer 
that would allow algorithm specialists to 

2 https://www.cerebras.net
3 https://www.graphcore.ai
4 https://lucata.com
5 https://www.nvidia.com

write high-performance, matrix-based graph 
algorithms that hardware specialists could 
then design to without having to manage 
the complexities of every type of graph 
algorithm. With this philosophy in mind, a 
number of researchers (including two Turing 
Award winners) came together and proposed 
the idea that “the state of the art in con-

structing a large collection 
of graph algorithms in terms 
of linear algebraic operations 
is mature enough to support 
the emergence of a standard 
set of primitive building 
blocks” [8]. The centerpiece 

of this abstraction is the extension of tra-
ditional matrix multiplication to semirings

          C AB A B= = ⊕ ⊗.
 
where A, B, and C  are (usually sparse) 
matrices over a semiring with correspond-
ing scalar addition Å and scalar multiplica-

tion Ä. Particularly interesting combina-
tions include standard matrices over real or 
complex numbers ( . ),+ x  tropical algebras 
(max. )+  that are important for neural net-
works, and set operations ( . )∪ ∩  that form 
the foundation of relational databases like 
SQL. One can build countless graph algo-
rithms with these combinations of opera-
tions, and the Graph Basic Linear Algebra 
Subprograms (GraphBLAS) mathematical 
specification, C specification, and high-
performance implementation subsequently 
emerged [1, 4, 5]. These programs are now 
part of some of the world’s most popular 
mathematical software environments.

Many innovations in graph processing 
occurred during this time, inspiring new ven-
ues to highlight these developments. MIT, 
DARPA, Amazon, IEEE, and SIAM collab-
orated to establish GraphChallenge,6 which 
consists of several hundred data sets and 

6 https://graphchallenge.mit.edu

Figure 1. Graph/matrix duality as depicted via a breadth-first search from starting point Alice 
to neighbors Bob and Carl and its adjacency matrix multiplication equivalent. Here, A( , )i j >0 
implies an edge between vertices i  and j. Figure courtesy of Jeremy Kepner.

SOFTWARE  AND 
PROGRAMMING

See GraphChallenge on page 7
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The Value of Applied Mathematics Internships 
in Business, Industry, and Government
By Margaret Cheney, Andre 
Celestin, Jerett Cherry, Cole 
Moore, and Danny Long

Summer internships are tremendously 
valuable experiences for undergradu-

ate and graduate students in applied math-
ematics and computational science. Interns 
have the opportunity to explore possible 
postgraduate career paths and engage in 
important real-world applications of their 
coursework. They return to school freshly 
motivated and excited to delve further into 
relevant material. Internships can also help 
participants—particularly graduate stu-
dents—build a small financial reserve and 
may lead directly to employment after grad-
uation. Even if graduates ultimately pursue 
positions elsewhere, internship experience 
on a resume is particularly attractive to 
prospective employers. In addition, summer 
internships allow students to explore differ-
ent geographical locations and diverse types 
of working environments.

Many workplaces in business, industry, 
and government offer internships. Students 
can find postings for openings at gov-
ernment research laboratories through the 
Department of Defense,1 Department of 
Energy,2 National Aeronautics and Space 
Administration3 (NASA), and various other 
agencies. They can also explore federally 
funded research and development centers 
(FFRDCs)—such as the Massachusetts 
Institute of Technology Lincoln 
Laboratory,4 The Aerospace Corporation,5 
and MITRE6—as well as university-affil-
iated research centers (UARCs) like the 
Georgia Tech Research Institute,7 Johns 
Hopkins University Applied Physics 
Laboratory,8 and the University of 

1 https://dodstem.us/participate/opportunities
2 https://www.energy.gov/eere/education/

internships-fellowships-graduate-and-post 
doctoral-opportunities

3 https://intern.nasa.gov
4 https://www.ll.mit.edu/careers/student-

opportunities/summer-research-program
5 https://aerospace.org/students-and-

recent-graduates
6 https://careers.mitre.org/us/en/student-

programs
7 https://www.gtri.gatech.edu/careers/

student-positions
8 https://www.jhuapl.edu/careers/internships

Maryland’s Applied Research Laboratory 
for Intelligence and Security.9

Various laboratories and sections within 
each laboratory have distinctive cultures 
and different emphases on research ver-
sus development. Working environments 
can vary widely depending on the type of 
organization. For example, government set-
tings typically provide good job security 
(often with civil service tenure) but gener-
ally lower pay and a potentially frustrating 
bureaucracy. In contrast, small companies 
commonly have very little bureaucracy and 
offer higher pay, but they can be riskier in 
that employees frequently must help bring 
in funding in order to get paid. The key is 
to find a compatible match between one’s 
working style and the job environment. 
Many employees find that intermediate 
choices like FFRDCs, UARCs, and medi-
um-sized companies are a good fit.

Companies and laboratories enjoy hav-
ing interns, as internship programs allow 
them to accomplish work with less expense 
and develop relationships with students 
and universities. Many organizations think 
of internships as extended job interviews. 
Some companies and labs hire year-round 
interns, or encourage students to work with 
them during vacations or conduct part-time 
remote work during the academic year. 
Such projects can even become master’s 
theses or parts of doctoral dissertations. In 
some cases—and with appropriate coordi-
nation between an advisor and a willing 
partner at the organization in question—
companies or labs might be able to pay 
students a full salary to work on projects 
that become their doctoral dissertations 
while simultaneously serving as company/
lab deliverables. In this scenario, the stu-
dent’s boss is typically on their Ph.D. 
committee and the student is in residence 
at the company/lab. Such a situation can be 
tricky to coordinate but benefits everybody 
when it is successful. The student receives 
better pay, completes their dissertation, 
and has a guaranteed job upon graduation; 
the company/lab accomplishes necessary 
work and gains a well-trained employee; 
the sponsor/customer is pleased with the 
project’s progress and the enlarged pool 

9 https://www.arlis.umd.edu/student-
research-opportunities

of trained personnel; and the university 
learns about important problems, can use 
the original student’s salary for another 
student, and establishes a better connection 
to the company/lab.

Below, several students from Colorado 
State University describe their internship 
experiences in the summer of 2022.

Andre Celestin: NASA Jet 
Propulsion Laboratory

I interned at NASA Jet Propulsion 
Laboratory10 (JPL) in the Algorithm 
Development Group within the Radar 
Science and Engineering Section.11 Project 
scientist Paul Rosen served as my mentor. 
We constructed a mathematical framework 
for an imaging satellite that will be sent to 
Enceladus, one of Saturn’s moons. The sat-
ellite will form images via synthetic aperture 
radar (SAR) interferometry, which employs 
image processing techniques to combine 
many measurements of a target. Due to time 
constraints, I spent most of my internship 
familiarizing myself with SAR interfer-
ometry by building simulators and image 
processing code. On my first day, I received 

10 https://www.jpl.nasa.gov/edu/intern
11 https://communicationstrackingradar.

jpl.nasa.gov/sections/sec-334

a massive 64-core computer with two 3090 
NVIDIA graphical processing units (GPUs) 
for writing my code. I utilized the machine’s 
full power by learning how to parallelize 
code and validate the results. I hope to return 
to JPL and work with Paul again because the 
experience was incredible; everyone at JPL 
is eager to talk about their ongoing projects 
and encourages you to succeed.

Jerett Cherry: U.S. Naval  
Research Laboratory

I interned at the U.S. Naval Research 
Laboratory’s12 (NRL) Radar Division13 
in Washington, D.C., where I collaborated 
with engineers on research and develop-
ment for radar systems. I learned about 
radar digital signal processing and wrote 
data analysis software for use in con-
junction with a radar testbed. Data from 
this testbed is then pulse compressed and 
Doppler processed to form a range-Dop-
pler map. This map plots reflections from 
moving and stationary objects in terms of 
range and Doppler shift (see Figure 1).

12 https://www.nrl.navy.mil/Careers/
Students/SSEP

13 https://www.nrl.navy.mil/Our-Work/
Areas-of-Research/Radar

See Mathematics Internships on page 8

Science Policy
Continued from page 3

Figure 1. A range-Doppler map, which plots radar reflections in terms of range and velocity. 
Figure courtesy of Jerett Cherry.

solicitation. RENEW seeks to build work-
force capacity at institutions that are his-
torically underrepresented in the Office of 
Science research portfolio. We likewise 
met with Carrie Wolinetz, the Deputy 
Director for Health and Life Sciences in 
the White House Office of Science and 
Technology Policy,12 who discussed the 
National Institutes of Health’s (NIH) new 
Advanced Research Projects Agency for 
Health13 and overviewed ways in which 
applied mathematicians can engage.

The CSP wraps up each meeting with 
discussions about future scientific priorities 
and specific topics and initiatives that take 
precedence within the SIAM community. 
During the spring CSP meetings, commit-
tee members also convene directly with 
congressional staffers. At the 2022 spring 
gathering, I had the opportunity to meet with 
members of Congress who were especially 
passionate about health policy, which is the 
focus of my own work. I was able to com-
municate the impacts of DOE budgetary 
choices on health research. For example, 
ongoing collaborative research projects 
between DOE and NIH utilize novel algo-

12 https://www.whitehouse.gov/ostp
13 https://www.nih.gov/arpa-h

rithms that SIAM members are developing. 
By linking the importance of mathematical 
research to initiatives about which congres-
sional staffers are passionate, Fellowship 
recipients can yield a positive policy out-
come for the entire SIAM community.

In addition to my participation on the 
CSP, I also completed an independent 
policy project that involved meeting with 
staff members from the U.S. House of 
Representatives’ Committee on Science, 
Space, and Technology’s Subcommittee on 
Energy,14 which has jurisdiction over DOE 
research programs. While recent large-
scale initiatives have attempted to utilize 
artificial intelligence (AI) and mathemat-
ics in health research, the field is plagued 
by a lack of available biomedical data. 
In my discussions with members of the 
Subcommittee on Energy, I highlighted 
areas wherein AI technologies with health-
care applications could assist in the detec-
tion of a new opioid over-prescription 
zone, provide probabilistic early warn-
ing analyses of COVID-19 outbreaks, and 
identify regions of environmental expo-
sure to radon. Several recent and ongoing 
initiatives aim to develop novel algo-
rithms and applied mathematics research 
to drive biomedical advancement, though 

14 https://science.house.gov/subcommit-
tees/energy-117th-congress

an understandable hesitancy surrounds 
the sharing of medical data. As such, I 
accentuated recent computing advances 
for the handling of private data, such as 
DOE’s CITADEL security framework.15 
We must ensure that researchers have both 
the funding to complete their projects and 
the appropriate mechanisms for curating 
the data that are required for large-scale 
biomedical data science.

The opportunity to learn about research 
priorities and initiatives directly from agen-
cy directors was invaluable, and firsthand 
knowledge about the creation of program 
initiatives is crucial to furthering our under-
standing of the way in which public need 
influences and pivots research directions. 
Recognizing the impact of these choices 
on the SIAM community—from under-
graduate fellowship programs to large-
scale initiatives—underscores the signifi-
cance of the CSP. By participating in the 
SIAM Science Policy Fellowship Program, 
I gained a deeper appreciation of the CSP’s 
importance in the context of science policy. 
It is vital that the SIAM community con-
tinues to have a voice in Washington, D.C. 
Budget and policy decisions are constantly 
underway, and the future of the scientific 
community hinges on these choices. It has 

15 https://www.olcf.ornl.gov/2021/05/05/
nccs-introduces-citadel-security-framework

been a privilege to participate on the CSP 
as a Science Policy Fellowship recipient, 
and I look forward to serving SIAM in 
future science policy ventures.

Are you interested in applying for 
the SIAM Science Policy Fellowship 
Program? The application deadline for 
the next round of Fellowship recipients is 
November 15, 2022. Three to five post-
doctoral and/or early-career researchers 
will be selected to serve a two-year term 
that includes training, attending biannual 
SIAM Committee on Science Policy meet-
ings, interfacing with federal officials, 
and participating in an advocacy day on 
Capitol Hill in Washington, D.C. Learn 
more and apply online.16

Samantha Erwin is a data scientist in 
Applied AI Systems at Pacific Northwest 
National Laboratory. Her research focuses 
on the creation of mathematical models 
to elucidate biological mechanisms. She 
has led teams to develop data analysis 
pipelines that integrate natural language 
processing, graphical models, machine 
learning, and statistical analysis.

16   https://www.siam.org/students-education/
programs-initiatives/siam-science-policy-
fellowship-program
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well-defined mathematical graph problems 
in the areas of triangle counting, cluster-
ing of streaming graphs, and sparse DNNs. 
Since its debut in 2017, GraphChallenge has 
seen an abundance of submissions — con-
testants have even integrated parts of their 
work into a wide range of research programs 
and system procurements.

GraphChallenge has revealed that due 
to resulting improvements in graph analy-
sis systems, many graph problems are 
now fundamentally bound by computer 
memory bandwidth (as opposed to proces-
sor speed or memory latency) [9]. It has 
also provided clear targets for those who 
are trying to advance computing systems 
scaling for the solution of graph problems. 
Additionally, innovations to improve the 
performance of graph algorithms have fed 
back into sparse linear algebra libraries to 
benefit scientific computing applications 
like Kokkos Kernels [11].

Questions in ontology/data modeling per-
tain to the way in which researchers handle 
more diverse data. The data that we want 
to manage with graphs involve more than 
just simple vertices and edges; they often 
include a large variety of very diverse 
metadata that are stored in SQL and NoSQL 
databases. Unsurprisingly, many folks in the 

database community have also been work-
ing on graph databases. To mathematically 
encompass these concepts, we must gen-
eralize the idea of a matrix into something 
called an associative array. For example, 
one can view a matrix as a mapping

      A:I J V× →

where I M={ ,..., },1  J N={ ,..., },1  and 
V  is complex. In an associative array, I  
and J  are now any strict totally ordered set 
(e.g., a set of strings) and V  is a semiring 
[7]. This concept was first implemented 
in the D4M software system,7 which links 
matrix mathematics and databases. It is now 
present in a number of database systems 
that utilize GraphBLAS as their underlying 
mathematical engine [2].

Time-evolving or streaming graphs have 
become one of the most important problems 
in graph analysis, and GraphBLAS has a 
natural way of addressing streaming graphs 
with diverse data via edge (or incidence) 
matrices (see Figure 2). Traditional adja-
cency matrices are limited in the types of 
graphs that they can represent. Adjacency 
matrices typically represent directed 
weighted graphs—which are a very impor-
tant class of problems—but real data tend 
to be much more dynamic and diverse, 

7 https://d4m.mit.edu

with multiple edges and hyper-edges (edges 
that are connected to multiple vertices). 
In an edge matrix representation, one can 
easily adjust for this type of graph by sim-
ply adding rows to the end of the matrix. 
Furthermore, researchers can compute the 
corresponding adjacency matrix via

                A E E=
out

T
in

where T  denotes the matrix transpose.
Ultimately, the aforementioned capa-

bilities—enabled by GraphBLAS along 
with other graph innovations that are high-
lighted by GraphChallenge—have yielded 
new tools for tackling some of the most 
difficult and important problems in health 
data, privacy-preserving analytics, cyber-
security, and DNNs.
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Figure 2. Streaming multi-hyper-edge graph. Edge (or incidence) matrices assign a row to each 
edge and naturally handle the dynamic addition of identical edges (multi-edges) and edges that 
connect more than two vertices (hyper-edges). E

out
( , )e i >0 and E

in
( , )e j >0 imply an edge e 

between vertex i  and vertex j. Figure courtesy of Jeremy Kepner.

How Do Snakes Slither? A Recipe for Reptation
While biking uphill one day, I saw a 

snake crossing the path ahead of 
me. The pavement was a bit slippery from 
a recent rain shower, and the snake slid 
rather inefficiently towards the grass on the 
opposite side of the path while also sliding 
down the slope. But once in the grass, the 
snake shot almost as an arrow and slithered 
perfectly with virtually no sideways motion 
(see Figure 1). Its body sliced through the 
grass as if constrained to a tight channel. 
A slow motion video of all this is available 
on my website.1 The velocity constraint 
imposed by the grass must have been key 
to the efficient locomotion; the constraint 
was absent on the asphalt and the snake 
was almost helpless. This is akin to skating 
on ice, where the zero sideways velocity 
constraint on the skate is key to propulsion.

The snake slithering in the grass converts 
the bending/unbending effort of the body—
the only thing it can do, I think—into for-
ward motion. How exactly does the snake 
do it? Which muscles must it contract, and 

1 https://www.marklevimath.com/sinews

which ones must it relax? In other words, 
what is the recipe for such reptation?2 Our 
simplified snake has a negligibly thin body 
that is confined to a prescribed channel, 
which allows only tangential motion.

After watching the snake, I realized that 
the pulling force F  in Figure 1b is given by

            F s k s ds
L

= ′∫ t
0

( ) ( ) ,   (1)

where s  is the arclength parameter, t is 
the bending torque (see Figure 2), k  is the 
curvature, and L is the length of the snake.

Taking (1) for granted, how should 
the snake flex its muscles? To fix the 
assumptions, we take the channel in which 
the snake moves as given. 
Presumably, the very least the 
snake should do is make sure 
that t( ) ( )s k s′ >0  for all s  in 
order to avoid cancellation in 
(1) — i.e., a wasteful competi-
tion between pulling forward ( )t ′>k 0  and 
backward ( )t ′<k 0  with different parts of 
its body. Figure 3 illustrates this recipe for 

reptation: bend the body to the 
right (or left) if k  is increasing 
(or decreasing).

A Dynamical Recipe      
for Reptation

The aforementioned recipe 
is good for a mathematician, 

2 Some snakes, such as side-
winders, reptate by different mech-
anisms without obeying the veloc-
ity constraint. Here I only address 
one specific type of reptation.

but detecting ¢k s( ) seems like a physi-
ologically formidable task for the snake, 
since doing so involves the apple-versus-
orange type comparison of k  between 
two different parts of the body. How can 

the snake then estimate ¢k , 
which it must do in some 
way because (1) captures the 
physics of slithering? Here is 
a possible answer.

As the snake slithers along 
the channel, the curvature at a fixed point of 
the body changes from k s( ) at time t= 0 to 
k s vt( )+  at time t  (here, 
v  is the speed and s is 
measured along the chan-
nel). Therefore,

 
′ = ∂ ∂−k s v k t( ) / ;1

¢k s( ) is thus determined 
by ¶ ¶k t/ , which feels 
like bending/unbending 
and hence is much easier 
to sense than ¢k s( ). We 
can consequently restate 
the recipe for reptation 
as follows: the bending 

effort must coincide with the direction of 
bending change. That is, t must attempt 
to enhance the deformation that is imposed 
by travel along the channel. Or more palpa-
bly, tense the muscles that are contracting 
(due to bending/unbending while the snake 
slithers along the channel) and relax the 
muscles that are stretching.

Under this recipe, the muscles do positive 
work — which then must go into locomo-
tion (e.g., into overcoming friction, into 
acceleration, or both).

Figure 1. The snake in motion and static. 1a. The velocity 
of the snake in the grass is tangential. 1b. The propulsion 
force F  is given by (1). Instead of pulling the fingers, the 
snake can use F  to overcome friction with the grass 
when slithering. This figure is only a thought experiment. 
I did not touch the snake.

Figure 2. The torque τ ε= T,  which is created by compression T  of the backbone and the equal 
tension of the muscle, tries to rotate the shaded section counterclockwise. Here, e is small (the 
snake is thin), T  is large, and τ ε= T  is finite. The torque is counterclockwise, so t>0.

MATHEMATICAL 
CURIOSITIES
By Mark Levi

Figure 3. The recipe for reptation is to change the direction of 
the bending effort t  at points A, B, C, and D  of extreme cur-
vature. Here, k  is minimal (negative) at A and C  and maximal 
(positive) at B  and D.

See Recipe for Reptation on page 10
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Radar signal processing utilizes the fast 
Fourier transform, convolution, and least 
squares problems. Our running joke for 
the summer was that convolution was the 
answer whenever we wanted to do some-
thing with the data, which was not far from 
the truth. I felt mostly at home as a math-
ematician working with engineers, though 
difficulties did sometimes arise mainly due 
to problems in translation. Engineers speak 
a dialect of math that is just different enough 
to cause confusion for mathematicians 
(imagine using j  for an imaginary number).

Beyond the lab-based learning, I was able 
to network, explore a new city, and earn 
more money. Working for the government 
also comes with useful benefits like gaining 
a security clearance, which is an attrac-
tive qualification for many job openings. 
Experiencing the thriving dynamic range 
of experimental and theoretical projects at 
NRL has even helped me consider addi-
tional topics for my own research. Interning 
is the best use of your summer.

Cole Moore: U.S. Naval     
Research Laboratory

Like Jerett, I also interned with the 
NRL’s Radar Division. This internship 
served as an amazing opportunity for me 
to learn, meet new people, and explore an 
unfamiliar city. Most of my efforts focused 
on inverse electromagnetic scattering, and 
I specifically worked to develop faster 
methods for image reconstruction by using 
scattered microwave data (see Figure 2). 
This project involved the use of GPUs to 
accelerate computations and the implemen-
tation of multi-level algorithms to increase 
efficiency. In addition, I met and learned 
from many smart and passionate people; 
spending my summer in a new place pro-
vided ample occasions to get out and have 
fun. I would highly recommend interning to 
all of my fellow mathematics students.

Danny Long: Lawrence    
Livermore National Laboratory

I was fortunate enough to intern at 
Lawrence Livermore National Laboratory14 
(LLNL). I broadly work within the field of 
uncertainty quantification, which is quite 
useful for many applications at LLNL. My 
project involved the use of adjoint methods 
to approximate derivatives for functions 
that require the solution of partial differen-
tial equations (PDEs), which in turn help 
efficiently propagate uncertainty throughout 
the calculations. I contributed to a codebase 
that utilizes GPUs to solve the PDEs. Doing 
so allowed me to experience the state of 
the art in high-performance computing and 
interact with a variety of experts in math-
ematics, physics, and engineering.

LLNL was very supportive and clearly 
wanted interns to have a valuable experi-

14 https://www.llnl.gov/join-our-team/
careers/students

ence. I spoke with research scientists outside 
of my project group on numerous occasions 
to hear about other research areas and estab-
lish professional connections. I also learned 
about LLNL-funded Ph.D. opportunities and 
the LLNL Postdoc Program,15 for which 
summer interns are encouraged to apply.

Finding and Applying for Internships
Identifying and applying for internships 

naturally requires some effort. One way to 
begin the process is through networking, 
which involves reaching out to someone—
such as an acquaintance from a conference—
who has connections at an organization of 
interest. SIAM’s online Career Center16 
provides a helpful list of internships and 
career information, and many organizations 
list internship opportunities in the “careers” 
section of their websites. Students can also 
email their resumes directly to anyone who 
conducts intriguing research and inquire 
about summer internships. It is best to start 
this process early so that the researcher in 
question has ample time to arrange funding.

A resume should help hiring managers 
or potential mentors identify an applicant’s 
skills and interests in order to best align 
those qualities with the tasks at hand. Listing 
technical courses and other relevant topics 
of study—including physics, computer sci-
ence, statistics, and engineering (as well as 
math)—is also beneficial. In some cases, 
course projects can demonstrate practical 
experience. Computer skills are important as 
well, as many internships involve program-
ming tasks. Hiring managers mainly look 
for evidence that applicants are interested in 
learning about their institution’s endeavors 
and enthusiastic about contributing.

The timing for internship applications 
varies widely. Deadlines can fall unex-
pectedly early (especially if a security 
clearance is needed) and may even occur 
before the end of October. For instance, 
Lincoln Laboratory17 and Sandia National 
Laboratories18 posted advertisements in 
late summer 2022 for internship positions 
in the summer of 2023. On the other hand, 
smaller companies may not finalize their 
openings until the spring if they are waiting 
for available funding. Furthermore, intern-
ship positions at large organizations often 
remain open until they are filled — so it 
is always worth seeking out an exciting 
opportunity, no matter when one’s intern-
ship search begins. Happy hunting!

Margaret Cheney is a professor of math-
ematics at Colorado State University. She is 
also a SIAM Fellow. Andre Celestin, Jerett 
Cherry, Cole Moore, and Danny Long are 
graduate students in the Department of 
Mathematics at Colorado State University.

15 https://st.llnl.gov/opportunities/postdocs/
postdoc-program

16 https://www.siam.org/careers/internships
17 https://careers.ll.mit.edu/search/?q=%

22Summer%22
18 https://www.sandia.gov/careers/career-

possibilities/students-and-postdocs/internships-
co-ops

Figure 2. Image reconstruction of a kite-shaped scattering target. The dashed line overlay 
illuminates the true target outline. Figure courtesy of Cole Moore.

Mathematics Internships
Continued from page 6
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Rules, Algorithms, and Models: An Intellectual History
Rules: A Short History of What We 

Live By. By Lorraine Daston. Princeton 
University Press, Princeton, NJ, July 2022. 
384 pages, $29.95.

Our lives are permeated with rules, 
both large and small. They range 

from substantial precepts like “Thou shalt 
not kill” and “Congress shall make no 
law...abridging freedom of speech” to less-
er guidelines like “Don’t wear white to a 
wedding” and “In simplifying a mathemat-
ical equation, be careful not to divide both 
sides by zero.” In Rules: A Short History of 
What We Live By, author Lorraine Daston 
surveys the vast landscape of societal 
rules in terms of their appearance; their 
evolution; their creation, perception, and 
enforcement; and the ways in which people 
obey, internalize, or flout them.

Daston is an eminent historian of early 
modern science and philosophy whose pre-
vious works include Classical Probability 
in the Enlightenment and Wonders and the 
Order of Nature, 1150-1750 (coauthored 
with Katherine Park). Her new book, Rules—
which arose from her 2014 Lawrence Stone 
Lectures at Princeton University—combines 
conceptual and historical analysis with a 
wealth of remarkable historical examples. 
The text focuses primarily—but by no 
means exclusively—on Western Europe 
from roughly 1650 to the present.

The book taxonomizes the space of rules 
across a number of dimensions. Rules can 
take the form of laws (with regulations as a 
subcategory), algorithms, or models. They 
can be flexible or rigid, general or specific, 
and thick or thin. A thick rule is accompa-
nied by a rich body of justifications, specific 
cases, caveats, and exceptions; application 
of a thick rule to a particular case thus 
requires knowledge, judgment, and discre-
tion. In contrast, a thin rule is a bare, unelab-
orated statement of a principle or procedure.

Daston is particularly interested in the 
idea of a model as a kind of rule. She argues 
that this view was common in the early 
modern period1 but fell into disfavor around 
1800, after which philosophers came to 
view rules and models in opposition to one 
another. She prefers the earlier viewpoint, 
writing that “In the end, the one ancient 
meaning of rules that seemed to go extinct 
around 1800 may prove to be the most 
enduring. Rules-as-models are the most 
supple, nimble rules of all, as supple and 
nimble as human learning.”

A multitude of historical examples illus-
trate Daston’s theoretical analysis and 
leaven her writing, including the rules of 
the Benedictine monastic order, sumptuary 
laws and dress codes, 18th-century cooking 
recipes, Parisian police traffic ordinances, 
and proposals for spelling regularization in 
English, French, and German. The detailed 

1 At the time, the word “rule” was often 
used to mean “model.” For example, the 
Oxford English Dictionary quotes “He was 
looked on as a living rule of religious perfec-
tion” from 1756. The idea of a model as a rule 
is central in Platonism and Christian thought.

this reality either reflects or affects the role 
or form of any other kind of rule.

The opposition of rules versus mod-
els has been the focus of a substantial 
amount of research in cognitive psychol-

ogy that examines the extent 
and circumstances in which 
human cognition uses one or 
the other mode of reasoning. 
Daston might have reasonably 

thought that this aspect of the question was 
too large and peripheral for inclusion at any 
length, but it is at least worth mentioning.

The book has one 
outright error that 
I thought was sig-
nificant. In chapter 
four, Daston writes 
“Nowadays, virtuoso 
mental calculators 
like the great eigh-
teenth-century math-
ematician Leonhard 
Euler (1707-1783) 
would be more likely 
to be labelled idiot 
savants than brilliant 
mathematicians, the 
latter often making a 
point of emphasizing 
how hopeless they 
are at arithmetic.” 
She later repeats this 
idea in a softened but 
more general form:

The history of eigh-
teenth- and early nine-
teenth-century math-
ematics boasts several 

calculating prodigies who later became celebrated 
mathematicians, including Leonhard Euler, Carl 
Friedrich Gauss (1777-1855), and André-Marie 
Ampère (1775-1836). Anecdotes circulated about 
their precocious feats of mental arithmetic as 

early signs of mathematical genius. But by the 
late nineteenth and early twentieth centuries, 
psychologists and mathematicians had come to 
believe that such cases were anomalous. Great 
mathematicians were rarely calculating virtuosi, 
and calculating virtuosi were even more rarely 
great mathematicians.

Of course, the statement about Euler—
who is indisputably the most creative and 
inspired mathematician between Isaac 
Newton and Gauss—is just wrong; it is akin 
to claiming that present-day society would 
now dismiss Mozart as merely a virtuoso 
pianist. More importantly, the second claim 
about mathematicians versus calculating 
prodigies is hardly truer than the hypotheti-
cal corresponding claim about musical com-
posers versus virtuoso instrumentalists. In 
the 18th century (as in the 20th), the catego-
ries of creative mathematician and virtuoso 
calculator were different and understood 
to be so. And in the 20th century (as in the 
18th), many important mathematicians—
including Srinivasa Ramanujan, Norbert 
Wiener, John von Neumann, Paul Erdős, 
and Terence Tao—were child prodigies 
with extraordinary capabilities for mental 
mathematical problem-solving (it is said 
that when von Neumann was six years old, 
he could divide two eight-digit numbers in 
his head). There has probably been some 
historical shift in the direction of Daston’s 
claim—a figure like Nathaniel Bowditch 
might have been less successful in the math-
ematical world of today, for instance—but it 
is not nearly as large as she suggests.

Yet despite these minor flaws, Rules is 
ultimately one of the best written, most 
profound, and most far-reaching works of 
intellectual history that I have ever read.

Ernest Davis is a professor of computer 
science at New York University’s Courant 
Institute of Mathematical Sciences.

description of human computers’ construc-
tion of large astronomical and actuarial 
tables between roughly 1790 and 1950—as 
well as the influence of the introduction of 
mechanical calculators around 1870—will 
likely be of particular interest 
to SIAM News readers.

The book is quite wonder-
ful in many respects. Daston 
is an exceptionally fine writ-
er, and her theoretical analysis is generally 
outstandingly clear, insightful, and deep. 
Her historical vignettes are fresh, remark-
able, and entertain-
ing; full of fascinat-
ing details; and told 
with an appealing 
balance of sympathy 
and ironic distance. 
I repeatedly encoun-
tered passages that I 
will long remember 
and ponder, such as 
the following:

All of these contrasts 
boil down to one big 
contrast: a world of 
high variability, insta-
bility, and unpredict-
ability versus one in 
which the future can 
be reliably extrapolated 
from the past, standard-
ization insures unifor-
mity, and averages can 
be trusted. Although the 
episodes recounted in 
this book trace a rough 
historical arc from the 
former world to the latter, there is no inexorable 
dynamic of modernity at work here. An island of 
stability and predictability in a tumultuous world, 
no matter what the epoch or locale, is the ardu-
ous and always fragile achievement of political 
will, technological infrastructure, and internal-
ized norms. At any moment it can suddenly be 
overwhelmed by war, pandemic, natural disaster, 
or revolution. In such emergencies, thin rules 
suddenly thicken, rigid rules become rubbery, 
[and] general rules wax specific.

However, Rules does contain a few sig-
nificant flaws and gaps. No doubt these 
issues are partially the result of the text’s 
origin as a series of lectures and the author’s 
effort to squeeze an enormous topic into a 
comparatively short book. Nevertheless, I 
found them troubling.

The analysis and historical episodes 
are all excellent on their own, but I am 
not sure that they mesh particularly well 
— i.e., that the episodes actually shed sig-
nificant light on the analysis. For instance, 
Daston’s discussion of human computers 
is a splendid piece of historical narra-
tive, but does it actually tell the reader 
anything about rules in general? Someone 
who needs to compute large mathematical 
tables via human labor will probably have 
to employ a rigid and systematic organiza-
tion, and the labor will be both stagger-
ingly tedious and require close mental 
attention. However, it is unclear whether 

BOOK REVIEW
By Ernest Davis

Rules: A Short History of What We Live By. 
By Lorraine Daston. Courtesy of Princeton 
University Press.

SIAM Makes Award-winning 
Student Papers Freely Accessible

In an effort to honor our Student Paper Prize recipients and their excellent research, 
SIAM is excited to announce an update to the availability of winning papers. Starting 

with the 2021 and 2022 awardees, all winning papers will be freely accessible for one 
full year after the paper receives the award. SIAM is proud to support young mathemati-
cians at the outset of their careers and hopes to share their impressive works with as wide 
an audience as possible. The 2021 and 2022 winners’ associated papers are currently 
freely accessible and will remain so until August 20, 2023. Information about the 2022 
papers, which were acknowledged at the 2022 SIAM Annual Meeting, is listed below:

– William Anderson: “Evolution of Nonlinear Reduced-order Solutions for PDEs 
with Conserved Quantities” (SIAM Journal on Scientific Computing)

– Barbara I. Mahler: “Analysis of Contagion Maps on a Class of Networks That Are 
Spatially Embedded in a Torus” (SIAM Journal on Applied Mathematics)

–  Ruoxuan Yang: “Shock Formation of the Burgers--Hilbert Equation” (SIAM 
Journal on Numerical Analysis)
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Some Consequences of (1)
1. If the snake can exert effort | |t £1 for 

all s, then it must choose t= ′sign k  for the 
maximum pull; the resulting pull 

               
| ( )|

0

L

k s ds∫ ′
 

is the total variation of k. For the snake, it 
thus pays to be wiggly.

2. In contrast, adopting the shape of a cir-
cular arc is bad because k' s( )= 0 results in 
F= 0, regardless of the bending effort t( ).s

3. Figure 3 (on page 7) illustrates the fact 
that t must change sign at the points of 
maximal curvature in order to avoid having 
some sections of the body pull backwards.

4. How would Euler’s elastica behave if 
confined to a channel? The elastica tries to 
straighten with moment t=−k  (the minus 
sign is there because the torque resists 
bending if k >0, thus making t<0). From 
(1), we get the propulsion force

   ( ) ( ) ( ( ) ( )).− ′ = −∫ k k s ds k k L
L

0

2 21
2

0

In this case, the force depends only on the 
curvature at the ends.

Derivation of (1)                         
Via Potential Energy

Let us replace the live snake with an elas-
tica that tries to bend with an intensity t( )s  
that is independent of its curvature. This is 
unlike Euler’s elastica, which wants to be 
straight with an intensity that is proportional 
to k. In contrast with Euler’s, each element 
of our elastica wants to curl up with a fixed 
intensity t( )s  — either left or right depend-
ing on the sign of t( ).s  The potential energy 
of such an element is, by definition, the work 
that we must do to bend the element from the 
straight shape to its current one (see Figure 
4a). To that end, we must apply torque t in 
opposition to the one that this element applies 
to our hand, i.e., -t. The potential energy 
of an element ds  in Figure 4a is therefore

              
− =−τ θ τd kds.

For example, if t>0 in Figure 4, then the 
element tries to curl up from the straight 
shape and hence does work for us (so that 
we do negative work). The potential energy 
of the “snake” in Figure 4b is therefore

         P s k s ds
L

( ) ( ) ( ) ,ε τ ε=− +∫0  

where s=0  corresponds to the tail and e 
is the distance by which we advance the 
“snake” along the channel. Indeed, as the 
snake advances by e, its curvature changes 
to k s( )+ e  while t remains the same by 
the assumption. The potential energy deter-
mines the force

  
F P s k s ds

L

( ) ( ) ( ) ( ) ,ε ε τ ε=− ′ = ′ +∫0

which agrees with (1) when e= 0.

A Geometrical Explanation of (1)
The previous derivation does not explain 

exactly how the bending propels the snake 
forward. Here is an attempted explanation.

Figure 5 shows a segment of the snake 
that is discretized, i.e., replaced by two rods 
of fixed equal lengths with the ends A, B, 
and C  attached to skates that can slide on 

the prescribed channel but cannot move 
transversally to it. The “muscle” at B  tries 
to contract, i.e., t>0. This attempted con-
traction results in reaction forces R

A
 and R

C
. 

Consider the projections of these forces onto 
the tangent at B.  If k'>0,  then q q

C A
> , 

thus suggesting that R
C

’s projection—which 
pulls B  to the right—wins over its counter-
part at A,  which pulls B  to the left. This is 
indeed the case since | | | |R R

C A
»  (with suf-

ficient precision, as it turns out).
As an alternative explanation, an infinites-

imal displacement to the right of the “train” 
ABC  in Figure 5 results in a decrease of 
ÐABC  because k s( )  is an increasing func-
tion, and decreasing ÐABC  is exactly what 
the “muscle” at B  attempts to do.

The figures in this article were provided 
by the author.

Mark Levi (levi@math.psu.edu) is a pro-
fessor of mathematics at the Pennsylvania 
State University.

Figure 5. Here, k'>0  and the “muscle” at B  contracts, i.e., t>0. There are two different 
explanations of propulsion: (i) Projection of R

C
 onto the tangent at B  wins over that of RA due 

to k'>0, and (ii) a small displacement of the “train” ABC  to the right decreases ÐABC  and 
also the potential energy of the system.

Figure 4. For this snake, t( )s  does not change as the snake bends or unbends. 4a. The poten-
tial energy of the element ds  is -τ θd .  4b. The snake advances by e along the channel.

Virginia Commonwealth University SIAM Student 
Chapter Celebrates Successful Year of Activities
By Henry A. Ogu

The Virginia Commonwealth University 
(VCU) SIAM Student Chapter1 main-

tains a strong and well-known presence 
within VCU’s College of Humanities and 
Sciences. In fact, a respectable number of 
professors in the College are SIAM mem-
bers who provide a wonderful source of 
information and inspiration for students. 

Both undergraduate and graduate stu-
dents are involved with the VCU SIAM 
Student Chapter, with leadership from 
elected officers and a faculty advisor. Our 
chapter experienced a successful 2021/2022 
academic year, which began with the elec-
tion of a new president, vice president, 
secretary, and treasurer in September 2021.

In March 2022, the chapter embarked on 
an outreach visit to Pinchbeck Elementary 
School in Henrico, Va., as part of our annu-
al volunteer program. During this visit, 
we taught the class how to make Möbius 
strips with paper, delivered informal moti-
vational talks about mathematics, provided 
small gifts for the students, and conversed 
with students and teachers. These activi-
ties encouraged the students to engage in 
critical thinking, appreciate their educa-
tion, and develop an interest in science, 
technology, engineering, and mathematics 

1 https://siam.vcu.edu

tations, and networking at career fairs. 
During the 2021/2022 school year, stu-
dent chapter members also presented post-
ers at the Biology and Medicine Through 
Mathematics Conference,2 which com-
menced at VCU in May. Additionally, I 
personally presented a paper on “Long-term 
Dynamics of the Kidney Disease Epidemic 
Among HIV-infected Individuals” [1] at 
the 47th Annual New York State Regional 
Graduate Mathematics Conference3 at 
Syracuse University in April. Several of 
our members even went to the 2022 SIAM 
Annual Meeting4 (AN22), which took place 
in Pittsburgh, Pa., this July. I received 
compensation from SIAM to attend AN22 
as the VCU SIAM Student Chapter repre-
sentative; in fact, every student chapter is 
eligible for funding to send a representa-
tive to the SIAM Annual Meeting. While 
there, I participated in the Student Chapter 
Breakfast with SIAM staff, leadership, and 
other chapter representatives to brainstorm 
ideas for future chapter engagement.

2 https://siam.vcu.edu/bamm
3 https://mgo.syr.edu/conferences/past-

conferences/2022-conference
4 https://www.siam.org/conferences/cm/

conference/an22

Our last formal activity of the 2021/2022 
academic year was a picnic at Monroe 
Park on VCU’s campus. The student chap-
ter officers organized this event, which 
featured food, drinks, games, interesting 
conversation, and the sharing of ideas and 
life experiences.

In conclusion, the VCU SIAM Student 
Chapter is doing quite well. The officers 
keep the chapter active by hosting enriching 
student-oriented programs and encouraging 
members to participate in SIAM confer-
ences. Special thanks are owed to student 
members and our faculty advisor, who 
makes our chapter’s success possible.

References
[1] Gudaz, H., Ogu, H.A., & Schwartz, 

E.J. (2020). Long-term dynamics of the kid-
ney disease epidemic among HIV-infected 
individuals. Spora: J. Biomath., 6(1), 52-60.

Henry A. Ogu is treasurer of the Virginia 
Commonwealth University (VCU) SIAM 
Student Chapter. He is an applied math-
ematics Ph.D. student at VCU with a spe-
cial focus on dynamical systems, biomath-
ematics, and mathematical modeling with 
ordinary differential equations and partial 
differential equations.

(STEM) — potentially helping them to 
imagine a career in applied mathematics or 
another STEM field. We hope to return to 
Pinchbeck for a follow-up visit and further 
volunteering sessions.

Our members also partake in a variety 
of intellectual development activities. They 
enrich their academic lives and research by 
organizing various mathematical and scien-
tific-minded events, including screenings of 
educational films, mind-sharpening games, 
and discussions about different research 
activities or areas. VCU’s Department of 
Mathematics and Applied Mathematics 
and Department of Statistical Sciences and 
Operations Research host weekly seminars 
on biomathematics, analysis and linear alge-
bra, and discrete mathematics/combinator-
ics. This platform affords students and facul-
ty the opportunity to showcase their research 
and learn from each other. Members of 
the VCU SIAM Student Chapter took full 
advantage of these seminars last year by 
both listening to faculty talks and giving pre-
sentations to develop their own career goals.

In addition, students routinely attend 
national and international conferences 
in the mathematical sciences, including 
meetings by SIAM and the American 
Mathematical Society. Their participation 
in these events often includes going to 
student sessions, delivering poster presen-

Officers of the Virginia Commonwealth University (VCU) SIAM Student Chapter visited 
Pinchbeck Elementary School in Henrico, Va., in March 2022 as part of the chapter’s annual 
volunteer program. Photo courtesy of the VCU SIAM Student Chapter.

Several Virginia Commonwealth University (VCU) SIAM Student Chapter members pose at 
the 2022 Biology and Medicine Through Mathematics Conference, which took place at VCU 
in May 2022. Photo courtesy of the VCU SIAM Student Chapter.

Recipe for Reptation
Continued from page 7
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Academia or Industry…Why Not Both?
By Giovanna Guidoboni

Children are often asked, “What would 
you like to do when you grow up?” 

Personally, I hope that I will never stop 
growing and will be able to do many 
different things throughout my life. The 
notion that I had to choose only one career 
always bothered me. When prompted with 
questions like “Do you want to be a math-
ematician or an engineer?” or “Would you 
prefer to work in academia or industry?”, I 
routinely wonder: “Why not both?”

I always dreamed of conducting aca-
demic research, though I never had a clear 
sense of the specific field on which I want-
ed to focus. Initially, I studied materials 
engineering and appreciated engineering’s 
capacity to solve problems with concrete, 
direct impacts on society. I admired the 
creative and applied sides of the field, as 
well as the use of mathematics and physics 
to address complex scenarios. In response, 
I pursued a Ph.D. in mathematics and 
a postdoctoral appointment in scientific 
computing. The learning curve was steep 
but certainly worthwhile.

I first considered a career outside of aca-
demia when I had to make important deci-
sions about my job and personal life. As 
my family and I prepared to move between 
cities, I felt compelled to reevaluate my 
career. I loved the intellectual agility that 
academia provides and truly enjoyed inter-
acting with students and colleagues from 
all disciplines. Yet because the prospect 
of attaining an academic appointment at 
my next destination seemed unlikely, I 
pondered the idea of opening my own com-
pany. After all, I was building my career on 
the fact that mathematics can be applied; 
why not apply it directly with organizations 
in need of mathematical services?

The thought of becoming a consultant 
was simultaneously exciting and scary. I 
worried about how to find clients and draft 
contracts and fretted over my ability to 
maintain a continuous inflow of revenue. 
I also wondered whether my consulting 
endeavors would generate intellectual prop-
erty and if legal troubles could ensue. These 
thoughts and others began haunting me in 
2009, when we relocated from Houston, 
Texas, to Indianapolis, Indiana. I was there-
fore greatly relieved when I finally secured 
a faculty position at Indiana University–
Purdue University Indianapolis.

Even though I had shelved the consult-
ing idea for the time being, the sole fact 
that I had entertained the thought made 
me more aware of my research’s potential 
impact in a broader sense. I could publish 
articles to communicate new discover-
ies, but I could also file patents for ideas 
that might lead to marketable services or 
products. In 2015, I coauthored my first 
patent on the use of mathematical models 
to diagnose disease conditions in the eye 
and develop new therapies.

mization of sensors for cardiopulmonary 
monitoring in assisted living facilities to 
verify that the acquired signal actually 
contained the physiological data of inter-

est. I employed my expertise 
in mathematical modeling 
of the cardiovascular sys-
tem but also learned many 
new concepts that pertained 
to signal processing, hard-
ware solutions, and—most 
importantly—human inter-

actions with the devices. I continue to meet 
weekly with a team from the sensor com-
pany, which sets work goals according to 
the company’s strategic development plan. 
We then define specific tasks based on 
these goals that will not exceed my allotted 
monthly time. I express my opinion, but the 

company makes all final decisions regard-
ing future directions for the project. I can 
thus simply enjoy solving real problems 
using mathematics, and our arrangement 
allows me to effectively balance my time 
between academia and consulting.

I was recently approached by another 
company that wants to apply mathematical 
modeling to evaluate the outcomes of cer-
tain drugs. This time, setup was very easy; I 
received approval from the COIC, enlisted 
my attorney to help review the consulting 
contract, and now have a second client.

To be honest, I have not been actively 
looking for more customers. My academic 
position serves as my primary means of 
income and allows me the privilege of 
being selective in the consulting projects 

Filing a patent was actually quite easy. 
Since the discovery occurred in an academic 
setting, the Indiana University Research and 
Technology Corporation (IURTC) handled 
all of the paperwork and covered the costs. 
As the inventor, I filled out an invention 
disclosure form that described the contents 
of my work. The IURTC personnel—along 
with an external group of specialized attor-
neys—then drafted and filed the patent.

Consulting Is What Happens  
When You Make Other Plans

My prior worries about finding work 
resurfaced once more when my family relo-
cated yet again, first from Indianapolis to 
Strasbourg, France in 2014—where I found 
employment at Université de Strasbourg—
and then from France to Columbia, 
Missouri, in 2017 — where I joined the 
faculty at the University of Missouri. My 
colleagues in Missouri introduced me to 
the world of sensors for noninvasive moni-
toring of cardiorespiratory function. We 
investigated signal shapes and built a math-
ematical model based on differential equa-
tions that explained these shapes according 
to fundamental principles of cardiovascular 
physiology. While publishing an article 
about our findings in 2018, I 
filed another patent through 
the University of Missouri’s 
Technology Advancement 
Office (TAO). 

Shortly thereafter—at a 
time when I thought I had put 
my consulting ambitions to sleep—a com-
pany approached me that was interested in 
my cardiovascular monitoring patent. That 
was when I finally realized that I could 
truly become a consultant. I contacted 
the TAO and the University’s Conflict 
of Interest Committee (COIC) to ensure 
that I was allowed to consult for external 
companies while also serving as faculty. I 
received approval but discovered that there 
is a limit to the number of hours per month 
that staff can devote to such activities. It 
is also important for consultants to clarify 
who will own new intellectual property that 
their activities could potentially generate.

I hired an attorney to affirm that I was 
doing things correctly. Starting a company 
is surprisingly simple; one only needs a 
name, a bank account, and an Employer 
Identification Number. The attorney filed 
the necessary documents to the State of 
Missouri and checked that the name I 
chose was available. Just like that, Gspace 
LLC was born in October 2019. When a 
company approached me to enlist my ser-
vices, my attorney helped me review the 
contract to confirm that I was covered from 
all angles. I recovered all of the legal fees 
within the first month.

Consulting in Practice
My first consulting job required that I 

provide guidance on the design and opti-

CAREERS IN 
MATHEMATICAL 

SCIENCES   

Giovanna Guidoboni (right) and Marge Skubic of the University of Missouri discuss the 
design and optimization of sensors for cardiopulmonary monitoring in assisted living facilities. 
Guidoboni’s involvement in this project—which constituted her first consulting job—was based 
on her cardiovascular monitoring patent. Photo courtesy of the University of Missouri.

During her time at Indiana University–Purdue University Indianapolis (IUPUI), Giovanna 
Guidoboni (right) and Alon Harris of the Indiana University School of Medicine used ultrasound 
technology to measure blood flow in the eye and ultimately model risk factor behavior in dis-
eases like glaucoma and diabetes. Photo by School of Science at IUPUI.

See Academia or Industry on page 12
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A Mathematical Tale of Fibers, Fluids, and Flagella
By Matthew R. Francis

Under a microscope, a cell scoots along 
by its own power and hoovers up 

small crumbs of nutrition from the water 
around it. An example of such an organ-
ism is a choanoflagellate, which has a thin, 
whip-like appendage called a flagellum that 
controls its feeding and motion. While simi-
larly proportioned apparatuses would be 
useless on a human scale, flagella are com-
mon among single-celled organisms like 
bacteria, the sometimes-toxic dinoflagellate 
algae, and even human sperm cells.

Motion in the microscopic world—par-
ticularly in fluids—involves an entirely 
different set of forces than those that govern 
macroscopic environments. Flagella oper-
ate efficiently under these forces and allow 
microscopic life to move around in fluids, 
where large viscous forces are present even 
in substances such as water. The motion 
of choanoflagellates and the way in which 
flexible fibers or strands of cells passively 
respond to liquid flow all constitute a set 
of complex problems with many potential 
applications in engineering and medicine.

“With the advent of microfluidic devices 
and computational technology, there has 
been an incredible resurgence in studies of 
the flow of tiny creatures at the microscale,” 
Lisa Fauci, an applied mathematician at 
Tulane University and a former president 
of SIAM, said. “There are possibilities of 
creating nanorobots that can be guided with 
external magnetic fields to break up blood 
clots or deliver drugs to a tumor.”

However, potential applications are not 
the only reason that Fauci is drawn to flex-
ible fibers in fluids. “From the start, I was 
interested in problems in biological fluid 
dynamics,” she said. “What is really inter-
esting and hard about fluid mechanics in a 
biological setting rather than an engineering 
setting [is that] the structure interacting 
with the fluid is elastic. It’s flexible, and its 
shape responds to the fluid flow.”

The fluids themselves in microscopic 
biological systems are also often compli-
cated, regardless of whether the system of 
interest is blood, a reproductive tract, or 
the inside of a cell. Even free-swimming 
cells in water inhabit a world full of pro-
teins and other fibrous biological detritus 
that certainly affects their movement. Fauci 
elaborated on these concepts during her 
Past President’s Address at the hybrid 2022 
SIAM Annual Meeting,1 which took place 
in Pittsburgh, Pa., this July.

Fibers on Fibers
Fauci was among the pioneers who mod-

eled microfluid environments via computers 
at a time when machines were becoming 
powerful enough to run increasingly real-
istic simulations. “There was interest in 

1 https://www.siam.org/conferences/cm/
conference/an22

background to move and feed (see Figure 
1). “We’re using computational methods 
to model flagellar fibers that are moving 
through a fibrous network,” Fauci said. 
“So, fibers on fibers.”

Just Keep Swimming
The active fiber motion of flagella is 

not the only flexible-fiber system worth 
studying; microscopic biological envi-
ronments are full of stringy proteins and 
even cells that are borne on microcur-
rents [1]. “Diatom chains are phytoplank-
ton that are just swept around,” Fauci said. 
Phytoplankton—photosynthesizing, water-
dwelling microorganisms—as a group are 
responsible for the production of roughly 
half of the planet’s oxygen. In other words, 
the passive motion of diatoms around the 
globe contributes to the chemistry of the 
atmosphere and oceans and links the micro-
scopic to climate change.

Yet active flagella hold a special place 
in Fauci’s research program, and not just 
in the context of motion. Choanoflagellates 
sometimes anchor themselves to surfaces 
and use their flagella to snag food, reversing 
the same mechanisms that they originally 
evolved for swimming purposes [2]. This 
behavior, as well as their general shape, 
links choanoflagellates to the oldest surviv-
ing lineage of multicellular animals: the 
sponges (see Figure 2).

“As a mathematician, you have your tool-
kit with which you can solve these equations, 
figure out velocity fields and forces, and so 
forth,” Fauci said. “But it involves working 
with evolutionary biologists as well, who 
frame a very simple question [such as] is it 

better for me to be stuck to a wall? Or is it 
better for me to be free swimming?”

Choanoflagellates obviously do both, but 
sponges and more structurally complex 
animals forwent the single, free-swimming 
life in favor of communal grouping. More 
efficient food capture might have played a 
role in this development, in addition to the 
obvious advantages of collective safety in 
numbers. Such biological curiosities have 
driven Fauci as much as anything. “It’s 
really fabulous for me to spend my career in 
a mathematics department,” she said. “We 
can study whatever we want. It’s not ‘let’s 
get some technology out there.’ It’s basic 
science. It’s ‘how is this working?’”
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studying processes like sperm motility in the 
female reproductive tract and phytoplankton 
motion in the ocean through the lens of fluid 
mechanics,” she said. “I started working 
on these types of problems using computer 
simulations and new methodologies.”

In the microscopic regime dominated 
by viscous forces, Fauci and her collabo-
rators often start with an incompressible 
Newtonian fluid that is governed mathemat-
ically by the linearized Navier-Stokes equa-
tions. This approximation results from the 
assumption that the fluid’s viscosity domi-
nates over both its inertia and macroscopic 
external forces such as gravity. In fluid 
dynamics terms, this is the limit at which 
the Reynolds number—inversely propor-
tional to viscosity—is zero. The resulting 
equations that govern the fluid are

         

−∇ + ∇ + =ρ µ 2 0u g

           
∇ =· ,u 0

where u  is the velocity field for the fluid,  
−∇ + ∇ + =ρ µ 2 0u g is the viscosity, r  is the pressure, and g 

is the force per unit volume from non-fluid 
influences like flagella.

The forms of the solutions to this equation 
naturally depend on forces g. To describe 
flexible fibers in Newtonian fluids, Fauci’s 
colleague at Tulane and frequent collabora-
tor Ricardo Cortez introduced highly local-
ized forces that can model both the fibers’ 
response and—where applicable—poly-
mers that are suspended in the fluid:
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is a regularized version of a Dirac delta 
function for small parameter . The exact 
solutions to the linearized Navier-Stokes 
equation with this force are
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where the matrix S is a “regularized 
Stokeslet” [3]. The Newtonian fluid that 
these solutions describe serves as either the 
background for the simulation of passive 
fiber motion or the environment for a com-
plex fluid of polymers.

For the latter, Fauci and her collabora-
tors developed a mechanical model on a 
lattice that treats the molecules like springs 
and dashpots: a mechanical damper of the 
same type that prevents slamming in auto-
matic door-closing mechanisms2 [4]. Cells 
lash their flagella within this two-layered 

2 Interestingly, 19th-century physicist 
James Clerk Maxwell developed this type 
of mechanical lattice to describe the since-
debunked “luminiferous aether.”

Figure 1. Simulation of a cell that has a helical flagellum within a fluid consisting of a continuous 
Newtonian component and a lattice that represents suspended polymers. The simulation uses 
simple mechanical models to describe both the flagellum and the polymers. Figure courtesy of [2].

Figure 2. A choanoflagellate cell’s morphological similarity to a sponge cell shows a probable 
evolutionary connection. Both types of cells have a flagellum that is surrounded by a collar of 
hair-like cilia, which help capture food. Understanding the flagella’s operation could elucidate 
the reason that sponges took up communal life hundreds of millions of years ago. Figure 
courtesy of Mary Ann Clark, Jung Choi, and Matthew Douglas under Creative Commons 
Attribution 4.0 International license.

that I undertake. I also try to work in 
areas that are somewhat aligned with my 
academic research interests in order to 
use my time effectively. Therefore, I do 
not currently have a company website or a 
marketing strategy — though I know that 
I could step up my game and change my 
career priorities if I so desired.

Useful Tips
If you also enjoy the academic environ-

ment but would like to apply your research 
to real-world scenarios as a consultant, the 
following tips might help you get started:

• Consider filing patents in addition to 
writing articles; ask yourself whether some 
aspects of your research could lead to mar-
ketable services or products. 

• Get to know the people in your technol-
ogy transfer office and familiarize yourself 
with invention disclosure forms.

• Know the requirements for your institu-
tion’s conflicts of interest and commitment, 
as requirements can vary from place to place.

• Hire external help for specific needs, 
such as an attorney to review contracts and 
a company to assist with tax returns. 

• Find a balance that works for you, in 
terms of time and intellectual engagement.

My experience as a consultant has been 
extremely rewarding so far, and I personal-

ly feel more alive when I do multiple things 
simultaneously. My family and I receive 
an additional revenue stream, I can save 
more money for my retirement since I own 
a business, and I get to actively see people 
benefit from my mathematical research. 
The sensors that I helped to design current-
ly monitor hundreds of elderly individuals 
in assisted living facilities. They provide 
early warning of deteriorating cardiopul-
monary conditions and have already saved 
many lives. Math can genuinely improve 
people’s quality of life.

Academia or industry: why not both? I 
truly believe that my academic research 
and experience make me a valuable con-
sultant, and my consulting activities make 
me a better scientist. I have no idea what’s 
next, but I am happy to say that I am still 
in the process of figuring out what I want 
to do when I grow up.
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electrical engineering and computer sci-
ence and mathematics at the University of 
Missouri. Her research focuses on math-
ematical modeling and data science in 
the context of engineering and the life 
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internationally in areas such as ocular 
blood flow and risk factors.
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