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Abstract. Various pathogens are spread through avian hosts. The spread of these pathogens can have massive
economic and health consequences. Spatially explicit models of spread are needed in order to an-
ticipate where and when diseases will spread. However, making predictions from models for such
diseases has traditionally been challenging due to the complexity of bird movements, and a lack of
comprehensive data on them. This paper proposes a model for the directional movement of birds
between patches within epidemiological models. This model considers bird mobility in two ways:
directed migration and random diffusion. Migration is incorporated through a vector field that repre-
sents average movements each migratory season, generated based on continental flyways. Diffusion
is incorporated between neighbouring patches and segmented between each of the major flyways.
Migration and diffusion are combined into a large, temporally varying mobility matrix that represents
the movement of each bird in one patch to another. The mobility matrix is then used with a system
of susceptible-infected (SI) differential equations to determine the spread of disease. The system was
solved and results verified against infection data on the West Nile virus (WNv) outbreak in the US in
1999 and Turdus migratorius distributions, demonstrating the model’s ability to accurately predict both
the major spatio-temporal phases of WNv spread as well as the phases of American robin migration.
This approach, here called discretized migration flow (DMF), can be further developed and explored
for application in early stage emerging disease models.

1. Introduction. There are constantly novel emerging infectious diseases (EIDs) that
come with significant economic and public health consequences. Approximately 60% of all
EIDs are zoonoses, diseases that originate in animals [1]. Bird movement, especially migra-
tion, is crucial to the spread of many pathogens, including West Nile virus (WNv), Avian
Influenza (H5N1), and Eastern Equine Encephalitis virus (EEEv) [2, 3]. Zoonoses carried by
migratory birds pose an additional threat due to the accelerated rate of disease spread and
the added risk of poultry contamination. However, bird migration is an inherently complex
process which is difficult to model, especially due to the lack of comprehensive data and the
variety of potential host species. Nevertheless, understanding the spread of EID zoonoses
during the early-stages of an outbreak can be key in order to strategically allocate resources
and mitigate impacts.

Mechanistic models, such as ordinary differential equations (ODEs), are useful for early
stage epidemiological modelling, as they allow for useful predictions when data is lacking
(as opposed to many statistical models) and for information on parameters to be inferred
through retroactive model fitting. Additionally, spatiality can be incorporated through a
system of ODEs in a patchy modelling framework. In order to make a spatially predictive
model, it is useful to make the patches of equal sizing and finely distributed, as opposed
to creating fewer larger regions. However, this approach makes it difficult to include bird
migration, since mobility coefficients cannot be easily added into the model manually (due
to the high number of patches). Mechanistic models such as ODEs often do not normally
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incorporate bird migration or spatiality; models that do often utilize a low spatial resolu-
tion [4]. On the other hand, statistical methods like those used for climate or environmental
analyses are not mechanistic and, thus, are often not ideal for use during the early stages
of a disease outbreak, especially of an novel disease, due to a lack of data. Large scale bird
migration data is also sparse, with radar data, geolocator tracking tags, bird sightings, and
distribution analyses all having their drawbacks. Tracking tag (such as geolocator) studies
can study individual birds and populations. However, it is difficult to apply tracking tags
to a continental scale and impossible to directly track movement from every patch to every
other patch, ensuring every single patch is equally accounted for. Such efforts would also be
impractical near the start of a novel outbreak. Thus, it is not feasible to rely on such studies
alone. Radar data has been used to examine the direction and strength of bird movements
but is data intensive and does not monitor individual species (which is of importance to
many epidemiological models). In addition, radar data can be susceptible to error through
precipitation. Bird sightings and distribution analyses have become popular and can be used
to model the locations of birds. However, they cannot inherently model the direction move-
ment from each patch to every other patch, and thus cannot be used alone either.

This paper addresses the challenges listed above by developing and describing an ap-
proach to modelling bird movement in a way that can be incorporated into patchy ODE
models. A solution was developed that is computationally efficient, flexible, and easily incor-
porated into existing models. The approach, hereby called discretized migration flow (DMF),
models bird mobility as both migration and diffusion. Migration is represented as a veloc-
ity vector field that is constructed using location coordinates along the migratory flyway of
the bird species. Diffusion is represented as constant and segmented according to migratory
flyway. These movements are averaged in a state-transition matrix where elements repre-
sent proportional movement from patch to patch, taking both migration and diffusion into
account. In this way, the model is analogous to a discretized convection-diffusion equation
with no sources or sinks and with boundary conditions on diffusion. The resulting matrix of
DMF can then be incorporated into a disease model, such as the SI model exemplified here,
and solved for movement. The benefit of this approach is that it incorporates enough spa-
tial complexity to be predictive and can be easily incorporated into existing epidemiological
models or developed further.

The paper is organized as follows: section 2 describes the base epidemiological equations
(subsection 2.3), DMF model (subsection 2.4), and other implementation details. Evaluation
of results are found in section 3, and the discussion and conclusions follow in section 4 and
section 5.

2. Methodology.

2.1. Case Study: West Nile virus. West Nile virus (WNv) is a dangerous, mosquito 
borne disease that first originated in Uganda and is now commonly found throughout most 
continents [5]. WNv rapidly spread in the years following its initial North American case in 
New York, 1999. At present, WNv is endemic, with bird species such as Turdus migratorius 
(American robin) as primary hosts, and mosquito species such as Culex pipiens, Cx. tarsalis, 
and Cx. restuans as important vector transmitters [6]. In humans, it can also cause various 
life-threatening neuroinvasive diseases such as encephalitis and meningitis [7]. In the initial
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years following North America’s first case in New York, phylogenetic studies have shown
that West Nile spread has been related to migratory bird flyways [3, 8]. WNv was chosen
as a case study for application and testing of the approach described in this paper due to
the accessibility of data to test model predictions. The United States was chosen as the loose
study boundary, due to the availability of mapped, yearly data on early WNv transmission.
The rest of this paper describes and evaluates the efficacy of the DMF model in relation to
WNv data.

2.2. Spatial Grid Creation. In order to implement DMF, the study area was first divided
into 1274 equal area grid cells extending slightly beyond the contiguous United States. These
were created using the Albers Equal Area Conic coordinate reference system (EPSG:5070),
and implemented using Python. Various libraries were utilized, such as NumPy, Pandas,
GeoPandas, MatPlotLib, GeoPy, Plotly, Shapely, and Folium.The side length of each grid cell
was set to be 100 km, about half of the average distance travelled by a migrating American
robin per day [9]. The finely scaled grid helped allow the model to be spatially predictive.

2.3. Mathematical Model. For this model, the American robin was chosen to be the
host species, and Culex pipiens, Cx. tarsalis, and Cx. restuans were collectively chosen to be
the vector species. In order to model WNv spread, a patchy system of ordinary differential
equations was used. The base structure of the model, based on coupled ODEs, was largely
adapted from [10, 12]. For each species, two compartmental classes were used: suscepti-
ble (S) and infected (I). SBi is the size of the susceptible hosts class, IBi the infected hosts
class, SMi the susceptible vectors class, and IMi the infected vectors class for a given patch,
i. Additionally, NBi = SBi + IBi and NMi = SMi + IMi, representing the total size of the sus-
ceptible and infected classes for each species. The variable t is the time in days. This model
assumes reservoir frequency dynamics, a common assumption for West Nile virus [10]. Pa-
rameter values and ranges were either derived or approximated from literature. Details on
the model and parameters can be found in Figure 1 and Table 1.

Figure 1. System of Ordinary Differential Equations Model for WNv.
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Where SBi, IBi, NBi and SMi, IMi, NMi are the numbers of susceptible, infected, and total birds and mosquitoes respectively.

2.3.1. Logistic Growth. In order to limit the population growth of both the bird and 
mosquito species, a logistic growth assumption was incorporated into the model. Because
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Table 1
Parameters with associated values or ranges, meanings, and calculation or literature reference.

Param. Value Meaning Ref./Calc.
bB 0.022 Bird birth rate Assuming eight yearly

births per bird
bM 0.07 Mosquito birth rate [12]
KB 240000.0 Bird maximum popula-

tion size (per region)
[14] averaged per
square km

KM 5760000.0 Mosquito maximum
population size (per
region)

Set to match the propor-
tion of mosquitoes NM
to birds NB found in [12]

r 0.52 Mosquito bite rate [12]
q 0.16 Proportion of transmis-

sion IB → SM

[12]

p 0.88 Proportion of transmis-
sion IM → SB

[12]

v 0.07 Bird WNv death rate [12]
d 0.01 Diffusion percentage N/A

there are only births in the susceptible class, but deaths in both the susceptible and infected
classes, the logistic growth assumption was split into a “birth” term and “death” term.

For a general population N with a maximum population size of K, the logistic growth
assumption is:

dN
dt

= rN(1− N
K
) = rN − r

N2

K
,

where rN can be considered to be the birth term and r N2

K the death term, so that K is the car-
rying capacity. The birth rate remains proportional to the population size for all population
sizes. On the other hand, the death rate starts at zero and grows closer to the birth rate as the
population reaches its theoretical maximum. The birth term was included for only suscepti-
ble individuals, and the death term for both susceptible and infected individuals. The death
rate was scaled proportionally to the class size. Since N = S + I, the susceptible and infected
death rates will add to be the total death rate, maintaining the logistic growth assumption.
Thus, the model for susceptible and infected individuals is:

dS
dt = rN − r N2

K ·
S
N

dI
dt = −r N2

K ·
I
N

→
dS
dt = rN − r SN

K
dI
dt = −r IN

K

2.3.2. Spatial Framework. In this model, mosquitoes are assumed to be stationary within 
a patch. Only susceptible and infected birds move between regions. To incorporate the spa-
tial movement of birds, a meta-population framework was used. Both regional influx and
efflux were incorporated into the equations for d d

S
t
Bi and dd

I
t
Bi .  Sparse matrices β and D are gen-

erated in the upcoming sections, to represent patch to patch avian migration and diffusion
respectively. The dimensionality of these matrices are n × n, where n represents the number 
of distinct patches. The elements βik and Dik represent the proportion of birds starting within 
patch k that end within patch i, either by migration or diffusion (within a day). Due to this,
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Figure 2. Structural overview of the ODE spatial framework and matrix structure. Normal disease transmission
within patches occurs as birds move according to their mobility coefficients. Here, Xik represents the percentage of birds
starting in region k that end in region i, due to both migration and diffusion (in a day).

the column sums of both matrices are equal to 1;

n

∑
i

βik =
n

∑
i

Dik = 1 (for all k).

The migration matrix by itself, β, incorporates long distance migration at a relatively small 
rate and assumes that a high proportion of birds stay within the same patch in a given time 
step (and is, thus, more similar to the identity matrix I). On the other hand, the diffusion 
matrix by itself, D, represents local movements where equal portions of birds starting in 
patch k end within a neighbouring patch (or remain stationary). As a result, D is given a 
very small weighting compared to β. This small weighting is characterized by the parameter 
d. In addition, the migration matrix changes with respect to time, for different parts of the 
season/simulation. The low and high pre-breeding season migration matrices are βpre-I and 
βpre-II respectively. βpost-I and βpost-II are the low and high post-breeding season migration 
matrices respectively. Within the differential equations, the influx and efflux terms are the 
sum of all movement from each patch to every other patch. An overview diagram of the 
meta-population and matrix structures can be found in Figure 2.

2.3.3. Seasonality. The model was solved on a seasonal, impulsive basis. Seasonality 
was incorporated into the model through various stages. The migratory seasons were de-
fined according to definitions from eBird [11], with gaps between season dates interpolated. 
Based on these seasons, a period of “high” migration was defined t o b e t he r ange cover-
ing the middle third of dates for the pre-breeding and post-breeding migratory seasons (the 
remaining dates are periods of ”low” migration). Thus, β was defined piece-wise to be:
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Figure 3. General diagram of model seasonality and implementation. The x-axis lists months of the year. The birds
row signifies the different date ranges that are considered migratory and stationary seasons. The mosquitoes row shows a
simplified version of the total mosquito population size, as a function of time. The shaded grey region represents what is
considered WNv season. The start and end dates, as well as the date when WNv is introduced are shown on the graph
diagram as well.

β(t) =



βpre−I (036 ≤ t < 071, 106 ≤ t < 141)
βpre-II (071 ≤ t < 106)
I (141 ≤ t < 254, t < 036, t > 338)
βpost-I (254 ≤ t < 293, 321 ≤ t < 338)
βpost-II (293 ≤ t < 321)

where I is the identity matrix and t is the day (according to the Julian calendar). Additionally, 
the maximum mosquito population size, KM, is also parameterized, differing by both region 
and time of year. This is explained later on in subsection 2.7.

The West Nile virus season was determined to be from April 15 to October 31, based 
on [11]. The disease is only introduced into the model at the start of the WNv season, by 
infecting 50% of birds and mosquitoes within patches of the most infection from last year. 
This proportion was chosen arbitrarily, primarily so that the disease does not die out before 
it is given a chance to spread. The model itself was solved within the date range: Feb 5 to Dec 
4, for the years 2000, 2001, and 2002. The same initial distribution of birds and mosquitoes 
was used for every year of the simulation. A diagram overview of the seasonality within the 
model is available in Figure 3.
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Figure 4. A simplified image overview of the vector field creation process. Coordinate points were visually created
along a map of the major US migratory flyways. Then, these locations coordinates were connected tip to tail with vectors
that were then interpolated to create a numerical vector field.

2.4. Migration Matrix (β). American robin migration is represented and modelled in
the form of two velocity vector fields that are used to generate the required β matrices. The
pre-breeding and post-breeding season velocity vector fields were derived from a set of or-
dered longitude/latitude coordinates that were created based on the major migratory fly-
ways of the United States. It was assumed that, for the American robin, the pre-breeding
and post-breeding migrations made use of the same flyways and corridors. Coordinates
correspond to locations along migratory routes, approximating the path an individual may
follow during either a pre-breeding or post-breeding migration. Two to four sets of point
locations were created per migratory flyway, resulting in 13 coordinate sets. An overview of
this process can be found in Figure 4.

These point locations were converted into coordinates in the Albers (equal area conic)
projection (here represented as xi and yi). Coordinate-vector pairs were generated between
points of the same migration path (here, r) using a successive algorithm, with coordinates
representing the origin of each vector. Vectors were directed northward and southward for
the pre-breeding and post-breeding migratory seasons respectively. The magnitude of each
vector was set to be 100 km, about half of the average distance travelled by an American
robin in a day. Variation in travel speed would later be incorporated by use of factors which
alter the magnitude of each vector. These coordinate-vector pairs were combined into arrays
for both the pre-breeding and post-breeding season. Represented as matrices (where Vr and
Wr are the pre-breeding and post-breeding season matrices for a given migratory route (r)
respectively and ~vi and ~wi are the pre-breeding and post-breeding season vectors for r):

Vr =


x1 y1 ~v1x ~v1y
x2 y2 ~v2x ~v2y
...

...
...

...
xn−1 yn−1 ~v(n−1)x ~v(n−1)y

 , Wr =


x2 y2 ~w2x ~w2y
x3 y3 ~w3x ~w3y
...

...
...

...
xn yn ~wnx ~wny


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where,

~vi = 100km ∠ atan2(yi+1 − yi, xi+1 − xi) (1 ≤ i < n) and
~wi = 100km ∠ atan2(yi−1 − yi, xi−1 − xi) (1 < i ≤ n).

This process was repeated for all migratory routes considered (r = 1− N) and combined
to create larger arrays, represented as matrices (where V and W represent the complete set
of pre-breeding and post-breeding season coordinate-vectors respectively)

V =


V1
V2
...

VN

 , W =


W1
W2

...
WN


.

These coordinate-vector pairs were then used as the basis of two dimensional, bi-cubic
interpolations, resulting in two velocity vector fields. This process can be represented as
(where ~Mpre and ~Mpost represent the pre-breeding and post-breeding season migratory vec-
tor fields respectively.),

~Mpre(xi, yi) = bicubic interp(xi, yi|col1(V), col2(V), col3(V))~i

+ bicubic interp(xi, yi|col1(V), col2(V), col4(V))~j

~Mpost(xi, yi) = bicubic interp(xi, yi|col1(W), col2(W), col3(W))~i

+ bicubic interp(xi, yi|col1(W), col2(W), col4(W))~j

bicubic interp(x, y|Xinp, Yinp, Zinp) is the bicubic interpolation, taking vectors X, Y, and Z
as coordinate and data parameters. The function outputs a scalar value for every coordinate
input. A diagram of the interpolation process can be found in Figure 5.

These velocity vector fields were utilized in order to create the matrices βpre−I , βpre−I I ,
βpost−I , and βpost−I I . βik represents the percentage of birds starting in region k that end in
region i. To generate these, the following was done. Nine equally spaced (x, y) coordinate
pairs were defined in a grid shape within each patch. Various speed factors were also used to
account for differences in flight speeds among birds. Let C be the set of all of these coordinate
pairs across patches, and let A be the set of speed factors used. For a given coordinate pair
c ∈ C and speed factor a ∈ A, p(t|c, a) is the position of a point at time t that starts at c and
moves with a speed factor of a. If ~M represents the migration velocity vector field,

p(t|c, a) = c +
∫ t

0
a~M(p(t′|c, a))dt′.

Since the time step is a day, t = 1. The value of p(1|c, a) was approximated recursively 
using the definition,
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Figure 5. A diagram of the interpolation process for the vector field. Left is pre-interpolation. Right is post-interpolation.

p(t|c, a) ≈ c +
4

∑
i=1

a
~M(p( i−1

4 |c, a))
4

.

Then, the migratory matrix, β, was generated using the following definition,

β = (βik) = (
nik

9na
)

where (get patch(x, y) returns the patch that (x, y) is within).

nik =
{
(c, a) : get patch(c) = k, get patch(p(1|c, a)) = i}

∣∣
na = |A|.

This process was repeated for both the pre-breeding and post-breeding season and using
different speed factors each time. The following definitions were used:

βpre−I found using ~Mpre and A = {1, 1.5, 2, 2.5}
βpre−I I found using ~Mpre and A = {2, 2.5, 3, 3.5}
βpost−I found using ~Mpost and A = {1, 1.5, 2, 2.5}

βpost−I I found using ~Mpost and A = {2, 2.5, 3, 3.5}.

Because of the way the array was constructed, ∑n
i βik = 1.

2.5. Diffusion Matrix (D). Diffusion was considered to be the inter-regional dispersion 
of birds on a small scale. To incorporate diffusion, the study area was divided into four 
segments for each of the major migratory flyways in North America (Pacific, Central, Missis-
sippi, and Atlantic). Next, a diffusion matrix, D, was created that represents the percentage 
of birds starting in region k that diffuse into region i, assuming maximal diffusion. Diffusion 
was assumed to only occur within the same flyway. To construct the matrix, the following 
definition was used:
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D = (Dik) =

{
1

mi+1 k = i or k is a neighbour to i
0 otherwise

where, mi is the number of neighbouring patches to i that are within the same flyway. A 
patch is considered a neighbour if its coordinate differs from i by 1. Because of this definition,
∑i

n Dik = 1.
In the ODEs, a parameter d governs the percentage of mobility that is considered to be 

diffusion. Since the matrix D assumes maximal diffusion, its relative weight is very small. 
Assuming that approximately 5% of individuals diffuse maximally over the course of 10 
days, the value of d was set to be 0.005.

2.6. American robin Initial Distribution. The initial distribution of the host species 
was determined by approximating the distribution of American robins found during non-
breeding seasons present on eBird [11]. This is shown in Figure 6. (For a direct visual com-
parison to the non-breeding season American robin distribution given by eBird, the reader is 
directed to the [13].)

2.7. Mosquito Initial Distributions. The three species Culex pipiens, Cx. restuans, Cx. 
tarsalis were considered to act as a single species for this model. The relative spatial distribu-
tion of these mosquito species between locations was assumed to remain the same through-
out the year. The mosquito density in any location is assumed to only vary proportionally 
to a scaling factor that changes throughout the year. The mosquito distribution at maximal 
intensity was determined through ecological niche model outputs. Ecological niche mod-
elling is a statistical machine learning technique which uses climate data layers and pres-
ence/absence locations of a species to make raster predictions for the likeliness of finding a 
species at any location within the study space. The outputs of three models, each ran for one 
of the species, were obtained in raster format from records held in the Walter Reed Biosys-
tematics Unit (WRBU), Smithsonian Institution and accessed through the VectorMap data 
portal [18]. These outputs were raster averaged in QGIS, and subsequently averaged per 
cell of the study space grid. These polygonal averages were then normally scaled so that 
max(all outputs) = 2.40 × 105 (as per Table 1).

It is assumed that the distribution of mosquitoes across the continent stays constant and 
that the relative density within all patches changes only with time. Thus, KM is defined such 
that:

KMi(t) = 10KMi(t0) f (t)

where KMi(t0) is the initial mosquito population size within region i. The maximum popu-
lation size for any given patch, KMi, will be ten times the size of its initial population size. 
Working in reverse, the initial mosquito population size for each patch is set as one tenth of 
the desired maximum. The desired maximum is given by the normalized polygonal average 
that was previously calculated. A function, f (t), approximates the relative distribution of 
mosquitoes throughout the year and is defined by the function:

f (t) = 0.06 + 0.57(1.3e− 14222 (t−170)2 
+ e− 11222 (t−230)2 

) (where 0.0 ≤ f (t) ≤ 1.0)
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Figure 6. a) The initial relative mosquito distribution across the study space. b) The relative mosquito scale factor 
versus time. c) The initial relative bird distribution across the study space.

This function was determined by manually fitting a  c urve t o a n a verage o f t he Culex 
relative distributions versus time, as shown in [15].

An image of this is shown in Figure 6.

2.8. Solving the System of Differential Equations. The resulting system of 5096 dif-
ferential equations (4 equations × 1024 patches) Figure 1 was solved numerically, using the 
Differential Equations library in the Julia programming language, for the years 2000, and 
2001. A parallel, 5th order Runge-Kutta method was used.

3. Results. Due to the complex nature of spatio-temporal data and the goals of this 
project, no single statistic was used to determine the success rate of the simulation. Rather, 
the primary goal of the model was to predict the main stages of WNv outbreak.

3.1. Evaluation of WNv Spatial Predictions. The model was evaluated based on its 
ability to capture the major phases of WNv disease outbreak. A results metric, R, was cal-
culated as the average number of infected mosquitoes within each polygonal region during 
the ”WNv season”. This value was mapped, and results are shown in Figure 7. As exact 
county-level data was not publicly available to perform spatial correlation tests, a side by
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Figure 7. The predicted yearly results of the model for the first three years of simulation captured by the value
R = ∑

N
I
M
M . Darker patch colours represent higher relative R values. The Year 1 distribution represents the initial disease 

distribution that was inputted into the model. The model was then run on the distribution for Year 1 to predict the final
disease distribution at the end of Year 2. Finally, the model was run on the results for Year 2 to gain a prediction of the final 
disease distribution at the end of Year 3.

side visual comparison was done between Center for Disease Control and Prevention (CDC) 
infection data [16] and model results. The exact figures used for the visual comparison can be 
found in Figure 4 of [17]. This comparison demonstrated the similarities between the model 
predictions and the actual disease spread.

Some key observations include the accuracy of the model in recreating the stages of WNv 
outbreak as shown in the yearly CDC data. It should be noted that, although this model was 
made to model the outbreak which began in 1999, the initial distribution used for the model 
was recreated from the data for 2000 as there was little change in the disease distribution be-
tween these years, and the disease remained relatively localized within the year 1999. Hence, 
the results for year 1, year 2, and year 3 correspond most closely to the actual disease distri-
butions for the years 2000, 2001, and 2002. The initial spread could be classified into three 
distinct stages. Initially, there is not much change because of a lack of movement. However, 
due to the level of diffusion, the disease propagates to areas with lower host-species density, 
leading to higher infection rates on the perimeter of the major bird population. Afterwards, 
the trend was that the disease spread throughout the rest of the population and became ho-
mogenized, which was also replicated by the model. This model also replicates the real world 
behaviour where the disease emerged at the north and south edges of the bird population, 
due to reservoir frequency dynamics. Overall, mosquito prevalence had a strong effect in 
determining the disease hotspots and prevalence whereas birds mostly acted as transmitters 
that introduce the virus to specific s ub-regions. The density of birds is not seen to have as 
much of an effect on the virus prevalence. Additionally, many iterations were done to test 
the effect of each parameter on the model output. For parameters with ranges, certain val-
ues were iteratively adjusted. This process revealed the model to be particularly sensitive to 
the parameters of mosquito bite rate, bird WNv death rate, and diffusion percentage. (For-
mal sensitivity analyses were not performed. However, sensitivity is meant in the sense that 
changes of about 10% to each value led to the disease being either eliminated or spreading 
homogeneously within flyways.) When the mosquito bite rate was too high, the entire sys-
tem became infected too quickly whereas too low led to the disease dying out. A similar 
effect was noticed in regards to the migration itself, which acted as the mechanism for dis-
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eases to spillover into neighbouring flyways. Finally, this also validated the assumption of 
flyway segmented diffusion, which was what allowed this model to work properly. Without 
that assumption, the disease would reach all parts of the study space within a few days and 
in very small (fractional) percentages, that would then infect the majority of individuals as 
individuals migrated. With flyway segmented diffusion, a similar delayed infection process 
where the disease spreads west-ward could be replicated.

3.2. Evaluation of American robin Migration Dynamics Prediction. The model was also 
evaluated based on how well it was able to reproduce the seasonal ranges of the American 
robin. A visual comparison with the eBird yearly range models [11, 13] and the supplemental 
animation file, demonstrates that the main stages of American robin migration ranges were 
adequately replicated. The ranges available at eBird visually correlate with the ranges of 
output from this model, showing that the migration assumption was able to hold up over 
long periods of time.

4. Discussion. In summary, DMF with flyway segmented diffusion was presented as a 
successful model of bird mobility in a state-transition matrix that can be included in early-
stage epidemiological models. The approach was tested against the case of WNv and shown 
to provide useful predictions on the spatial spread of WNv for the initial years of WNv 
outbreak in the US, 1999.

Overall, this model was able to replicate the real world behaviour of WNv where the 
disease emerged at the northern and southern edges of the bird population, due to reservoir 
frequency dynamics. The model outputs visually correlated with the true result. However, 
it is important to note that spatial correlation values were not calculated, nor was any direct 
numerical comparison made with real world data. Though the model displays potential as a 
qualitative tool for predicting the spread of an emerging zoonose, further quantitative testing 
would be required to measure the accuracy and utility of the model in real-world situations.

Several new insights were gained from this work. The way in which flyway segmented 
diffusion and migration interacted was crucial to the disease dynamics. Incorporating diffu-
sion was necessary to explain how the disease spread so quickly to opposite ends of the same 
flyway but not inland at the same p ace. The flyway segmentation meant that it took longer 
for the disease to reach the most western flyway (the Pacific flyways). The idea of migratory 
connectivity is relevant here because it shows how the specific locations that a migratory bird 
travels to is important in introducing the disease to new locations.

The distinction of neighbouring flyways a nd t he d iscreteness o f t he b arriers between 
them, as well as the necessity of migration to overcome that barrier are three open questions 
brought up by this project that warrant further investigation. Overall, the assumption of 
flyway segmented diffusion seems to be a  crucial one in order to explain known patterns. 
It provides an ability for the model to recognize areas of high and low transmittable, as op-
posed to having either homogeneous spread or lack of spread. Without it, the velocity vector 
field and migratory matrix would be descriptions of where birds do fly without explaining 
where they do not and why.

This general approach could be developed and refined in several w ays. A  limitation is 
the data points used to construct the vector field. A refinement could incorporate observed 
data into the vector field creation. An example could be individual level tracking tags or
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presence observations taking the place of some coordinate sets that were determined based 
on the diagrams of North American flyways. Another possibility could be incorporating it 
with a radar weather system in order to get a more actively changing vector field. Addi-
tionally, the approach of using coordinates to create the vector field is not a requirement, as 
alternative means could result in the same, or better, solutions. And variation can be incurred 
in regards to the integration of the velocity vector field, using numerical a pproximation. It 
should also be noted that the assumption of using two classes (susceptible and infectious) for 
the American robin was made for the sake of keeping the number of differential equations to 
a minimum. Nonetheless, incorporating additional compartments, such as an exposed class, 
may make the model more realistic as American robins do not experience high mortality 
from WNv. Currently, there is a gap in simulation between successive years, as the model 
is not simulated during the non-breeding season for the American robin. As part of this, 
the choice of infecting 50% of birds and mosquitoes in patches with the most infection was 
arbitrary. Both of these assumptions could be altered to yield more accurate spatial results, 
incorporating the inter-seasonal dynamics of the disease by a time-continuous simulation 
across years.

In connection to future work, this approach could be developed into a live-updating 
early-stage epidemic modelling system that updates predictions as the disease moves along. 
This would allow for better understanding of disease dynamics in the context of an emerging 
infectious disease, and could provide immediate practical usage to government and policy 
makers. In addition, connections to connectivity could be further researched, as the hetero-
geneities in bird migration seem to be largely responsible for the introduction of disease into 
new areas.

5. Conclusion. This project demonstrates the start to end development, testing and eval-
uation of a novel method to characterize avian mobility in compartmental models. It was 
successfully tested against the historical case of West Nile virus, and can be applied to novel 
outbreak situations as well. This project developed a novel approach to characterise bird 
mobility through migration and diffusion, intended for use in early-stage epidemiological 
models where there is a lack of data to utilize a statistical method. It is an easily adaptable 
and efficient approach that can be employed by epidemiologists and ecologists to model bird 
mobility through migration and non-contiguous diffusion in a realistic way for prediction-
oriented models. The approach was justified by numerous numerical test results that pro-
duced results that visually correlated with the yearly disease spread, matched bird distri-
bution estimates from eBird, and reinforced the importance of the assumption of reservoir 
frequency dynamics in these models, in addition to pointing to many additional interesting 
factors. This tool can be easily used by ecologists and epidemiologists to aid in studying and 
predicting the spread of new avian-host diseases as they occur in the future. Nonetheless, 
further testing would be required to determine the exact accuracy of the numerical results 
outputted by this model, as well as to test the validity of model assumptions against real-
world test cases.
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