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Robustness of Complex 
Networks with Applications 
to Cancer Biology
By Allen Tannenbaum

The study of complex networks has 
a huge and growing literature, and 

has even been called the field of network 
science [2]. Much of our research is moti-
vated by the need to formulate mathemati-
cal principles that are common to various 
types of complex networks. For example, 
cell biology, communication webs, and 
search engines all need to process noisy, 
uncertain, and incomplete data that is 
potentially stochastic. We may describe 
the cell cycle with empirical distributions 
driven only by partially-known environ-
mental cues and intracellular checkpoints. 
In turn, search engines employ empirical 
distributions based on the very limited 
sampling of features that are often not 
well understood. This motivates problems 
that include the characterization of robust-
ness, reliability, and possible uncertainty 
principles. Our goal is to investigate how 
curvature and other intrinsic geometric/
topological properties affect these features. 
In short, we want to develop the neces-
sary theory and tools that will permit the 

understanding and management of network 
dynamics at various scales.

Network geometry, and curvature in par-
ticular, is intimately related to network 
entropy (see Figure 1, on page 3). In fact, 
one way to generalize curvature to rather 
broad metric measure spaces is to exploit 
entropy’s convexity properties along geode-
sic paths defined at the level of the associ-
ated space of probability measures with an 
induced Riemannian structure.

We are very interested in applications 
of this geometric network framework, par-
ticularly to cancer. The connection to cancer 
biology arises from one’s ability to model 
many cellular gene and protein networks 
as weighted graphs, whose edges reflect 
interaction strengths/rates between the cor-
responding nodes (genes or proteins). As a 
concrete example, let us consider a genetic 
regulatory network. The expression of a 
gene, i.e., the production of a protein that 
the given gene encodes, is regulated by other 
proteins. Thus, one may model the genomic 
machine as a graph (network), with vertices 

Sensitive Dependence on Network Structure: 
Analog of Chaos and Opportunity for Control         
By Adilson E. Motter and     
Takashi Nishikawa

The advancement of network science 
over the past 20 years has created 

the expectation that we will soon be able 
to systematically control the behavior of 
complex network systems and in turn 
address numerous outstanding scientific 
problems, from cell reprogramming and 
drug target identification to cascade con-
trol and self-healing infrastructure devel-
opment [4]. This expectation is not without 
reason, given that control technologies 
have been part of human development for 
over 2,000 years [1].

While significant progress has been 
made, our current ability to control is 
still limited in many systems. This is not 
so much from lack of available technolo-
gies to actuate specific network elements 
as from challenges imposed by unique 
characteristics of large real networks to 
designing system-level control actions [4]. 
These limiting characteristics include the 
combination of high dimensionality, non-
linearity, and constraints on the inter-
ventions, which set networks apart from 

other systems to which control has been 
traditionally applied [1]. Recent progress 
on developing control techniques scalable 
to large networks has been driven by the 
design of new approaches.1 

One such approach may now be possi-
ble due to the recent discovery [5] that net-
work dynamics often depends sensitively 
on the network structure, especially when 
this structure is optimized for maximum 
stability of a desired behavior. Before 
considering how this property can be 
explored to make networks more respon-
sive to control, we discuss in some detail 
what sensitive dependence on the network 
structure really means.

When considering a network system’s 
sensitivity to perturbations, one might 
contemplate whether damage to small 
parts of the network will compromise the 
system’s structural integrity. This ques-
tion is meaningful when dealing with 
a network whose function is primarily 
structural, such as a spider web, the lat-
tice of crystal materials, or the backbone 
of a tower. It can be traced back to James 

1 https://sinews.siam.org/Details-Page/
leveraging-noise-to-control-complex-networks

Maxwell, whose 1864 work on networks 
of forces [2] made him a pioneer in the 
study of networks. Incidentally, this was 
four years prior to his publication on the 
flyball governor, a control system then 
used in steam engines that is often cred-
ited as the beginning of the mathematical 
theory of control [3].

However, there is a potentially much 
larger class of network systems in which 
the network’s role is not mainly structural. 
It is instead to mediate a process, as in the 
case of a road network, power grid, neu-
ronal network, metabolic network, food 
web, or social network. If one of these 
networks is perturbed slightly, will the 
relevant process on the network change 
only slightly or substantially? In other 
words, is there a sensitive dependence 
of the network dynamics on the network 
structure? For example, in a network of 
people deliberating an issue, how does 
the convergence to consensus depend on 
the details of the network of interactions? 
In our power-grid network, where col-
lections of power generators must be in 
pace at approximately 60Hz, how does the 

Figure 1. Final state of two realizations of the iterated prisoner’s dilemma game for the same initial condition and the network differing by a 
single edge. Visuals adapted from Nicky Case’s “The Evolution of Trust” game. View an accompanying animation in the online version of this 
article, or at http://bit.ly/SensPrisDilemma.

Figure 5. On the Meuse River, gates move according to feedback laws constructed 
by Jean-Michel Coron and his colleagues. Photo credit: Jean-Michel Coron.

See Cancer Biology on page 3

See Network Structure on page 3

Special Issue on Control 
and Systems Theory

In this special issue, read about research related to the 
theory of systems and their control.

In an article on page 6, Paul Davis overviews Jean-Michel Coron’s 2017 
W.T. and Idalia Reid Prize Lecture, which focused on controllability and local 
asymptotic stabilizability — two essential properties of control systems.
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4	 Singular Perturbations in 
Noisy Dynamical Systems

	 Paul Davis recaps Bernard 
Matkowsky’s 2017 John von 
Neumann Lecture. Idealized mod-
els in scientific theory can differ 
radically from realistic models 
often due to the effects of noise, 
which one may model as a ran-
dom perturbation in a determinis-
tic dynamical system. Matkowsky 
showed that when noise is small, 
important probability distribu-
tions satisfy a singularly perturbed 
deterministic boundary value 
problem, which can be treated by 
matched asymptotic expansions 
and generalizations thereof.	

	 Charles Van Loan, this year’s 
John von Neumann lecturer, 
offers a preview of his upcoming 
talk at the 2018 SIAM Annual 
Meeting, also on page 4.

8	 Quantifying, Reducing, and 
Repurposing Wasted Food

	 The MathWorks Math Modeling 
Challenge—a U.S. applied math 
contest run by SIAM—posed 
an important question to high 
school students this year: how 
do we quantify the amount of 
food wasted annually? Problem 
authors Karen Bliss, Kathleen 
Kavanagh, and Ben Galluzzo 
talk about what motivated this 
year’s problem and how they 
hope to inspire future generations 
through real-world questions.

11	 Understanding and 
Appreciating Mathematics 
and Statistics

	 April is Mathematics and 
Statistics Awareness Month; 
the goal of this initiative is to 
increase public understanding 
and appreciation of mathematics. 
Cleve Moler (MathWorks) and 
Kelly Cline (Carroll College) 
discuss the various attributes 
of the mathematical sciences 
and SIAM’s unique role in 
bringing together diverse math-
ematicians to spotlight math’s 
relevance to realistic issues.
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Looking Back at 60 Volumes of SIAM Review
SIAM was founded in 1952 to promote 

applied mathematics research and 
facilitate the exchange of ideas between 
mathematicians and others in science and 
industry [3]. Its initial publications were 
SIAM Newsletter, glossy and in U.S. half 
letter format, and the Journal of the Society 
for Industrial and Applied Mathematics 
— both of which began in 1953. The 
newsletter included news about SIAM and 
the applied mathematics community, book 
reviews, and adverts. It also contained 
technical articles of broad interest under 
the heading “SIAM Notes.”

The January 1958 newsletter featured 
a front-page article announcing a new 
journal called SIAM REVUE,1 which 
promised expository papers, book reviews, 
articles on education and policy, and a 
problems section.

The first issue of SIAM Review appeared 
in January 1959. Among the articles in 
early issues were reprints of “SIAM Notes,” 
the first being Thomas N.E. Greville’s 
“The Pseudoinverse of a Rectangular or 
Singular Matrix and Its Application to the 
Solution of Systems of Linear Equations.” 
Pseudoinverses proved to be a popular topic 
in the journal for many years to come.

Beginning with volume 2 of SIAM 
Review, a “News and Notices” section (later 
renamed “Chronicle”) appeared in each 
issue, intending to “report to the member-
ship the activities of the Society, and news 
and meeting notices of interest to the applied 
mathematician.” This section took over the 
role of SIAM Newsletter, which was later 
rejuvenated as SIAM News 
and gradually adopted the 
task of providing news 
about SIAM. View archives 
of SIAM Review.2

SIAM Review’s first issue 
of 1960 contained a report 
by Donald Thomsen, Jr. (IBM)—who had 
just completed his term as SIAM President—
on SIAM activities in the preceding year. It 
described the establishment of a committee 
to expand SIAM’s conference program and 
the intention to start a SIAM monograph 
series. The report tallied membership at 
1,626, with 47 institutional members and 
14 sections. Other officer reports appeared 
from time to time, including annual reports 
from the treasurer that from 1986 to 1998 
shared much interesting information about 
SIAM, financial and otherwise. Until 1998, 
each issue published a list of new members.

In its early years, SIAM Review some-
times printed reports of various types of 
meetings. A 1964 article provides a tran-
script of a panel discussion on mathematical 
publishing at the previous year’s SIAM 
fall meeting [4]. It is striking that many of 
today’s issues were also of concern 54 years 
ago, such as the proliferation of journals, the 
quality of writing in mathematical papers, 

1  This spelling, which suggests a rather dif-
ferent sort of publication, was only used once 
in the article and was presumably a typo.

2  https://epubs.siam.org/loi/siread

and the ways in which editors and referees 
maintain standards of accepted papers. The 
comprehensive survey articles for which 
SIAM Review is renowned were not a feature 
of every issue in the early years, but became 
more common in the 1970s.

In the July 1975 issue of SIAM Review, 
the editors announced a new section titled 
“Classroom Notes in Applied Mathematics” 
consisting of “brief notes (one to four 
printed pages), which are essentially self-
contained applications of mathematics that 
can be used in the classroom.” They stated 
that the intention was to eventually collect 

these notes into a book. This 
happened in 1987, with the 
publication of Mathematical 
Modelling: Classroom Notes 
in Applied Mathematics [7], 
edited by Murray Klamkin. 
The same author, who edited 

the problems section from 1959 to 1993, 
later published a selection of problems 
and solutions from the journal [8]. The 
December 1986 issue featured a paper type-
set in TeX that author Layne Watson, 
an early adopter of TeX, had delivered 
as camera-ready hard copy [15]. It was 
not until 1990 that submission instructions 
mentioned the possibility of authors provid-
ing TeX sources for their accepted papers. 

The last issue of 1996 announced a major 
redesign of SIAM Review. It arose from 
recommendations of a 1994 ad hoc com-
mittee appointed by the SIAM president 
to evaluate all SIAM journals. The March 
1999 issue was the first to be published in 
the new format, and a preface from editor-
in-chief Margaret Wright explained the 
changes. A glossy dark blue cover, shiny 
paper, and a page design unique to the jour-
nal were part of the new look. It contained 
four sections—titled “Survey and Review,” 
“Problems and Techniques,” “Education,” 
and “Book Reviews”—with autonomous 
section editors, along with a “SIGEST” 
section that reprinted a notable paper of 
broad interest from another SIAM journal. 

The previous “Problems and Solutions” 
section became electronic only. Each sec-
tion featured an introduction by the relevant 
section editor that put the articles into con-
text; nowadays these introductions are also 
posted on SIAM News Online. This for-
mat remains essentially unchanged today, 
though the second section was renamed 
“Expository Research Papers” in 2010 and 
“Research Spotlights” in 2012.

Book reviews have always been a popu-
lar component of SIAM Review, with expert 
reviewers providing insight into relevant 
fields and offering due praise and criti-
cism. The redesign introduced “Featured 
Reviews,” in which a reviewer assesses sev-
eral books on a particular topic. These are 
especially useful for instructors searching 
for a suitable classroom text. For example, 
“PDE Books, Present and Future” by J. 
David Logan in the September 2000 issue 
and “Two New Books on Partial Differential 
Equations” by Ronald B. Guenther and 
Enrique A. Thomann in the March 2005 
issue remain useful guides to textbooks 
available at those times for a PDE course.

Another recent feature of SIAM Review 
is the publication of reports on educational 
matters, such as the influential 2001 report 
on graduate education in computational 
science and engineering (CSE) [12] (com-
plemented by [16]), which was followed 
a decade later by a report on undergradu-
ate education [13]. A report on challeng-
es, opportunities, and directions for CSE 
research and education for the next decade 
will appear later this year [11].

In preparing this article, I had a lot of fun 
browsing through the back issues of SIAM 
Review. Here are a few observations. The 
second most-cited3 article from the 1960s is 
actually a half-page problem [14] that intro-
duced a novel application of the orthogonal 
Procrustes problem. I have even cited it 
myself. As far as I know, only one paper has 
had the honor of appearing in SIAM Review 
twice: the famous “nineteen dubious ways” 
paper on the matrix exponential by Cleve 
Moler and Charles Van Loan [9]. It was 
reprinted in 2003 as part of SIAM’s 50th 
birthday celebrations, with new material 
to bring it up to date [10]. It is interesting 
to note that some of SIAM Review’s most-
cited papers have appeared in the Education 
section, including [2] and [6]. Indeed, six 
of the 10 most-downloaded papers (see the 
chart on page 9) appeared in the Education 
section. Papers with a pedagogic slant can 
clearly still garner many citations from the 
research literature. The longest paper I could 
find (based on some Emacs and MATLAB 
hacking of the SIAM Review BibTeX file in 
the TeX User Group bibliography archive4) 
is [1], which at 107 pages is longer than 
some SIAM books. Back issues of SIAM 
Review contain gems that one might not 
expect to find. One of my favorites is the 

3  All citations are from Google Scholar.
4  http://ftp.math.utah.edu/pub/tex/bib/

Cartoon created by mathematician John de Pillis.

FROM  THE  SIAM 
PRESIDENT

By Nicholas Higham

See SIAM Review on page 5

Celebrating SIAM 
Review’s 60th Volume

On page 9, Mark Newman writes about 
his top-downloaded paper in SIAM 
Review, which surveyed a rapidly-grow-
ing field that continues to flourish today.
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representing the genes and edges depicting 
the correlation (dependence) of a given pro-
tein’s production by the corresponding gene 
on additional proteins produced by other 
genes in the genome.

Accordingly, much of our research focus-
es on employing network geometrical con-
cepts to quantify (and therefore predict) 
pathway-related robustness/fragility in a 
given cancer system. This helps uncover 
hypothesized sets of targets that can prop-
erly disrupt alternative signaling cascades 
contributing to drug resistance. Our pro-
gram’s mathematical component builds on 
and relies upon several observations with 
far-reaching physical (statistical mechan-
ics) and information theoretic significance. 
More specifically, one can begin by placing 
a probability structure on a graph (e.g., 
representing expression levels of genes). 
This space of probabilities on graphs has 
several properties that enrich the structure 
of the underlying discrete space, based on 
the fact that a Riemannian structure may be 
endowed on the associated probability mea-
sures. Geodesic paths ensue, and convexity 
properties of the entropy along such paths 
reflect the space’s geometric features. 

Entropy’s close relation to network topol-
ogy and robustness has been noted in evolu-
tionary biology literature [3]. For example, 
Lloyd Demetrius uses Darwinian principles 

to argue that entropy is a selective crite-
rion that may account for the robustness 
and heterogeneity of both man-made and 
biological networks [3]. In our research 
program, we observe that curvature from 
network geometry is also strongly related to 
biological functional robustness. Biological 
networks seem to display a greater degree 
of robustness—as exhibited by higher cur-
vature—than random networks.

Based on this observation, we are devel-
oping analytical methods for quantitatively 
describing the functional robustness of can-
cer networks to identify targets (genes/
proteins) of opportunity. We hope that the 
analytical methods will empower treat-
ments involving targeted drug agents and 
the combination of immunotherapy with 
more traditional chemical agents. This will 
help optimize the efficacy of certain immu-
notherapy methodologies for the alteration 
or upregulation of tumor cell antigens. 
Such an approach involves the use of 
graph theoretic techniques to identify key 
cancer hubs by partitioning the network 
into dense, highly-connected subgraphs. In 
order to account for both the activation and 
inhibition properties of the various com-
plex interactions, one must extend existing 
theory to the case of directed graphs [1].

We are also studying possible mecha-
nisms of resistance. For instance, it seems 
that the inhibition of certain key pathways 
(i.e., by making them more fragile) can  
increase robustness in neighboring path-

ways and thus con-
tribute to an escape 
route from a given 
therapy. Network 
robustness may also 
indicate resistance to 
treatment, while fra-
gility reflects sensi-
tivity. The notion of 
graph curvature can 
be quite valuable in 
quantifying such phe-
nomena. Cancer cells 
exhibit fate plastic-
ity and are able to 
shift along a spectrum 
of differentiation in 
response to changes in gene expression 
caused by various genetic assaults (radio-
therapy/chemotherapy/immunotherapy) or 
environmental stresses (hypoxia, reactive 
oxygen species). The methods we propose 
can also characterize both the processes 
that lead to differentiation and targeted 
anticancer therapies that must account for 
not only the differentiation state of the 
tumor as a whole, but also the likelihood 
that drug-resistant subclones will emerge.

In summary, our work uses ideas from 
geometric network mathematics in the 
battle against cancer. Our research is part 
of the emerging field of mathematical 
oncology, and hopefully will help in the 
development of new treatments for this 
deadly disease.
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Figure 1. Network curvature, robustness, and entropy are all posi-
tively correlated. Image credit: Liangjia Zhu.

Cancer Biology
Continued from page 1

stability of this synchronous state depend 
on the particulars of how the power lines 
are connected among them? How do the 
populations of the various species in an 
ecosystem depend on the specifics of their 
feeding relationships? And so on.

Our recent study [5], in collaboration 
with Jie Sun (Clarkson University), exam-
ined whether a process can change sub-
stantially as a result of small network per-
turbations even when the overall network 
structure remains uncompromised. For 
example, consider the evolution of coop-
eration in an iterated prisoner’s dilemma 
game. Starting with a mixed population of 
cooperators and defectors, the full popula-
tion may eventually converge to coopera-
tors only or defectors only, depending on a 
small structural detail in the network (see 
Figure 1, on page 1).

To formalize the problem, one can 
abstract the networks to their graph repre-
sentations, namely as sets of nodes connect-
ed by weighted edges. Of all the networks 
with a given number of nodes and edges, 
the most interesting are those evolved or 
designed to optimize the process under 
consideration—be it speed to consensus, 
synchronization stability, or population 
diversity—where limitations in the avail-
ability of edges and nodes generally rep-
resent limitations in resource availability.2

2  See the online version of this article, or 
http://bit.ly/OptNetStruct, for an animation.

Therein lies the rub: as we optimize the 
network to enhance the relevant dynami-
cal process, this very process may become 
more sensitive to small changes in network 
structure. The removal or addition of a 
node or an edge, or even a small change 
in edge weights, can cause significant 
dynamical changes.

As a concrete example, consider net-
work processes governed by the eigenval-
ues of a coupling matrix. An especially 
important eigenvalue is the algebraic con-
nectivity—defined as the smallest non-
identically zero eigenvalue of the graph 
Laplacian matrix—which determines the 
rate of convergence to a uniform dis-
tribution when something diffuses from 
node to node, the onset of pattern-forming 
Turing instability in a network, and vari-
ous aspects of network synchronizability.

We now focus on networks that 
maximize the algebraic connectivity. As 
a function of the density of edges, this 
eigenvalue exhibits cusp-like peaks, which 
become more pronounced and numerous 
as the network size increases. In fact, there 
are infinitely many, infinitely sharp peaks 
in the limit of large networks (see Figure 
2a). Such cusps are signatures of extreme 
sensitivity to structural changes.

What if we perturb the weights of the 
edges instead of the number of edges? 
In some networks, the algebraic connec-
tivity varies linearly with the perturba-
tion strength, while in others it exhibits 
a very pronounced singular dependence 
(see Figure 2b). One can determine theo-
retically a network’s sensitivity to edge-

weight perturbations, showing in par-
ticular that sensitivity is more prevalent 
in optimal networks.

More broadly, whether the system 
exhibits sensitive dependence on network 
structure depends on the class of net-
works, type of perturbation, and dynami-
cal process. For processes governed by 
the algebraic connectivity, undirected 
networks are sensitive to edge removal 
and node addition but not to edge-weight 
perturbation, whereas directed networks 
are sensitive to edge-weight perturbation 
but not to changes in the number of edges 
or nodes (see Figure 2c).

The sensitive dependence of collective 
dynamics on network structure is analo-
gous to the butterfly effect observed in the 
phenomenon of chaos. The butterfly effect 
commonly refers to sensitive dependence 
on initial conditions, where small changes 
in the initial state lead to large changes in 
the system’s subsequent evolution. Here, 
large changes in the dynamics are instead 
determined by small changes in the sys-
tem’s parameters, which in this case define 
the underlying network. Thus, one can 
interpret this phenomenon as a parameter 
counterpart of the sensitive dependence 
observed in low-dimensional systems. 
While the effect is associated with chaos 
in low-dimensional systems, it is induced 
by optimization in network systems.3

How can sensitive dependence on the 
network structure benefit control? This 
sensitive dependence to changes is akin 
to an instability, such as those explored in 
jet design for increased maneuverability. 
Moving the center of gravity aft reduces 
an airplane’s stability, and moving it 

3  See the online version of this article, or 
http://bit.ly/NetAnalogChaos, for an animation.

past the neutral point makes the airplane 
unstable, which increases its response to a 
given action. In this partial analogy, sen-
sitivity to network structure means that 
one can manipulate the dynamics substan-
tially with small structural adjustments, 
as shown in Figure 3. That is, a sensitive 
network can be responsive to control 
even when the control actions are highly 
constrained, either with respect to the 
number of network components that can 
be actuated or the extent to which they 
can be changed. Though limited by how 
well one can resolve the cusp structure in 
practice, this property has the potential to 
lead to new control approaches based on 
modification of the network’s effective 
structure in real time.

The interplay between network 
structure, optimization, and sensitivity is 
a promising topic of future research that 
offers fundamental insights into the control 
properties of complex network systems.
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Figure 2. Sensitivity of optimal networks. The algebraic connectivity can exhibit cusp-like 
responses to changes in (a) the density of edges (unweighted perturbations) and (b) edge 
weights (weighted perturbations), as summarized in (c). Image credit: Takashi Nishikawa 
and Adilson Motter.

Figure 3. Control implication of sensitive dependence on network structure. Large changes in 
the dynamics can be induced by small adjustments in (a) density of edges or (b) edge weights. 
Image credit: Takashi Nishikawa and Adilson Motter. View an accompanying animation in the 
online version of this article, or at http://bit.ly/NetwControl. 
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Singular Perturbations in Noisy Dynamical Systems

By Charles F. Van Loan

The following is an introduction to the 
2018 John von Neumann Lecture, to be 
presented at the upcoming SIAM Annual 
Meeting (AN18) in Portland, Ore., from 
July 9-13. Look for feature articles by other 
AN18 invited speakers introducing the top-
ics of their talks in future issues.

The polygon averaging problem involves 
just about everything I like with respect 

to teaching and research in matrix computa-
tions: my favorite matrix decomposition (the 
singular value decomposition), my favorite 
matrix dimension ( ),N =2  and my favorite 
structured matrix (the “upshift matrix”). 
Even better, it evolved from an assignment 
that I gave in a MATLAB-based CS1 intro-
duction, a reminder of just how much there 
is to learn when working at that level.

Here’s the problem: suppose we have 
a random polygon 0  with vertices 
( , ),...,( , ).x y x y

n n1 1
 Assume that 0 has 

centroid ( , ),0 0  and  x
2
1=  and  y

2
1= . 

If we connect the midpoints of its edges we 
obtain a new polygon, also with centroid 
( , ).0 0  The “next” polygon 1  is obtained 
by scaling the x - and y-values so that 
 x

2
1=  and  y

2
1= . The process can 

obviously be repeated to produce a sequence 
of polygons { }.

k  The assignment required 

students to plot a reasonable number of 
k
.  

They observed something truly amazing. No 
matter how “criss-crossy” the initial poly-
gon 

0
,  the 

k
 eventually “untangle” and 

their vertices head towards an ellipse with a 
45-degree tilt (see Figure 1).

This astonished me as well, because I did 
not work out the solution before handing out 
the assignment! But that is precisely why I 
like teaching CS1 courses — they are both 
an integral part of STEM education and 
full of surprises. Teaching at the CS1 level 
allows me to build intuition for linear alge-
bra. The one-dimensional array—a vector in 
MATLAB—typically marks the first time 
that a beginner STEM student sees n  things 
as one thing. Yes, a polygon is defined by 
its n  vertices, but a student must think at the 
vector level when writing the function

[xTilde,yTilde]=PolygonAve(x,y),

which produces a new, midpoint-connected 
polygon from the old one. Behind the scenes 
is a sparse matrix-vector product, e.g.,

( ) /

( ) /

( ) /

( ) /

x x

x x

x x

x x

1 2

2 3

3 4

4 1

2

2

2

2

+
+
+
+













=













1
2

1 1 0 0

0 1 1 0

0 0 1 1

1 0 0 1

1
x

xx

x

x

2

3

4













.

My CS1 freshmen did not know enough 
linear algebra to think like this. But they 
did know enough MATLAB to watch the 
polygons untangle and ask the ultimate 
research-driven question: why?

On to the next course, a CS2 treat-
ment of introductory matrix computa-
tions. Those students did know enough 
linear algebra to understand that the 
transition from one polygon to the next 
involves a pair of matrix-vector updates. 
In particular, the x  and y  vertex updates 
involve matrix-vector products x Mx¬  
and y My¬ ,  where M I S= +( )/2 
and S  is the upshift matrix, e.g., 

 
 
   
   
         

S =













0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

.

With this notation, one can describe the 
polygon sequence’s production as two sepa-
rate instances of the power method. One 
produces the vector sequence { }M xk

orig
 and 

the other produces { },M yk
orig

 where x
orig

 
and y

orig
 house the vertices of the original 

polygon 
0
.  Because we know closed for-

mulas for the eigenvalues and eigenvectors 
of the downshift matrix S  (and hence M ), 
we can develop closed-form expressions that 
completely specify the vertices for each and 
every polygon 

k
.  Hint: they involve lots of 

sines and cosines. The CS2 polygon averag-
ing assignment revolved around building 
insight for power method convergence asso-
ciated with the matrix M .

The task then transitioned to a research 
project with Adam Elmachtoub, an under-

graduate at Cornell University at the time. 
We determined how and why the polygon 
vertices moved towards an ellipse with 
45-degree tilt. It turns out that the invariant 
subspace associated with the second- and 
third-largest eigenvalue of M I S= +( )/2 
is critical to the analysis. The semiaxes and 
45-degree tilt of the target ellipse follow 
from a singular value decomposition (SVD) 
analysis of a 2-by-2 matrix whose entries 
are simple functions of x

orig
 and y

orig
 (the 

singular values and left singular vectors of 
this 2-by-2 totally specify the tilted ellipse). 
Full details are available in the resulting 
SIAM Review paper [1].

The path from CS1 to SIAM Review was 
interesting from start to finish. We observed 
a phenomenon through experimentation and 
followed it up with a matrix-vector descrip-
tion of that phenomenon and an SVD/
eigenvalue analysis that explained every-
thing. Things do not always work out this 
nicely. Nevertheless, it is fun to think about 
the polygon averaging problem as simply 
a metaphor that speaks to the power of 
matrix-based scientific computing.

I will talk about this trajectory of our 
work at the John von Neumann Lecture at 
the 2018 SIAM Annual Meeting. 

References
[1] Elmachtoub, A.N., & Van Loan, C.F. 

(2010). From Random Polygon to Ellipse: 
An Eigenanalysis. SIAM Rev., 52, 151-170.

Charles F. Van Loan is the 2018 recipi-
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Untangling Random Polygons and Other Things

Figure 1. The progression from 0 to 
18

 to 
200

 for an n =20 example. Figure courtesy of [1].

By Paul Davis

Idealized models are commonplace in sci-
entific theory, though often they are not 

quite accurate. In some cases, the reality of 
an almost-but-not-quite-ideal model differs 
radically from the unattainable ideal model, 
like in such essential phenomena as chemi-
cal reactions. The source of the difference 
may be the effects of noise, which is fre-
quently modeled as a random perturbation 
of a deterministic dynamical system.

In his John von Neumann Lecture at 
the 2017 SIAM Annual Meeting, held 
last summer in Pittsburgh, Pa., Bernard 
Matkowsky, John Evans Professor 
of Engineering Sciences and Applied 
Mathematics at Northwestern University, 
surveyed “Singular Perturbations in Noisy 
Dynamical Systems.” As one example, he 
showed how these tools can quantify the 
radical difference between the behavior of 
a particle in a potential well and one that 
is also subject to collisions with smaller, 
lighter particles, as in Brownian motion.

In the absence of collisions, the particle is 
trapped in the potential well. However, colli-
sions with the particles comprising the medi-
um through which the Brownian particle trav-

els will eventually force it from the well, even 
if the strength of each individual collision is 
very small. The tools of matched asymptotic 
expansions (MAEs), and extensions thereof, 
can predict the expected time to exit and the 
probabilities of exit locations on the boundary 
(rim) of the well. The analysis explores the 
variation of such physical outcomes with the 
strength of an individual collision.

The dramatic difference between the ideal 
model and the one with small noise effects 
included is symptomatic of a singular per-
turbation. The cumulative effect of random 
collisions can overcome even the powerful 
pull of a potential well that is constraining 
the particle to stay in the well, though each 
collision results only in an extremely small 
movement of the particle.

Small terms with big effects call for a sin-
gular perturbation analysis. Matkowsky’s 
primary tools are MAEs and extensions 
thereof. Matching connects the so-called 
outer solution to the rapidly varying inner, 
or boundary-layer, solution. The asymp-
totics involve the limit as a measure of 
the strength of each collision—typically 
denoted by a small parameter e,—goes to 
zero. The two expansions are finite-term 
approximations in e.

Matkowsky and his colleagues have 
modified or augmented MAEs to answer 
two central questions: (1) “What is the 
mean time for a particle to escape from a 
given starting point?” and its spatial coun-
terpart, (2) “What is the mean probability 
of escape locations on the boundary given 
the particle’s starting point?” Matkowsky’s 
models are typically stochastic differential 
equations, mathematical representations 
of deterministic dynamical systems per-
turbed by small white noise.

The answer to these central questions 
are asymptotic expansions in terms of the 
small parameter e,  which depends, e.g., on 
physical quantities such as temperature, the 
height of the potential barrier that must be 
overcome to escape, Boltzmann’s constant, 
etc. Hence, the results connect the observ-
able outcomes of experiments to fundamen-
tal material properties.

A short but elegant path built on Ito 
calculus connects the stochastic dynamical 
system to two singularly perturbed ellip-
tic boundary-value problems whose solu-
tions capture the expectations of interest. 
The solution of a Poisson problem with 
zero boundary conditions gives the mean 
first passage time to the boundary, while 

the mean distribution of exit points is the 
Green’s function of a Dirichlet problem 
with given boundary conditions.

For ease of exposition, Matkowsky con-
siders the problem in one dimension on 
the interval ( , )-a b  with a b, ,>0  and 
x=0, a stable equilibrium point. The well 
corresponds to the potential V x= 2 2/ ,  so 
that the deterministic force is -x. These 
deterministic problems are singularly per-
turbed since the diffusion term modeling 
the collisions is small compared to the 
potential force. Setting e  to zero reduces 
the differential equation from second-order 
to first-order, leaving more boundary con-
ditions to satisfy than degrees of freedom 
in the outer solution.

One must account for diffusion in the 
so-called boundary layer. Since the solution 
varies rapidly there, Matkowsky stretches 
the spatial coordinate to find the so-called 
inner solution that satisfies both a second-
order equation and the boundary condition. 
Finally, he matches the two solutions so that 
they connect smoothly. The final asymp-
totic approximation is the sum of the outer 
and inner expansions less their common 
parts (so that they are not counted twice).

See Noisy Dynamical Systems on page 5
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The standard rubric of MAE fails for 
problems exhibiting boundary-layer reso-
nance, such as the one under consideration, 
because there are not enough conditions to 
uniquely determine the solution (a constant 
remains undetermined). This process yields 
a one-parameter family of possible solu-
tions, though only one can be the actual 
solution. Matkowsky and his colleagues 
have developed four approaches to rescue 
the MAE method and offer deeper insights 
into the asymptotics.

Two of the approaches impose an extra 
condition to select a single solution from 
this one-parameter family.  The first choos-
es the solution that is a stationary point of 
the Euler-Lagrange variational principle 
associated with the given boundary-value 
problem. The second replaces the variation-
al condition with an appropriate orthogonal-
ity condition. One may think of the former 
as related to the Ritz method and the latter 
as related to the Galerkin method.

A third approach constructs the bound-
ary-layer function in a different way. Rather 
than an exponent, which is linear in the 
stretched variable, Matkowsky employs 
the Jeffreys-Wentzel-Kramers-Brillouin 
(JWKB) method, which allows the expo-
nent to be nonlinear; in this case, one 
boundary-layer function can describe two 
distinct boundary layers. Finally, a fourth 
approach employs asymptotics beyond all 
orders, adding an exponentially small term 
to the outer expansion. The results of the 
four approaches are the same. Namely, exit 
occurs through the left (right) end point if 
a b b a< <( ),  and exit is equally likely to 
occur at either end point if a b= .

Noisy Dynamical Systems
Continued from page 4

delightful glimpse into the life of Leonhard 
Euler by Walter Gautschi [5].

Two measures of SIAM Review’s influ-
ence are its citations and its impact factor. 
SIAM Review is consistently among the 
top-ranked journals in applied mathemat-
ics by impact factor, and often holds the 
leading position. Many of its papers boast 
thousands of citations. Table 1 shows the 
five most-cited papers as of January 2018, 
according to Google Scholar.

The mix of older and more recent papers 
in the table shows that SIAM Review not 
only covers enduring topics but also identi-
fies new and emerging areas. Indeed, the 
June 2018 issue will present a survey on the 
very timely topic of optimization methods 
for machine learning.

SIAM Review’s first 60 volumes are a 
microcosm of applied mathematics and com-
putational science from 1959 until now. 
As such, they provide a valuable historical 
record, both in the technical content and 
the news items about early SIAM activities. 
However SIAM Review evolves over the next 

several decades, it will remain a must-read 
for those who want to keep up with innova-
tions in research and education in our field.
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With this panoply of tools, one can then 
explore the detailed behavior of such fun-
damental physical processes as chemical 
reactions and atomic migration in crys-
tals, among others. The important physical 
observable, e.g., the reaction rate, can be 
modeled as the random escape of a particle 
from a potential well. Specifically, the rate 
is half the inverse of the mean escape time.  
The factor “one half” enters because the 
particle is equally likely to exit or return to 
the well once it reaches the boundary.

Matkowsky’s lecture is available from 
SIAM either as audio or as a PDF of his 
slides.1 Alternatively, one can access it on 
Matkowsky’s departmental website.2

Since 1960, SIAM has annually recognized 
a John von Neumann lecturer for outstanding 
and distinguished contributions to the field of 
applied mathematical sciences, and effective 
communication of these ideas to the commu-
nity. The award honors John von Neumann 
(1903-1957), one of the most prolific and 
articulate practitioners of applied mathemat-
ics in the 20th century. “The von Neumann 
Lecture is particularly meaningful to me 
since four of the previous awardees were my 
teachers and inspirations,” Matkowsky said. 
“These include Kurt Friedrichs, Peter Lax, 
Jurgen Moser, and most importantly to me, 
my advisor and friend Joe Keller.”

Paul Davis is professor emeritus of math-
ematical sciences at Worcester Polytechnic 
Institute.

1 https://www.pathlms.com/siam/courses/
4988/sections/7416.

2  ht tp: / /people.esam.northwestern.
edu/~matkowsky/

Bernard Matkowsky (Northwestern University) delivered the John von Neumann Lecture at the 
2017 SIAM Annual Meeting, held last summer in Pittsburgh, Pa. SIAM photo.
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Controllability and Local Asymptotic 
Stabilizability of Control Systems
By Paul Davis

Does SIAM award a prize for balanc-
ing a walking cane better than Jimmy 

Stewart, stabilizing a baby carriage (sans 
baby), and leveling surges in the Sambre 
and Meuse rivers? Indeed it does, for 
those are but three of many examples 
illustrating the profound work for which 
Jean-Michel Coron received the W.T. 
and Idalia Reid Prize in Mathematics at 
the 2017 SIAM Annual Meeting, held in 
Pittsburgh, Pa., last summer.

Coron is currently a full professor at 
Sorbonne Université (Paris 6) and a mem-
ber of the French Academy of Sciences. The 
Reid Prize citation specifically recognized 
the importance of “the Coron return method 
for feedback stabilization of nonlinear sys-
tems using time-varying controls,” and his 
prize lecture offered an artful and entirely 
modest tour of this approach and other sub-
stantial contributions.

Coron’s work centers on two essential 
properties of control systems: controllabil-
ity, or the existence of a control strategy that 
guides a system from one specified state to 
another, and local asymptotic stabilizability, 
or the existence of a feedback law—a con-
trol depending on the state—that imparts 
asymptotic stability to the corresponding 
closed-loop system. He offered the follow-
ing example to illustrate the importance 
of stability. A satellite’s orientation can 
be controlled if it has two or more rocket 
motors. But the satellite loses local asymp-
totic stabilizability when only two motors 
are functioning, and soon drifts out of the 
desired orientation. Coron noted dryly that 
the mathematical outcome—the absence of 
a stabilizing feedback law—appears to war-
rant national news coverage if the satellite is 
sufficiently expensive or important.

Coron illustrated the breadth of his work 
with a variety of applications, both whimsical 
and practical. He opened his talk with a video 

displaying feedback control of a moving cart 
stabilizing an inverted double pendulum into 
perfect vertical rigidity.1 This was followed 
by a saucy clip from Alfred Hitchcock’s 
Vertigo in which Jimmy Stewart struggles 
to balance a vertical walking cane—a mere 
single pendulum—on his palm.2

Although Stewart’s balancing efforts 
did not inspire confidence, the rigidly-
vertical inverted double pendulum left no 
doubt as to its stabilizability. Previewing 
both the foundation of his own work and 
what he calls “Louis Nirenberg’s advice 
to depressed mathematicians: Have you 
tried to linearize?”, Coron demonstrated 
the controllability of the inverted pendu-
lum system linearized around its vertical 
equilibrium. If a linear system is control-
lable, a pole-shifting argument reveals the 
presence of a linear feedback control that 
renders its zero state globally asymptoti-
cally stable. From this point, one can argue 
that a nonlinear system with a controllable 

linearization is both small-time 
locally controllable (Figure 1 
illustrates this notion of con-
trollability) and locally asymp-
totically stabilizable. Stewart’s 
problem with balancing a cane 
vertically is entirely his own.

Unfortunately, a continuous 
feedback law cannot locally 
stabilize all small-time locally 
controllable systems. Coron’s 
methodical dissection by exam-
ple cleanly separated the two 
properties—controllable and 
stabilizable—and demonstrated 
the advantage of time-dependent 
feedback for stabilization.

A baby carriage is an example 
of a controllable system that can-
not be stabilized by a continu-
ous feedback law. This system 
is small-time locally control-
lable at the origin, but cannot be 
asymptotically locally stabilized 

because it does not satisfy Roger Brockett’s 
necessary condition for local asymptotic 
stabilizability. However, a time-dependent 
feedback law (see Figure 2) can restore 
local asymptotic stability of the carriage. 
Coron cautioned that his analysis is limited 
to the carriage without a baby; with a baby, 
he could not guarantee small perturbations!

Similar phenomena manifest themselves 
in both a satellite with less than three func-
tioning thrusters and a quadcopter confined 
to a plane (also known as a slider). Both 
eventually crash because they are small-
time locally controllable but not locally 
asymptotically stabilizable by means of 
continuous feedback laws. Again, time-
dependent feedback laws save the day.

Motivated perhaps by his well-placed 
admiration for Nirenberg, many of Coron’s 
theoretical contributions can be seen as 
remedies for the gaps and limitations of lin-

1  https://youtu.be/gZgDWTtp2qs
2  https://youtu.be/iiEvqpqQ4fU

earization. His eponymous 
return method, for instance, 
avoids a potentially embar-
rassing failure: what if one 
could say nothing about the 
controllability of a nonlin-
ear system near an equilib-
rium point when the linear-
ized version is not control-
lable? Lie brackets offer 
an alternative tool in finite 
dimensions, but can fail for 
many important partial dif-
ferential equations (PDEs).

Coron’s return method 
examines the nonlinear sys-
tem when it is linearized 
around nontrivial trajecto-
ries that begin and end at the 
problematic equilibrium and 
for which the linearized system is control-
lable. One can retrieve local controllability of 
the nonlinear system via an inverse mapping 
theorem argument (see Figure 3). With such 
trajectories in hand, the tools of linear control 
suffice to show that systems like the baby 
carriage are indeed controllable.

Three quick visuals, two of them quite 
unassuming, summarized Coron’s substantial 
achievements in understanding the control of 
PDEs: an animation showing rapid attenua-
tion of one-dimensional shallow water waves 
in a pool by controlled motion of hydraulic 
gates at the two ends of the pool3 (see Figure 
4); a photo of gates on the Meuse River mov-
ing according to feedback laws constructed 

by Coron and his colleagues (see Figure 5, 
on page 1); and a cross-sectional view of the 
control devices themselves — an adjustable 
sluice gate and its partner, an adjustable spill-
way (see Figure 6).

These examples help describe Coron’s 
success in controlling the Saint-Venant 
shallow water equations. He modestly drew 
the audience’s attention to Adhémar Jean 
Claude Barré de Saint-Venant’s derivation 
of those PDEs at the age of 74, rather than 
to his own subsequent accomplishments 
with them. And Coron barely mentioned his 
other successes with such fundamentals of 
fluid mechanics as the Euler equations and 
the Navier-Stokes equations.

3  https://youtu.be/9y_qniyxaig

Mirroring the breadth of his analytic con-
tributions, the practical reach of Coron’s 
research goes far beyond movie clips and 
animations of suppressed waves. He and his 
collaborators have implemented a stabilizing 
control strategy for the Sambre and Meuse 
rivers in Belgium. Coron began working on 
this subject in 2003, and his feedback laws 
were implemented a few years later on the 
Sambre and only recently on the Meuse.

Coron’s Reid Prize presentation is avail-
able from SIAM as slides with synchronized 
audio or as a PDF of slides only.4

The Reid Prize began with awards by 
SIAM in 1994, 1996, and 1998, all funded 

by John Narcisco, neph-
ew of Idalia Reid. Since 
2000, SIAM has awarded 
the prize annually with 
support from a bequest 
from Idalia Reid in mem-
ory of her late husband, 
William T. Reid. W.T. 
Reid worked in differen-
tial equations, the cal-
culus of variations, and 
optimal control, sharing 
naming rights for the 
workhorse Gronwall-
Reid-Bellman inequality. 
He held faculty appoint-
ments at the University 
of Chicago, Northwestern 
University, the University 
of Iowa, the University of 

Oklahoma, and the University of Texas. 
He was an important figure in the optimal 
control community and a beloved mentor 
to his students.5

Paul Davis is professor emeritus of math-
ematical sciences at Worcester Polytechnic 
Institute.

4 https://www.pathlms.com/siam/courses/
4988/sections/7432 

5  John Burns, a student of Reid’s and 
the 2010 recipient of the Reid Prize, pro-
vided a personal account entitled “William 
T. and Idalia Reid: His Mathematics and Her 
Mathematical Family” as his Reid Lecture. A 
PDF of his lecture and slides with synchronized 
audio are available from SIAM at https://www.
pathlms.com/siam/courses/3609/sections/5154.

Figure 6. A sluice gate and spillway, control devices that Coron and his colleagues use to rapidly 
stabilize the water level on the Sambre and Meuse rivers. Figure credit: Georges Bastin.

Figure 1. Coron’s illustration of small-time local control-
lability. The nonlinear control system has an equilibrium 
at ( , );y u

e e
 the initial state y 0 and the target state y1 

are very close to y
e
; the state remains close to y

e
; the 

control remains close to u
e
; and the time is small. Figure 

credit: Jean-Michel Coron.

Figure 2. The idea underlying Coron’s return method to stabilize the empty baby carriage—and 
more generally, driftless control systems—is to construct a preliminary T-periodic feedback 
u t y( , ),  leading to T-periodic trajectories with controllable linearizations. Using these lineariza-
tions, one can then assemble a T-periodic perturbation u t y v t y( , ) ( , )+  of u t y( , ), such that the 
trajectories are now converging to 0. Figure credit: Jean-Michel Coron.

Figure 3. The idea underlying Coron’s return method for assess-
ing controllability of nonlinear systems whose linearization about 
the equilibrium of interest is not controllable: linearize instead 
about a nearby trajectory (red) that leaves from and returns to 
the troublesome equilibrium. Figure credit: Jean-Michel Coron.

Figure 4. Water flows below the sluice gates (see Figure 6 for 
schematic). The back of the figure shows the gates moving up 
and down according to feedback laws created by Jean-Michel 
Coron and his colleagues. In the front of the figure, the gates are 
motionless. A much faster convergence to the desired height of 
the water, represented by the red line, is achieved by feedback 
laws. Image credit: Jonathan de Halleux.
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Demystifying Chance: Understanding 
the Secrets of Probability

Ten Great Ideas about Chance. By 
Persi Diaconis and Brian Skyrms. Princeton 
University Press, Princeton, NJ, November 
2017. 272 pages, $27.95.

For the better part of a decade, Persi 
Diaconis and Brian Skyrms taught a 

course at Stanford University on the history, 
philosophy, and common foundations of 
probability and statistics. With the passage 
of time, they realized that the story they 
were telling would likely be of interest to 
a larger audience. Thus, Ten Great Ideas 
about Chance was born.

As the title suggests, the book consists 
of 10 chapters exploring 10 significant 
ideas about chance. An appendix offers 
a tutorial on probability and extensive 
chapter notes, an index, and an “annotated 
select bibliography.” The latter comprises 
10 numbered sections listing 41 seminal 
books and papers, with brief commentary 
on each. The entire book can be considered 
an extended digest of this list.

Some chapters—such as the fifth, con-
cerning the mathematics of probability—
are more or less obligatory in a book of 
this nature. After a few words about finite 
probability and a brief exposition of Borel 
and Cantelli’s proof of the strong law of 
large numbers, the authors describe the 
sixth of Hilbert’s 23 challenge problems. 
In this problem, Hilbert proposed that those 
physical sciences wherein mathematics—
especially the theories of probability and 
mechanics—plays a significant role be 
placed on a sound axiomatic basis. He was 
apparently thinking of Ludwig Boltzmann’s 
theory of gases, in which a swarm of 
hard spheres moves about in a rigid con-

tainer; the spheres rebound off one another 
and the surrounding walls without losing 
momentum. Can one demonstrate, given 
a plausible prior distribution 
on the spheres’ initial positions 
and momenta, that low-entropy 
states are likely to evolve into 
high-entropy states?

Little came of Hilbert’s suggestion until 
1933, when Andrei Kolmogorov published 
his groundbreaking 
book [1] on the foun-
dations of probability 
theory. Kolmogorov 
did three important 
things: used mea-
sure theory to place 
probability on a 
firm mathematical 
foundation, formal-
ized the previously 
nebulous concept 
of conditional prob-
ability, and proved 
an extension theorem 
that shows how an 
infinite-dimensional 
stochastic process 
can be built up from 
a consistent family 
of finite-dimensional 
probability spaces. 
His work led to an 
almost immediate 
flowering of prob-
ability theory that continues to this day.

Equally indispensable to Diaconis and 
Skyrms’ purpose is a chapter on inverse 
inference, beginning with the question 
that concerned Reverend Thomas Bayes: 

after a coin of unknown bias has come 
up heads n  times in N n>  trials, what 
are the odds that the probability p  of its 

occurrence in a single subse-
quent trial lies within a given 
subinterval of [0,1]? Bayes 
solved this problem on the 
assumption that p  is equally 

likely to lie anywhere in the unit interval 
before trials begin. Laplace later revisited 

Bayes’ problem and 
arrived at his famous 
“rule of succession,” 

p
est

n

N
=

+

+

1

2
.  For 

large n  and N ,  this 
scarcely differs from 
the naïve estimate 
n

N
.  Modern critics 

have argued that, for 
an ordinary-looking 
coin, probabili-
ties near the middle 
of [0,1] seem more 
likely than those 
at either extreme. 
Indeed, postulating 
a prior beta distribu-
tion B x( ; , )α β  on p  
shows that the same 
n  heads in N , trials 
leads to an updated 
beta distribution 
with parameters
 a+n and b+ −N n. 

Hence, pest
n

N
=

+

+ +

α

α β
,  which again 

approximates 
n

N
 for large n  and N .

Bayes’ theorem may present a valid 
rebuttal to philosopher David Hume’s 1748 

essay, “An Enquiry Concerning Human 
Understanding,” which criticized conclu-
sions drawn from records of past events. 
As investment advisors are honor-bound 
to warn potential customers that “past per-
formance need not be indicative of future 
results,” predictions predicated on the 
assumption that the future will resemble the 
past are inherently risky and should not be 
acted upon without prior assessment of this 
source of risk. Hume also pointed out that 
randomness does not exist in nature (or did 
not seem to until quantum phenomena came 
to light) because in his day people believed 
that knowledge of Newton’s laws, together 
with the positions and momenta of every 
particle in the universe at one single instant, 
determined the entire future.

Another obligatory chapter concerns 
frequentism—the leading alternative 
to Bayesian inference—and the related 
notion that probability is a state of mind 
rather than a physical attribute observable 
only through repeated trials. The authors 
describe attempts by John Venn in 1866 
and Richard von Mises in 1919 to base 
a coherent theory of probability on the 
premise that frequency testing alone can 
determine probabilities. Venn and Mises 
also tried to expose the fallacy in Johann 
Bernoulli’s argument that his weak law of 
large numbers makes it possible to deter-
mine the chance that a specific outcome 
will be forthcoming on a single trial, given 
the results of a sufficient number of previ-
ous trials. The authors concede that it is 
a subtle fallacy, yet one that notables like 
Borel, Kolmogorov, Paul Levy, and Andrey 
Markov have failed at times to avoid.

BOOK REVIEW
By James Case

Ten Great Ideas about Chance. By Persi 
Diaconis and Brian Skyrms. Courtesy of 
Princeton University Press.

The bright strip in Figure 1 is illuminated 
by the incoming parallel beam reflect-

ed from the inner surface of the cup. The 
rays do not focus at a single point, as they 
would if the wall were parabolic. Instead, 
they “focus” at a curve, with the cusp at the 
focus of the osculating parabola.

Figure 2 sheds some light on the situa-
tion: the density of reflected rays spikes at 
the envelope, referred to as the caustic. This 
explains the caustic’s brightness.

Remarkably, this caustic is an epicycloid 
— more precisely, the path of a particle on 
the rim of the wheel rolling without sliding 
on another wheel, with a 1 2:  ratio of radii 
(see Figure 3). Because of its vaguely kid-
ney-like shape, this epicycloid is referred to 
as a nephroid (kidney=νεϕρo).

The precise statement is the following. 
For every ray from a pencil of parallel rays 
striking the inside of a circular mirror of 
radius R,  the reflected ray is tangent to 

the nephroid generated by rolling a circle 
of radius R/4  on the stationary circle of 
radius R/2  concentric with the mirror. 

The cusps of this nephroid lie on the ray 
passing through the center of 
the mirror.

To restate this result, imagine 
walking around the circle with 
constant angular velocity 1 and 
twirling a baton in the horizon-
tal plane with angular velocity 
2. The envelope of the resulting family of 

lines is a nephroid.

Proof of the Claim
Consider the neph-

roid generated by roll-
ing the circle, as seen 
in Figures 3 and 4; T  
is the point tracing out 
the nephroid. We must 
prove that PT  is the 
reflected ray, i.e., that

			 
 ∠ =∠APO OPT, 	
		

(1)
   	

and that PT  is tangent 
to the nephroid.

Note that arclength( )CS =
arclength( )CT  due to the non-slip con-
dition, so that

    
         ∠ = ∠COS CQT

1

2
,

because the radii are in the 1 2:  ratio. 
In turn, ∠ = ∠CQT CPT2 ,  since these 
angles subtend the same arc. This proves (1).

Why is TP  tangent to the nephroid? As 
the smaller circle rolls on the larger one, the 
velocity vT CT^ ,  because C  is the rolling 
wheel’s instantaneous center of rotation. But 
TP CT^ ,  since CP  is a diameter. Thus, 
v
t
TP ; TP  is indeed tangent. 



On a related note, if the source of light 
lies on the circle, then the resulting caustic is 

a cardioid, i.e., the epicycloid 
generated by the circle rolling 
on another circle of equal radi-
us (see Figure 5). This proof is 
the same as the one above.

To conclude, here is a 
small challenge: show that the 

length of the thick line in Figure 5 is inde-
pendent of the choice of B,  namely

       
   				     

(2)          AB BT TC R+ + =
8

3
,

R  being the radius of the mirror. Assuming 
that (2) holds, setting B A=  causes the 
first two terms to vanish, and we con-
clude that the cardioid’s length is 16 3R/ .

The figures in this article were provided by 
the author.

Mark Levi (levi@math.psu.edu) is a pro-
fessor of mathematics at the Pennsylvania 
State University.

Focusing on Nephroids

Figure 1. Imperfect focusing creates a caustic.

Figure 2. The density of reflected rays 
spikes at the caustic. This caustic is half of 
the nephroid in Figure 3.

Figure 3. The nephroid: an epicycloid with a 
1 2:  ratio of radii.

Figure 4. Proving the tangency of reflected 
rays to the nephroid, which is traced by 
point T  on the rolling wheel. The starting 
position of T  is S.

Figure 5. The cardioid—an epicycloid with  
1 1:  ratio—is the caustic created by the 
source of light lying on the circular mirror.

MATHEMATICAL 
CURIOSITIES
By Mark Levi

See Demystifying Chance on page 9



8 • April 2018 SIAM NEWS 

The MathWorks Math Modeling (M3) 
Challenge—a competition that encour-

ages participants to use critical thinking 
and computational methods to quantify 
open-ended, real-world problems—poses 
prominent, multi-faceted issues to U.S. high 
school juniors and seniors, who compete on 
teams of three to five. To make the contest 
accessible to all participants regardless of 
their prior exposure to mathematical model-
ing, SIAM is constantly on the lookout for 
interesting problems that enable teams to 
find data and implement approaches with 
varying degrees of simplicity or complexi-
ty. Exposing thousands of future leaders and 
innovators to important topics in applied 
mathematics is among SIAM’s priorities.

Judges for the contest—who numbered 
about 130 this year—anticipate the com-
mendable creativity and insights displayed 
by students in their solution papers, moti-
vated by a passion for mathematical appli-
cations and a shot at winning part of the 
$100,000 in scholarship awards funded by 
MathWorks. 912 teams—comprised of 4,175 
high school juniors and seniors—submitted 
solution papers in the 2018 Challenge, each 
vying for one of 40 monetary prizes.

The 2018 Challenge problem focused 
on food insecurity. It posited that “ugly,” 
uneaten, leftover, and excess food waste 
from households, cafeterias, restaurants, 
and grocery stores is not “trash,” but rather 
wasted food. Could a community feed 
those experiencing food insecurity by 
thoughtfully repurposing food squandered 
by others? How do we quantify the amount 
of food wasted annually? How can we redi-
rect wasted food to benefit those in need? 
The problem posed a few specific house-
hold scenarios—single parent, family of 

four, etc.—on which to demonstrate mod-
els (though students could certainly utilize 
their own household structures), and asked 
for model-based strategies to repurpose the 
most food for the least cost.

Karen Bliss (Virginia Military Institute), 
Katie Kavanagh (Clarkson University) and 
Ben Galluzzo (Shippensburg University), 
who comprise the Challenge’s problem 
development committee, crafted the 2018 
problem, entitled “Better ATE than Never: 
Reducing Wasted Food” (see sidebar). 
Since 2012, the committee has formu-
lated or refined submitted problem ideas, 
enabling the contest to demonstrate the use 
and value of mathematics in computation-
based decisions while bringing visibility 
and novel thought to relevant, timely, and 
newsworthy topics. To ensure that the ques-
tions are authentic and realistic, the group 
often recruits and collaborates with profes-
sionals with expertise in the underlying 
area. The U.S. Department of Agriculture’s 
Economic Research Service weighed in on 
this year’s problem. 

We asked problem development com-
mittee members: what motivated this year’s 
problem on food waste?

Karen Bliss
We felt very strongly that this year’s 

question should have a local tie-in, so par-
ticipants felt connected to the topic. In addi-
tion to understanding the mathematics of it 
all, we wanted students to think about how 
they could apply modeling to a community 
to which they belong right now, be it their 
school, town, or state. We are hoping that 
students see how they can utilize applied 
mathematics in very concrete ways to assist 
those in need around them. 

I was surprised by the volume of data 
available regarding food production, food 
consumption, and the severity of food inse-
curity. It became clear that researchers are 
actively studying this very worthy topic, 
and it will certainly be exciting to see how 
teams tackle the complex questions we 
posed. We wanted to introduce available 
data with the problem, since last year’s 
Challenge question—which included data 
for students to grapple with as they did their 
modeling—was well received. 

While modeling is certainly distinctly 
different from statistics and/or simply data-
fitting with appropriate lines and curves, we 
hope that the provided data gave students a 
sense of what factors they might consider 
when building their models. 

I cannot wait to hear how many teams 
show their work to their schools, towns, etc., 
to raise awareness for this cause and inspire 
action. That will be incredibly powerful.

Katie Kavanagh
My mathematical area of research is 

optimization, so my mind is programmed 
to look for ways to increase efficiency. I 
also have a decent-sized garden, so I care 
deeply about the time, labor, and resources 
that go into planting a seed and fostering 
it to grow into nourishment. Furthermore, 
I live in a rural, poverty-stricken region of 
upstate New York, where over 80 percent 
of the children in most of our school district 
are eligible for reduced or free lunch; it is 
the only daily meal some of them get. All 
of these factors motivated me to focus a 
problem on this critical subject.

Mathematically, modeling human behav-
ior is complex and interdisciplinary, with 
a wide range of challenges. What factors 
and human characteristics lead one person 
to toss something out and another to make 
soup from their leftovers? What is the food 
industry’s tipping point to produce the 
quantity that is actually needed and distrib-
ute it accordingly, so that the least possible 
amount winds up in a landfill? Luckily, 
certain initiatives provide data that could 

be useful in answering these questions. 
Mathematics can play a significant role 
in quantifying the amount of unconsumed 
food versus the amount that is actually 
grown, and designing and analyzing strate-
gies to repurpose these resources. These are 
the driving ideas behind these questions; 
how much is wasted, how many are hun-
gry, and can we close the gap? How do we 
model human behavior when it comes to 
food choices? How can we make changes?

Although it seems like this is a problem 
for agricultural economists and social sci-
entists, I genuinely believe that talented 
and motivated high school students will 
come up with some innovative approaches. 
They see the behavior of their peers in 
the cafeteria and observe how their fam-
ily prepares meals and shops for grocer-
ies. They may even stop and think about 
these actions the next time they decide to 
toss their brussels sprouts in the garbage. 
Students have access to a wide range of 
data and computational tools with which 
to create meaningful mathematical models, 
but their personal experiences and com-
munities will also play a key role in their 
results. It may not even be upper-level 
mathematics content that leads to the most 
sophisticated model, though a successful 
solution will require innovation and a will-
ingness to dive into the problem. 

I am so excited to see what they come up 
with, and hope that they feel as passionately 
about the topic as I do.

Ben Galluzzo
The dining hall at Shippensburg 

University went “tray-less” a number of 
years ago, and noted a significant decrease 
in uneaten food as a result. Likely due 
to my knowledge of this data, as well as 
historical reminders that one should fin-
ish a meal with a “clean” plate, I assumed 
that “leftover” or uneaten prepared food 
accounted for most food waste. 

However, two events brought the mag-
nitude of food waste into perspective, so 
much so that they convinced me this was 
a problem worth investigating. First, Katie 
shared a National Geographic article1 that 
highlights the overwhelming amount and 
types of perfectly fresh, unprepared food 
that is squandered via the supply chain. 
The reported numbers—2.9 trillion pounds 
of food, or about a third of global food 
production—are staggering. Soon after 
reading this article, I spent a day volun-
teering at the Central Pennsylvania Food 
Bank, sorting produce for redistribution 
to agencies across the region that provide 
assistance to food-insecure individuals. It 
was simultaneously surprising and disturb-
ing to see and touch hundreds of pounds 
of completely fresh, remarkably “normal” 
produce—such as green peppers, potatoes, 
and eggplants—that had been identified 
as unsellable to the general public and, 
without intervention, would have been 
thrown away. Following this revelation, a 
conversation with Food Bank employees 
about their efforts to redistribute food, 
including produce and nonperishable items 
found in their warehouse, reinforced to me 
the nontrivial, resource-heavy work that 
they perform on a daily basis. I left this 
experience motivated to find more data on 
the topic of food waste and truly interested 
in exploring ways to redistribute food. 

Who better to tackle this issue than moti-
vated, talented high school students who 
will likely face firsthand some of the conse-
quences of food insecurity in the decades to 
come? I look forward to reading about how 
participants choose to use mathematical 
modeling to approach this important topic.

1  https://www.nationalgeographic.com/
magazine/2016/03/global-food-waste-statistics/

Quantifying, Reducing, and Repurposing Wasted Food 
M3 Challenge Problem Writers Discuss this Year’s Question

Better ATE than Never: 
Reducing Wasted Food

The Food and Agriculture 
Organization of the United 
Nations reports that approximately 
one third of all food produced in 
the world for human consumption 
every year goes uneaten. As an 
example, perfectly good produce 
that is considered misshapen or 
otherwise unattractive is regularly 
discarded before reaching your 
grocery store shelves. The prob-
lem is even more pronounced in 
the U.S., where the Environmental 
Protection Agency (EPA) esti-
mates that more food reaches 
landfills and incinerators than 
any other single material in our 
trash. Uneaten food also wastes 
resources (water, fertilizer, pesti-
cides, land, etc.) used in food pro-
duction. At the same time, it has 
been estimated that over 42 mil-
lion Americans are food-insecure 
and could take advantage of all of 
this squandered food, frequently 
described as “wasted food.”

1. Just Eat It! Create a mathemati-
cal model that a state could use 
to determine if it could feed its 
food-insecure population using the 
wasted food generated in that state. 
Demonstrate how your model 
works for Texas; you may choose 
to use provided data.

2. Food Foolish? Personal choices 
when it comes to food consump-
tion primarily occur at the grocery 
store, school cafeteria, restaurants, 
and at home. Create a mathematical 
model that can be used to deter-
mine the amount of food waste 
a household generates in a year 
based on their traits and habits. 
Demonstrate how your model 
works by evaluating it for the fol-
lowing households (provided data 
may be helpful):
• Single parent with a toddler, 
annual income of $20,500
• Family of four (two parents, two 
teenage children), annual income 
of $135,000
• Elderly couple, living on retire-
ment, annual income of $55,000
• Single 23-year-old, annual income 
of $45,000.

3. Hunger Game Plan? 
Communities are starting to rec-
ognize and address the opportuni-
ties associated with repurposing 
potentially wasted food. Think of 
a community that you belong to 
(your school, town, county, etc.) 
and use mathematical modeling to 
provide insight on which strategies 
they should adopt to repurpose the 
maximal amount of food at the 
minimum cost. In particular, quan-
tify the costs and benefits associ-
ated with your strategies.

Your submission should include a one-
page executive summary with your find-
ings, followed by your solution paper 
— for a maximum of 20 pages. If 
you choose to write code as part of your 
work, please include it as an appendix; 
those pages will not count towards your 
20-page limit.
Interested in seeing more? View 
archives  dating back to 2006 of 
each year’s Challenge problem, out-
standing solutions, judge perspec-
tives, etc., on the Challenge website: 
http://M3Challenge.siam.org.
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By Mark Newman

On the occasion of SIAM Review’s 60th 
volume, the author of the journal’s most 
popular article offers insight as to why the 
paper continues to spark so much interest.

Many systems of scientific significance 
can be represented as graphs or net-

works — sets of nodes or vertices joined 
in pairs by edges. Examples include the 
internet; the World Wide Web; social, pro-
fessional, and personal networks; road, rail, 
and airline routes; metabolic networks; food 
webs; and the power grid. In each of these 
cases, the network’s structure can substan-
tially impact system behavior. For instance, 
the flow of data traffic online depends 
strongly on the internet’s network topology. 
How long will it take for data to travel from 
one part of the network to another? Are there 
bottlenecks or weak points in the structure? 
Would certain changes improve the sys-
tem’s performance or stability? The answers 
to these questions depend on the specific 
shape that the network takes.

Mathematicians have long studied 
graphs and networks in the context of 
graph theory, a branch of discrete math-
ematics that has yielded many beautiful 
formal results about network structure. 
Recent research, however, differs from 
traditional graph theory in its focus on the 
structure and properties of empirical net-
works as they appear in the real world. As 
a new area of applied research—sometimes 
dubbed “complex networks” or “network 
science”—this field has been driven in part 
by the increasing ubiquity of detailed data 
sets describing network structures across a 

range of different areas of science and tech-
nology, as well as the widespread availabil-
ity of inexpensive and powerful computers 
with which to analyze them. It focuses on 
the development of novel mathematical 
theory and methods to analyze, quantify, 
and understand real-world networks.

Beginning in the 1990s, research on com-
plex networks quickly identified a number 
of central issues important to the under-
standing of network phenomena that are 
still relevant today. These issues include the 
following: the construction and solution of 
formal models of network structure, such 
as random graphs and models of network 
growth; metrics that quantify specific struc-
tural features of networks, like path lengths, 
correlations, clustering coefficients, sub-
graph densities, and centrality measures; 
methods for quantifying large-scale struc-
ture in networks, particularly community 
structure; spectral graph theory and random 
matrix methods; networks’ resilience to 
failure or attack; and processes taking place 
on networks, such as the spread of diseases 
in human populations or the flow of infor-
mation across the internet.

By 2003, the field’s focus had coalesced 
to the point where a survey of the math-
ematical developments was needed, and 
SIAM Review invited me to contribute an 
article.1 The timing was ideal, coinciding 
with rapidly-increasing interest in networks 
across the mathematical sciences, and the 
article received a record number of citations 
in the years following its publication.

The field of network science has 
since grown to encompass thousands of 

1  http://epubs.siam.org/doi/abs/10.1137/
S003614450342480

researchers, with new papers appearing 
every day. Even after 15 years, the topics 
covered in the original review garner a sig-
nificant amount of research attention, and 
the paper continues to be highly cited. But 
many new developments have emerged as 
well, including the study of dynamic net-
works (those that change over time), the 
development of new algorithmic and ana-
lytic methods for network data (including 
statistical inference and spectral methods), 
the study of multilayer and multiplex net-
works (those with multiple different types 
of edges), and theories of dynamical sys-
tems and processes occurring on networks 

(such as flow processes, synchronization, 
and cascading dynamics).

The field remains extremely active, 
with a number of new journals devoted 
to network topics and numerous confer-
ences attracting large numbers of research-
ers, including the SIAM Workshop on 
Network Science, held each year in con-
junction with the SIAM Annual Meeting. 
This year’s workshop2 will take place on 
July 12 and 13 in Portland, Ore.

Table 1 displays the 10 most-downloaded 
SIAM Review articles, all of which are free-
ly accessible through the end of the year. 
This information is also available online.3

Mark Newman received a Ph.D. in the-
oretical physics from the University of 
Oxford and has held positions at Cornell 
University, the Santa Fe Institute, and the 
University of Michigan. He is currently the 
Anatol Rapoport Distinguished University 
Professor of Physics at Michigan and a 
professor in the university’s Center for the 
Study of Complex Systems. His research 
focuses on mathematical theory and meth-
odology surrounding the structure and 
function of empirically-observed networks, 
such as computer networks, social net-
works, and biological networks.

2    http://www.siam.org/meetings/ns18/
3  http://epubs.siam.org/page/sirev_

celebrates_60_volumes

SIAM Review’s Top-downloaded Paper 
Spotlights a Rapidly-growing Field

A scientific collaboration network. The nodes represent scientists and the links represent col-
laborations among them. Image credit: Mark Newman. 

Table 1. The 10 most downloaded SIAM Review articles. 

Demystifying Chance
Continued from page 7

The first of the book’s 10 great ideas is 
the simple realization that chance can be 
measured. The authors reference Gerolamo 
Cardano’s advice to gamblers and Jacob 
Bernoulli’s correspondence with Blaise 
Pascal, Pierre de Fermat, and Christiaan 
Huygens, along with his proof of the weak 
law of large numbers, as early evidence 
of this fact. To be fair, the ancient Greeks 
and Romans were well aware of chance. 
Yet they tended to attribute the outcomes 
of wars, races, courtships, and other con-
tested events to interventions of the gods 
or deeds of the so-called “Fates,” depicted 
as a trio of women. It remains a mys-
tery that thinkers as perceptive as Euclid, 
Plato, and Archimedes never enunciated 
a law of large numbers or formulated a 
theory of discrete probability.

Diaconis and Skyrms’ second great idea 
is, unsurprisingly, that one can infer prob-
abilities in situations where a priori esti-
mates are either unavailable or unreliable. 
For example, if a coin turns up 17 heads 
in 50 tosses, it is only natural to suppose 

that (i) the coin is unfair and (ii) the likeli-
hood of a head on the next toss is closer 
to 1 3/  than 1 2/ .  The authors cite Bruno 
de Finetti, Leonard “Jimmie” Savage, and 
Frank P. Ramsey as developers of the 
intuitive notion of subjective probability. 
The basic idea, which differs from the 
older concept of frequentism, is that prob-
abilities can be inferred from a “coherent 
set of beliefs” concerning the possible out-
comes of a particular chance event, such as 
a horse race or boxing match.

A set of beliefs is coherent if it is 
impossible to construct a “Dutch book” 
predicated on them. A Dutch book is a 
collection of wagers with positive overall 
expectation. For instance, if both entries 
in a two-horse race go off as 2-1 favorites, 
a Dutch book could consist of a $1 bet 
on each horse. The winning ticket would 
then return $3 while the loser would 
return nothing. The resulting $1 gain is an 
expectation rather than a guarantee, since 
a dead heat would return only the $2 held 
by the track in escrow.

Amos Tversky and Daniel Kahneman 
advanced an equally great idea: that peo-

ple are remarkably inept in their responses 
to chance events. Chapter three features a 
careful analysis of the famous Allais para-
dox in light of Savage’s axioms of ratio-
nal decision-making. Economist Maurice 
Allais asked a number of respondents to 
choose between payoff schemes A and 
B in two quite similar lotteries. Whereas 
respondents constrained by Savage’s 
seemingly self-evident “axiom of inde-
pendence” would choose B in both cases, 
Allais found that many flesh-and-blood 
respondents—including both Diaconis 
and Skyrms—chose B in the second case 
but A in the first. The experiment has 
been repeated multiple times worldwide, 
with quite similar results.

Shortly after Allais published his find-
ings, Daniel Ellsberg—who later released 
the Pentagon Papers and became an activ-
ist against the Vietnam War—proposed a 
series of problems intended to illustrate 
the difference between choices involv-
ing risk, where objective probabilities are 
known, and uncertainty, where they are 
not. Since then, Kahneman and Tversky 
have described numerous situations in 

which the psychology of chance conflicts 
with its logic. The authors suggest that 
training in decision theory might improve 
real-world outcomes, especially in medical 
decision-making.

The book’s final four chapters are at 
once more mathematically-challenging 
and philosophically-probing than their 
predecessors. The final chapter on infer-
ence seems to summarize all that modern 
scholarship has added to Hume’s timeless 
classic on human understanding.

Ten Great Ideas about Chance is not a 
book to be read in bed at night. It should 
be attacked with paper and pencil at hand, 
and a determination to backtrack early 
and often. The extra effort will prove 
rewarding to almost any reader.

References
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The High-Performance Geometric Multigrid: 
An HPC Performance Benchmark
By Samuel Williams, Mark F. 
Adams, and Jed Brown

The High-Performance LINPACK 
(HPL) Benchmark is the most widely-

recognized metric for ranking high-perfor-
mance computing (HPC) systems. It rose 
to prominence in the early 1990s, when its 
predicted ranking of a system correlated 
with the system’s efficacy for full-scale 
applications. Computer system vendors 
sought designs that would increase HPL 
performance, which in turn improved over-
all application behavior.

Unfortunately, this is no longer the 
case; in fact, the opposite is now true. 
Although the HPL Benchmark continues 
to be an effective proxy for applications 
based on dense linear algebra, it has lost 
its proficiency as a proxy for many appli-
cations relevant to the HPC community. 
HPL rankings of computer systems, which 
utilize work-optimal algorithms with high 
bandwidth and low latency requirements, 
are not well-correlated to real applica-
tion performance nowadays. Motived 
by HPL’s increasing inapplicability, the 
High-Performance Geometric Multigrid 
(HPGMG) incorporates machine sensitivi-
ties that correlate well with the sensitivities 
of HPC applications.

HPGMG complements both HPL and 
the new High-Performance Conjugate 
Gradients (HPCG) Benchmark1 [2], with 
more stress on the memory system and net-
work fabric than HPL and HPCG respec-
tively. The TOP500 list is currently adding 
new rankings for HPCG and HPGMG to 
complement the venerable HPL.

HPGMG Design Principles
The following design principles of 

HPGMG are discussed in the HPGMG 1.0 
whitepaper [1]:

A benchmark must reflect improvements to 
computer systems that benefit our applications, 
and is essential for documenting future improve-
ments to HPC systems. The metric must be 

1  https://sinews.siam.org/Details-Page/
the-high-performance-conjugate-gradients-
benchmark

designed so that, as we optimize metric results for 
a particular platform, the changes will also lead 
to performance improvements realized by real 
applications. Any new metric we introduce must 
satisfy a number of requirements:

• Accurately reflect the characteristics of con-
temporary high-efficiency algorithms.

• Accurately reflect the principle challenges 
of future hardware design — a balanced combi-

nation of memory bandwidth, interconnect per-
formance (both for small and large messages), 
computational performance, and reliability. It 
should not be possible to “cheat” the benchmark 
by over-provisioning the hardware in any one 
of these areas. A machine designed for the sole 
purpose of performance on our metric should 
result in a “pretty good” machine for scientific 
and engineering applications.

• The absolute improvements in this bench-
mark should ultimately be reflective of perfor-
mance improvements realizable in real applica-
tions, which are occurring at a much slower rate 
than improvements in peak FLOPs.

• It must be able to scale through many orders 
of magnitude improvement of hardware storage 

Table 1. A compressed sampling of the High-Performance Geometric Multigrid (HPGMG) list of the world’s largest supercomputers, as of November 2017.

NSF Releases Details of Proposed Fiscal Year 2019 Budget
By Eliana Perlmutter and      
Miriam Quintal

On February 28, the National Science 
Foundation (NSF) published its 

detailed budget request for fiscal year 
(FY) 2019. Outlining agency priorities 
and proposed funding levels as directed 
by the Trump administration, the request 
came weeks after the release of the presi-
dent’s government-wide FY 2019 federal 
budget proposal. The White House had 
planned to propose deep cuts—almost 
30 percent below FY 2017 levels—to the 
NSF. However, due to increased spending 
caps in the new budget agreement for FY 
2018 and FY 2019, the administration 
added $2.2 billion back into the NSF bud-
get request, allowing essentially flat fund-
ing overall and a 2.4 percent increase to 
$6.15 billion for the Research and Related 
Activities account that funds all NSF 
research directorates. The president’s 
budget request release discloses agency 
and administration priorities, and kicks 
off the appropriations process to fund 
the government for FY 2019. Congress 
is ultimately responsible for determining 
funding levels for individual agencies. 
FY 2019 will start on October 1, 2018, 
although final appropriations levels are 
not expected until after the completion of 
midterm elections this fall.

The NSF continues to focus on its 10 Big 
Ideas for Future NSF Investments,1 launched 
by director France Córdova in May 2016. 
The NSF will provide $342 million for 
the ideas, which address exciting scientific 
challenge areas, thus enabling growth and 
new programs across all ten domains. Six 
of the ideas—including Harnessing the Data 
Revolution (HDR), the Future of Work at 
the Human-Technology Frontier (FW-HTF), 
Navigating the New Arctic, Windows on 
the Universe: the Era of Multi-Messenger 
Astrophysics (WoU), the Quantum Leap: 
Leading the Next Quantum Revolution 
(QL), and Understanding the Rules of Life: 
Predicting Phenotype—will receive $30 mil-
lion under the budget request. While indi-
vidual directorates will hold funding for each 
Big Idea, cross-directorate working groups 
will continue to lead the initiatives and deter-
mine specific thrusts and investments. 

$60 million in funding is included for two 
new convergence accelerators related to HDR 
and FW-HTF. These accelerators will seek 
partnerships with other agencies, industry, 
foundations, and international organizations 
to support translational research, testbeds, 
infrastructure access, and workforce 
considerations. The other four Big Ideas 
supported under the budget request center 
on NSF process improvements to enable 

1  https://www.nsf.gov/news/special_
reports/big_ideas/

science and engineering advancement. For 
example, mid-scale research infrastructure 
will receive $60 million under the Office 
of Integrative Activities to facilitate mid-
scale funding for projects across science 
and engineering disciplines. Additionally, 
the NSF proposes $16 million for growing 
convergence research to identify compelling 
convergent research challenges and fund 
exploratory science, engineering, and 
workforce efforts to tackle these challenges.

Many programs will see reductions under 
this budget proposal, including several 
Obama-era initiatives already slated to wind 
down, the Graduate Research Fellowship 
Program, Faculty Early Career Development 
(CAREER) awards, and multiple education 
programs. Apart from major cross-cutting 
initiatives and details about certain STEM 
programs, the budget request provides no 
information about whether or how individual 
divisions will apply reductions across 
their core activities. The Directorate for 
Mathematical and Physical Sciences (MPS) 
will face a 1.3 percent reduction from its 
FY 2017 level, for a total funding level of 
$1.345 billion. The Division of Mathematical 
Sciences (DMS) will be down 6.3 percent to 
$219 million. All of the disciplinary divisions 
in the MPS are expected to decrease from 
their FY 2017 levels by between five and 8.2 
percent, while the Office of Multidisciplinary 
Activities (OMA) is projected to grow 197 

percent to $103 million. This growth reflects 
the assumption that the OMA will hold 
the funding for QL and WoU, two of the 
Big Ideas. Elsewhere in the foundation, the 
Directorate for Computer and Information 
Science and Engineering will be down 1.1 
percent from FY 2017 to $925 million, and 
the Office of Advanced Cyberinfrastructure 
will drop 5.9 percent to $210 million. Despite 
the proposed decreases, NSF leadership has 
indicated their continued commitment to a 
robust core research portfolio.

While the president’s budget request rec-
ommends flat funding for the NSF overall 
in FY 2019, the research advocacy commu-
nity is pushing for robust growth to $8.45 
billion. SIAM will continue to participate 
in these efforts and ensure that Congress 
is aware of both the NSF’s importance 
to the applied mathematics and computa-
tional science community, and the need to 
guarantee NSF funding at levels permitting 
strong investment in the Big Ideas while 
also protecting core activities.

View the complete NSF FY 2019 budget 
request online.2

Eliana Perlmutter is a Legislative 
Research Assistant and Miriam Quintal is 
SIAM’s Washington liaison at Lewis-Burke 
Associates LLC.

2  https://www.nsf.gov/about/budget/
fy2019/toc.jsp

See Geometric Multigrid on page 12
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Both mathematics and statistics play a 
significant role in addressing many 

real-world problems, including climate 
change, disease, sustainability, the data del-
uge, and internet security. Research in these 
and other areas is ongoing, yielding new 
results and applications every day in fields 
such as medicine, manufacturing, energy, 
biotechnology, and business. Mathematics 
and statistics are important drivers of inno-
vation in our technological world, where 
new systems and methodologies continue 
to become more complex.

We encourage you to participate in 
Mathematics and Statistics Awareness 
Month!1 Organize and host activities all 
throughout April; past events have includ-
ed workshops, competitions, festivals, lec-
tures, symposia, department open houses, 
math art exhibits, and math poetry read-
ings. Share your activities on social media 
with the hashtag #MathStatMonth. Follow 
“MathAware” on Facebook and Twitter 
for more information.

Mathematics and statistics are powerful 
tools. Thus, Mathematics and Statistics 
Awareness Month is important because 
these subjects enable our understanding of 
the world around us. In the realm of phys-
ics, mathematics allows scientists to study 
planetary orbits and send space probes on 
successful journeys that are hundreds of 
millions of miles in length. Using statis-
tics, physicists can sift through quadril-
lions of collisions in the Large Hadron 
Collider and discover the mysterious 
Higgs boson. In engineering, these tools 
facilitate the design of steel buildings, 

1  http://www.mathaware.org

bridges, and airplanes, and ensure their 
performance and robustness even before 
they are constructed. Mathematics and 
statistics help biologists decode the mys-
teries of human DNA and prevent disease. 
In business, researchers use these subjects 
to craft financial predictions, study eco-
nomics, and forecast strategies to benefit 
entire nations. They are at the heart of 
computers, technology, electrical systems, 
and the engines that drive our cars and fly 
our planes. Perhaps Galileo said it best: 
“Mathematics is the language with which 
God has written the universe.”

Mathematics is the science of pat-
terns and statistics is the science of data. 

Learning these subjects is like learning to 
play an intricate, challenging, and exciting 
game. Every branch of mathematics has its 
own rules and we explore the possibilities 
within these rules, discovering new ideas 
and opportunities as we go. The rules of 
mathematics and statistics are the rules of 
logic; they existed long before we ever did. 

Finally, let us not forget that mathemat-
ics and statistics are beautiful, extraordi-
nary forms of art. They exhibit as much 
detail as a sculpture by Michelangelo, carry 
the universal resonance of a Beethoven 
symphony, elicit the serene beauty of a 
painting by Leonardo da Vinci, and reveal 
insights as deep and enduring as those in a 
Shakespearean play. Their powerful truths 
will continue to transcend time and shape 
the ideas of future generations.

— Kelly Cline, Carroll College

SIAM pulls together individuals who 
are not easy to convene — applied math-
ematicians and computational scientists 
come from many academic departments 
and hold numerous industrial job titles, 
few of which include the word “mathema-
tician.” The organization’s diversity and 
interdisciplinary nature provide a space 
for people from these various backgrounds 
all over the world. As Mathematics and 
Statistics Awareness Month approaches, 

I appreciate SIAM’s unique role among 
professional societies in bringing real-
world applications of math to so many 
issues. These issues range from tumor 
growth to baseball, from modeling the 
dynamics of mosquito-borne diseases or 
drug-dosing schedules to predicting finan-
cial markets or the spread of Lyme dis-
ease, and ultimately involve the utilization 
of data, quantitative methods, and (fre-
quently) technical computing software to 
bring better understanding and insight to 
big, important, open-ended topics that are 
essential to our world. SIAM encourages 
and supports research and education in 
the mathematical sciences via publications 
and conferences, which give professionals 
the opportunity to share their work with 
others in the community. It also aims to 
deliver the valuable work occurring in our 
fields to the public eye through its website, 
publicity and press releases, social media, 
YouTube videos, and even the presenta-
tion of relevant problems to thousands 
of high school students each year in the 
MathWorks Math Modeling Challenge. 
Bringing that visibility of computational 
sciences is really the crux of Mathematics 
and Statistics Awareness Month, so kudos 
for all of the good work being done and to 
SIAM for putting a very public lens on it.

— Cleve Moler, MathWorks

Understanding and Appreciating Mathematics and Statistics
April is Mathematics and Statistics Awareness Month

Schools, universities, organizations, associations, and related interest groups are hosting a myriad of activities throughout April in honor of 
Mathematics and Statistics Awareness Month. 

New Division Director for the NSF’s 
Division of Mathematical Sciences 

Juan Meza has been appointed the new division director of the National 
Science Foundation (NSF)’s Division of Mathematical Sciences (DMS). 
Meza served most recently as the dean of the University of California, 
Merced’s School of Natural Sciences. His remarkable career spans over 
three decades, with leadership and management experiences in industry, 
academia, and national laboratories. He was a Distinguished Member 
of Technical Staff at Sandia National Laboratories and department head 
and senior scientist of high-performance computing research at Lawrence 
Berkeley National Laboratory. Meza was also a member of both the 
NSF’s Advisory Committee for Mathematical and Physical Sciences 
and the Advisory Committee for Cyberinfrastructure, as well as multiple 
Committees of Visitors for the DMS. He has served on the board of direc-
tors for the National Academies of Sciences, Engineering, and Medicine’s 
Board on Mathematical Sciences and its Applications, the Society for 
the Advancement of Chicanos/Hispanics and Native Americans in the 
Sciences, and the American Association for the Advancement of Science 
Council, representing the Section on Mathematics. Meza holds both a 
bachelor’s and master’s degree in electrical engineering, and a master’s 
and Ph.D. in computational and applied mathematics, all from Rice 
University. He is a former member of SIAM’s Board of Trustees.



12 • April 2018 SIAM NEWS 

By Joseph Teran

The following is a short introduction to 
the American Mathematical Society Invited 
Address, to be presented at the upcom-
ing 2018 SIAM Annual Meeting (AN18) 
in Portland, Ore., from July 9-13. Look 
for feature articles by other AN18 invited 
speakers introducing the topics of their 
talks in future issues.

Over the past two decades, visual effects 
have come to rely on a wide range of 

numerical methods for partial differential 
equations (PDEs). Be it the crashing water 
waves in Disney’s Moana 
or falling snow in Frozen, 
audiences now expect the 
computer-generated world 
to look and move like the 
real thing. The demand for 
realism is so high that it 
is impractical—or impos-
sible—for animators to 
reproduce the dynam-
ics of everyday materials 
like clothing, water, sand, 
snow, or hair without using 
the laws of physics that 
dictate their motion.

The governing phys-
ics is expressed with 
PDEs derived from clas-
sical continuum mechan-
ics (e.g., the Navier-Stokes equations for 
water). The PDEs are highly nonlinear 
and involve geometrically-complicated 
domains, like the upper body of the char-
acter in Figure 1a and the snow under 
Anna’s feet in Figure 1b. Given these 
constraints, one can only solve the equa-
tions with numerical approximation and 
scientific computing. Techniques from 
computational fluid dynamics, like parti-
cle-in-cell [1-2, 4] and the finite element 
method for elastic solids [6], are now com-
monplace in the production of blockbuster 
movies for these reasons.

Many everyday materials behave elas-
tically for a wide range of strains, but 

plastically upon approaching nonphysical 
stresses. Common examples include met-
als and granular materials like sand, snow, 
mud, and dirt. One can even describe 
frictional contact as a plastic constraint 
on states of stresses that arise during con-
tact. In continuum mechanics, the Cauchy 
stress s  is defined by the relation between 
internal surfaces of contact with normals 
n  and the contact force per unit area (or 
traction) t n t n n n= = + ⋅σ στ ( ) . When 
the contact force must obey Coulomb fric-
tion, the tangential component tt  of the 
force must be smaller in magnitude than a 
coefficient of friction c

F
 times the normal 

component − ⋅n ns :  

     
| | .t n nτ σ≤− ⋅c

F

          
	

(1)

For example, one 
can derive the Mohr-
Coulomb and Drucker-
Prager plastic yield con-
ditions [5] for granular 
materials by simply 
applying this Coulomb 
friction condition to a 
hyperelastic constitutive 
model (see Figure 1b). 
We have recently shown 
that even clothing can 
be simulated from a 
continuum view, where 

Coulomb friction during contact places 
a constraint on the types of stresses that 
are physical (see Figure 1c). The material 
point method [8] is key to translating these 
continuum descriptions of plasticity phys-
ics into discretized approximations that 
one can use for visual effects. This tech-
nique is a generalization of the particle-in-
cell approach [1, 2] to history-dependent 
materials, and is not used for a broad range 
of materials whose physics is naturally 
described by elastoplasticity.

I will discuss these aspects and more 
during my talk at the 2018 SIAM Annual 
Meeting.
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Snow Business: Computational 
Elastoplasticity in the Movies and Beyond

Figure 1. Simulation of hyperelastic and plastic materials. 1a. The finite element method simu-
lates soft elastic tissue on a Disney movie character. The discrete simulation mesh is shown in 
blue. Image courtesy of [6]. 1b. The material point method simulates the snow under Anna’s 
feet as an elastoplastic granular material in Disney’s Frozen. Image courtesy of [7]. 1c. One can 
model frictional contact between layers of clothing with a discretized elastoplastic continuum 
model. Images courtesy of [3].

Joseph Teran, University of 
California, Los Angeles

capacity and performance — much as HPL has 
for the past three decades.

No one benchmark can provide an accurate 
proxy of any particular application, but we believe 
that one comprehensive benchmark has two 
advantages over the alternative: a weighted set or 
bag of (simple) benchmarks.

The weighted bag of benchmarks does 
allow for explicit definition of machine 
metrics, measurement of these metrics in 
the benchmark and applications, and fitting 
of internal parameters so as to provide the 
best proxy for an application of interest. 
This approach can be more accurate than a 
single benchmark for a particular applica-
tion or specific workload. One comprehen-
sive benchmark, like HPL or HPGMG, is 
easier to administer, define, and adjudicate 
for a ranking metric.

Though we seek a rational approach—
with modeling and measurements—for 
benchmark design, models cannot per-
fectly measure machine effectiveness. 
Therefore, a benchmark that implicitly 
demands an effective machine by solving 
a fundamentally hard problem is desirable. 
HPGMG has been designed with these 
principles in mind.

HPGMG Design 

HPGMG uses the non-iterative form of 
multigrid—full multigrid—which requires 
O N( )  flops, O N( ) bytes from memo-
ry, O N( )  bytes from cache, O N( )/2 3  
MPI bytes, O N(log ( ))2 messages, and 

O N(log ( ))2  function calls/OMP over-
heads/CUDA kernels. For fourth-order 
accurate finite-volume of HPGMG (used 
for the ranking metric), this equates to 
about 1,200 flops and 1,200 bytes per DOF 
solved. As such, the arithmetic intensity 
(AI) is about 1.0 flop per byte. These mea-
sures are pretty strongly memory-bound, 
as most machines have AIs of five to 10 
flops per byte, and thus incentivize higher 
memory bandwidth.

In practice (as observed with LIKWID), 
the L2 and L3 cache bandwidths are four 
times and two times higher than DRAM 
bandwidth. This stimulates a tapered cache 
hierarchy with progressively higher band-
width when getting closer to the FPUs, i.e., 
one cannot just attach an FPU to an HBM 
stack, but must exploit locality for band-
width filtering. The number of messages 
is polylogarithmic in the problem size. As 
such, architects are forced to drive down 
overheads when scaling up machines to 
avoid squandering performance. This fact 
differentiates HPGMG from both super-
computing and HPCG, which sends O( )1  
messages (a truncated V-cycle). MPI injec-
tion bandwidth is concurrently linked to 
problem size and thus memory bandwidth, 
but grows more slowly.

The polylogarithmic nature of HPGMG 
also manifests in the overheads for func-
tion calls, OMP parallel regions, and device 
offloads. This incentivizes architects and 
software technologies to drive down over-
heads as they increase memory and com-
pute capacity, lest they forgo the benefit of 
threading or acceleration.

We compile the HPGMG list of the 
world’s largest supercomputers twice a 
year—with the metric equations solved per 
second—using a multigrid solve of a fourth-
order accurate finite-volume discretization 
of the Laplacian. We published our first list 
at ISC High Performance 2016, and have 
continued releasing lists biannually. Table 
1 (on page 10) depicts a selected and com-
pressed sampling of the November 2017 list.

We encourage community participation 
and invite comments and contributions to 
SWWilliams@lbl.gov. Visit the HPGMG 
webpage2 to learn more about the effort. 
Detailed analysis and current rank lists are 
also available online.3
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