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Abstract

Malaria, a deadly infectious disease caused by the Plasmodium parasite, remains a ma-
jor public health challenge in many parts of the world. It causes over 200 million cases
and 500,000 fatalities globally each year. There is now a global effort, spearheaded by
the World Health Organization and the Bill and Melinda Gates Foundation, to erad-
icate the disease by 2040. These efforts are primarily based on the large-scale use of
insecticide based control measures against the adult female Anopheles mosquito (the
malaria vector in humans). This project is based on the use of a basic compartmental
model for malaria transmission dynamics to assess various anti-malaria control strate-
gies. The disease-free equilibrium of the model is shown to be locally-asymptotically
stable when a certain threshold quantity is less than unity. Furthermore, this equilib-
rium is globally-asymptotically stable for the special case with no malaria mortality
in the human population. Numerical simulations of the model show that the use of
a vaccine as a sole anti-malaria strategy may not lead to the elimination of malaria
in malaria-endemic setting. However, the study shows that combining vaccination
with other vector management strategies (notably insecticide-based mosquito reduc-
tion strategies), can lead to such elimination. It is shown that the prospects for the
global malaria eradication by 2040 are very promising if the extended vector manage-
ment strategies (which entails the use of a vaccine together with the insecticide-based
mosquito reduction strategies) is implemented at moderate level of effectiveness.

1 Introduction
Malaria is one of the oldest and deadliest infectious diseases in the world, and continues to 
impose a major public health and socioeconomic burden in affected areas [43, 52]. The disease 
is endemic in over 90 countries (in the tropical regions of sub-Saharan Africa, Southeast Asia, 
and parts of Latin America) [52]. It causes over 200 million cases and 500,000 deaths (mostly 
among children under the age of five) every year globally [ 53]. Approximately $2.5 billion is 
spent annually (globally) on the efforts to control malaria [53]. Due to these major public 
health and socioeconomic burdens, public health practitioners and organizations, such as the
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Figure 1: Mosquito Lifecycle [31]

World Health Organization and the Gates Foundation, are working towards the eradication 
of malaria by the year 2040 [21].

Malaria is a mosquito-borne disease which spreads in human populations when infectious 
adult female Anopheles mosquitoes bite susceptible humans to obtain protein needed for 
the development and maturation of eggs [12, 51]. Only about 60 species, out of the over 
450 Anopheline species, can successfully serve as a vector for malaria [37]. Tropical Africa 
faces the most burden of malaria largely because the Anopheline species with high vectorial 
capacity (e.g. An. gambiae, An. arabiensis, and An. funestus) are very much present there 
[57]. Malaria is caused by Plasmodium parasites, which infect the blood cells of humans 
and then replicate [51]. Species of Plasmodium that typically infect humans include P. 
falciparum, P. vivax, P. ovale, P. malariae, and P. knowlesi (with P. falciparum being the 
deadliest) [5].

The mosquito lifecycle begins at the immature aquatic stage [9, 31]: Eggs are laid by 
adult female Anopheles mosquitoes directly onto bodies of water. Then, the eggs hatch into 
larvae, typically after 2-3 days (2-3 weeks in colder climates). The larvae develop into pupae 
in about 4-10 days. The pupae undergo metamorphosis and become adult mosquitoes in 
about 2-4 days. Once the eggs have fully matured into adult mosquitoes, the newly-emerged 
mosquitoes enter the three-stage gonotrophic cycle [13, 31]. In Stage I of the gonotrophic 
cycle, the adult female Anopheles mosquito searches for a host to take a blood meal from. 
In Stage II, the blood meal is digested and the egg develops (at a rate dependent on tem-
perature). Then, in Stage III, the female mosquito searches for an appropriate aquatic 
environment (breeding habitat), and oviposition (laying of eggs) occurs. Then, the cycle 
repeats (as depicted in Figure 1 [31]).

Currently, a variety of control strategies are being used to help combat the spread, and 
mitigate the burden, of malaria. These can be categorized into two main groups, namely 
preventive and therapeutic [52]. Preventive strategies include the use of insecticide-based 
control strategies, such as larvicides, adulticides, indoor residual sprays (IRS), long-lasting
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insecticide bednets (LLINs), insect repellent, and anti-malarial prophylaxis [52]. Therapeu-
tic strategies are mainly based on using Artemesinin-based drug therapy to treat humans
with clinical symptoms of malaria [52]. The widescale use of the insecticide-based control
strategies in malaria-endemic areas has led to significant success against malaria spread and
mortality over the last 15 years. Specifically, the widescale use of IRS and LLINs from 2000-
2015 led to a dramatic decrease in the number of malaria cases and malaria mortality [7]
(with LLINs accounting for most of the successes). Unfortunately, however, this widespread
use of insecticide-based anti-malaria interventions has resulted in Anopheles resistance to
all the chemical insecticides used in IRS and LLINs [27, 57]. Other factors that pose im-
portant challenges to the global malaria eradication effort include Plasmodium resistance
to artemisinin-based drugs [32] and anthropogenic climate change [16]. There are several
different strategies to overcome some of these challenges, such as the development of new
insecticides for use in IRS and LLINs or the use of biological controls, namely CRISPR-Cas9
gene editing strategy, release of sterile male mosquitoes, or infecting Anopheles mosquitoes
with the bacterium Wolbachia [1, 14, 49]. However, there are numerous logistical challenges
associated with the large scale deployment of the biological control measures [1, 14, 49].
There is also currently an anti-malarial vaccine being tried in humans (in Kenya, Malawi,
and Ghana) called RTS,S [47], albeit its efficacy is expected to be low or average. Conse-
quently, in the absence of a safe and effective vaccine as well as the logistical challenges of
deploying genetically-modified mosquitoes into the wild, the global malaria eradication effort
is largely focused on the use of insecticide-based interventions [54].

The literature on mathematical modeling of malaria transmission dynamics dates back
to the pioneering work of Sir Ronald Ross in the early 1900s [45]. The Ross model, which
monitors the temporal dynamics of the total number of infectious humans (denoted by X(t))
and infectious adult female mosquitoes (denoted by Z(t)) at time t, is given by the following
system of nonlinear differential equations:

dX

dt
= ma b z (H −X)− rX,

dZ

dt
= a c x (M − Z)− µZ,

(1.1)

where m is the mosquito per human ratio, a is the biting rate of adult female mosquitoes, 
b is the probability of infection per bite from an infected mosquito to a susceptible human, 
c is the probability of infection of a susceptible mosquito per bite on an infected human, 
z(t) = Z(t)/M(t) is the proportion of infectious mosquitoes at time t (where M(t) is the 
total number of adult female mosquitoes at time t; hence, M(t) − Z(t) is the total num-
ber of susceptible mosquitoes at time t),H(t) is the total number of humans at time t (so 
that H(t) − X(t) is the total number of susceptible humans), x(t) = X(t)/H(t) is the pro-
portion of infectious humans at time t, r is the human recovery rate and µ is the natural 
death rate of mosquitoes. George Macdonald extended the Ross’ model in 1957 to include 
the time lag between the initial infection of the adult female mosquito and the time the 
mosquito can transmit malaria to humans. That is, Macdonald included the duration of 
the vector sporogonic cycle [36]. Using the expression for thebasic reproduction number of 
the model (denoted by R0) [33, 34, 35, 36], Ross and Macdonald proposed control strategies
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for effectively controlling the spread of malaria. While Ross emphasized control based on 
the destruction of breeding habitats for mosquitoes (using larvicides), Macdonald empha-
sized killing adult mosquitoes before they complete the sporogonic cycle (i.e., Macdonald 
emphasized the use of adulticides and other strategies, such as the use of bednets, that 
target the adult mosquito). Numerous other extensions of the Ross-Macdonald modeling 
framework have been made in the literature to include various other pertinent aspects of 
the malaria disease, such as drug treatment (and drug resistance) [32], insecticide resistance 
[18, 27, 28, 41, 50], changes in climatic variables [17, 30, 31], mosquito population genetics 
[27], potential anti-malaria vaccine [4, 29], land-use changes [6], use of biological controls 
(such as sterile insect technology) against the malaria vector [25], multiple strains of malaria 
[20], and human mobility [39].

The objective of the current project is to use mathematical modeling approaches to assess 
the population-level impact of the community-wide implementation of preventive strategies 
against malaria. In particular, the following strategies will be assessed, implemented sin-
gularly or in combinations: larviciding, adulticiding, personal protection against mosquito 
bites (which includes IRS, LLINs, and insect repellent), and the potential use of an anti-
malaria vaccine. The aim is to determine whether the concerted global effort to eradicate 
malaria by 2040 can be achieved using the currently-available preventive resources (i.e., the 
aforementioned insecticide-based control measures and the potential use of an anti-malaria 
vaccine). The objective of the project will be achieved through the development, analysis, 
and simulation of a mathematical model for malaria spread and control in a community. 
The model to be developed in this project is based on extending the Ross-Macdonald model 
to incorporate the use of various vector-reduction strategies, such as the use of larvicides, 
bednets and adulticides, and personal protection against mosquito bites, such as the use of 
insect repellents and bednets. The paper is organized as follows: The basic model to be 
used is formulated in Section 2. The basic model is rigorously analyzed, for the asymptotic 
stability of the associated disease-free equilibrium in Section 3. Numerical simulation results 
are also reported. The basic model is extended to incorporate an anti-malaria vaccine in 
Section 4.

2 Formulation of Basic Model
The model to be developed in this project is formulated as follows.

2.1 State Variables of the Model
The basic model considered in this project is based on subdividing the total human popu-
lation, denoted by Nh(t), into the following mutually-exclusive compartments: susceptible 
(Sh(t)), exposed (Eh(t)), infectious (Ih(t)), and recovered (Rh(t)) humans, where t represents 
time. Hence,

Nh(t) = Sh(t) + Eh(t) + Ih(t) + Rh(t).

It should be mentioned that “exposed“ humans (i.e., those in the Eh(t) class) are those that 
are newly-infected with malaria but have yet to show the clinical symptoms of the disease.
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Furthermore, those in the exposed class are unable to spread the disease, since they have
not survived the incubation period yet. That is, they have not yet become infectious. On
the other hand, those in the infectious class (i.e., those in the Ih(t) class) show the clinical
symptoms of malaria and can transmit the disease to susceptible mosquitoes following an
effective bite. Similarly, the total mosquito population, denoted by Nv(t), is divided into
the following mutually-exclusive compartments: susceptible (Sv(t)), exposed (Ev(t)), and
infectious (Iv(t)) adult female Anopheles mosquitoes. That is,

Nv(t) = Sv(t) + Ev(t) + Iv(t).

2.2 Derivation of Equations

2.2.1 Rate of change of susceptible human population Sh(t)

Humans enter the susceptible population through birth or immigration at a per capita rate
Πh. Humans become infected after an effective bite by an infectious adult female Anopheles
mosquito. Let b be the per capita biting rate of the adult female Anopheles mosquitoes and
βvh be the probability of transmission from an infectious adult female Anopheles mosquito
to a susceptible human. Further, let µh represents the natural death of humans. Thus, the
equation for the rate of change of the susceptible human population is given by the following
non-linear differential equation:

dSh(t)

dt
= Πh − bβvh

Iv(t)

Nh(t)
Sh(t)− µhSh(t).

It is important to mention that the reason the transmission term is normalized by the total
host population, Nh(t), is because the conservation law of mosquito bites has been imposed.
In other words, the conservation law that the total number of bites made by adult female
mosquitoes in the community balances the total number of bites received by the human hosts
in the community. Further details on the application of this conservation law in mosquito-
borne disease models are given in [8, 22].

2.2.2 Rate of change of exposed human population Eh(t)

Humans enter the exposed class after acquiring malaria infection at the rate bβvh . Exposed
humans enter the infectious class after displaying clinical symptoms of malaria at a rate
σh (with 1

σh
representing the average incubation period of the disease). The population of

exposed humans is further decreased by natural death (at the rate µh). Thus, the equation
for the rate of change of the exposed human population is given by the following non-linear
differential equation:

dEh(t)

dt
= bβvh

Iv(t)

Nh(t)
Sh(t)− σhEh(t)− µhEh(t).

2.2.3 Rate of change of infectious human population Ih(t)

Humans enter the infectious class after developing clinical symptoms of malaria at the rate 
σh. The population of infectious humans is reduced by recovery (at a rate γh), natural death
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(at the rate µh) and by malaria-induced death (at a rate δh). Thus, the equation for the
rate of change of the infectious human population is given by the following linear differential
equation:

dIh(t)

dt
= σhEh(t)− γhIh(t)− µhIh(t)− δhIh(t).

2.2.4 Rate of change of recovered human population Rh(t)

The population of recovered humans is generated by the recovery of infectious humans at
the rate γh, and is reduced by natural death (at the rate µh). Thus, the equation for the
rate of change of the recovered human population is given by the following linear differential
equation:

dRh(t)

dt
= γhIh(t)− µhRh(t).

2.2.5 Rate of change of susceptible mosquito population Sv(t)

Susceptible adult female Anopheles mosquitoes are generated through oviposition (following
the completion of the immature cycle) at a per capita rate Πv. The susceptible mosquitoes
become infected with malaria, following an effective bite on an infectious human, at a rate
b βhv, where b is the biting rate and βhv is the probability of transmission from an infectious
human to a susceptible adult female Anopheles mosquito. Furthermore, the population of
adult female mosquitoes is diminished by natural death at a rate µv. Thus, the equation for
the rate of change of the susceptible adult female Anopheles mosquito population is given
by the following non-linear differential equation:

dSv(t)

dt
= Πv − bβhv

Ih(t)

Nh(t)
Sv(t)− µvSv(t).

2.2.6 Rate of change of exposed mosquito population Ev(t)

Susceptible mosquitoes enter the exposed class, following the acquisition of malaria infection
at the rate bβvh. The population of exposed mosquitoes is decreased by progression to the
class of infectious mosquitoes (at a rate σv) and by natural death (at the rate µv). Thus, the
equation for the rate of change of the exposed adult female Anopheles mosquito population
is given by the following non-linear differential equation:

dEv(t)

dt
= bβhv

Ih(t)

Nh(t)
Sv(t)− σvEv(t)− µvEv(t).

2.2.7 Rate of change of infectious mosquito population Iv(t)

The population of infectious mosquitoes is generated at the rate σv and diminished by natural 
death (at the rate µv). Thus, the equation for the rate of change of the infectious adult female 
Anopheles mosquito population is given by the following linear differential equation:
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dIv(t)

dt
= σvEv(t)− µvIv(t).

Using the above derivations and assumptions, it follows that the basic model for malaria
transmission in a community is given by the following system of non-linear differential equa-
tions: 

dSh(t)

dt
= Πh − bβvh

Iv(t)

Nh(t)
Sh(t)− µhSh(t),

dEh(t)

dt
= bβvh

Iv
Nh(t)

Sh(t)− σhEh(t)− µhEh(t),

dIh(t)

dt
= σhEh(t)− γhIh(t)− µhIh(t)− δhIh(t),

dRh(t)

dt
= γhIh(t)− µhRh(t),

dSv(t)

dt
= Πv − bβhv

Ih(t)

Nh(t)
Sv(t)− µvSv(t),

dEv(t)

dt
= bβhv

Ih(t)

Nh(t)
Sv(t)− σvEv(t)− µvEv(t),

dIv(t)

dt
= σvEv(t)− µvIv(t).

(2.1)

A flow diagram of the basic model (2.1) is depicted in Figure 2, and the state variables and
parameters of the model are described in Tables 1 and 2, respectively. The main assumptions
made in the formulation of the basic model (2.1) include the following:

1. Exponentially-distributed time in all epidemiological compartments.

2. Homogeneous (well-mixed) population. The implication of this assumption is that each
mosquito bite has an equal chance of leading to the infection of the susceptible human
or in acquiring infection from an infectious human.

3. Malaria recovery induces permanent immunity against future malaria infection. This
is a simplifying assumption made for mathematical tractability (since it is known that
malaria has a repeated exposure property [3].

4. Exposed humans or vectors do not transmit malaria infection.
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Figure 2: Flow diagram of the basic model (2.1).

State Variable Description
Sh(t) Population of susceptible humans at time t
Eh(t) Population of exposed (newly-infected, but not yet infectious) humans at time t
Ih(t) Population of infectious humans at time t
Rh(t) Population of recovered humans at time t
Sv(t) Population of susceptible adult female Anopheles mosquitoes at time t
Ev(t) Population of exposed adult female Anopheles mosquitoes at time t
Iv(t) Population of infectious adult female Anopheles mosquitoes at time t

Table 1: Description of the state variables of the basic model (2.1).
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Parameter Description Baseline
value

Reference

b Per capita biting rate of
adult female Anopheles
mosquitoes

2.0 per day [11, 46]

βhv (βvh) Probability of infection per
bite from an infectious hu-
man (mosquito) to a suscep-
tible mosquito (human)

0.48 (0.14)
dimension-
less

[40]

Πh Recruitment rate of humans
(by birth or immigration)

2.2 humans
per day

[19, 38]

Πv Per capita birth rate of
adult female Anopheles
mosquitoes

100 per day Estimated

µh (µv) Natural death rate for hu-
mans (mosquitoes)

4.405×10−5

(1/14) per
day

[10, 12]

1
σh

Intrinsic incubation period
for humans

14 days [27]

1
σv

Extrinsic incubation period
for adult female Anopheles
mosquitoes

10 days [27]

γh Recovery rate for humans 0.00658 per
day

[11, 15, 26,
31, 55, 56]

δh Disease-induced death rate
for humans

9.0×10−5

per day
[12]

Table 2: Description of the parameters of the basic model (2.1).
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2.3 Basic Qualitative Properties

In this section, the basic dynamical features of the basic model (2.1) will be explored. Let,

Ωh =

{
(Sh, Eh, Ih, Rh) ∈ R4

+ : Nh ≤
Πh

µh

}
,

and,

Ωv =

{
(Sv, Ev, Iv) ∈ R3

+ : Nv ≤
Πv

µv

}
.

Further, let Ω = Ωh ∪ Ωv. We claim the following result.

Theorem 2.1 The closed set Ω = Ωh∪Ωv is positively-invariant and attracting with respect
to the basic model (2.1).

Proof. The proof follows the approach given in [22]. Adding the first four equations and the
last three equations of the basic model (2.1) gives, respectively,

dNh(t)

dt
= Πh − µhNh(t)− δhIh(t),

and,

dNv(t)

dt
= Πv − µvNv(t).

It can be seen from the above equations that
dNh(t)

dt
< 0 if Nh(t) >

Πh

µh
and

dNv(t)

dt
< 0 if

Nv(t) >
Πv

µv
. It follows, using a comparison theorem [48], that:

Nh(t) ≤ Nh(0)e−µh(t) +
Πh

µh
(1− e−µh(t)), (2.2)

and,

Nv(t) ≤ Nv(0)e−µv(t) +
Πv

µv
(1− e−µv(t)). (2.3)

Thus, it follows from the inequalities (2.2) and (2.3) that Nh(t) ≤
Πh

µh
if Nh(0) ≤ Πh

µh
,

and Nv(t) ≤
Πv

µv
if Nv(0) ≤ Πv

µv
. Thus, the regions Ωh and Ωv are positively-invariant with

respect to the model (2.1). Hence, the union of these sets, Ω = Ωh ∪ Ωv, is also positively-

invariant with respect to the model (2.1). Furthermore, if Nh(t) >
Πh

µh
and Nv(t) >

Πv

µv
, then

the solutions of the model (2.1) enter the regions Ωh and Ωv (hence Ω) in finite time [22].

Thus, Nh(t) approaches
Πh

µh
and Nv(t) approaches

Πv

µv
as t → ∞. In the former case, the

infected variables (Eh(t), Ih(t), Ev(t), Iv(t)) = (0, 0, 0, 0) as t → ∞. Similarly, in the latter
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case, (Ev(t), Iv(t)) = (0, 0) as t → ∞. Thus, the regions Ωh and Ωv (hence, Ω) attract all
solutions of the basic model (2.1). Hence, the region Ω = Ωh ∪Ωv is attracting with respect
to the basic model (2.1). It follows from the above analysis that the basic model (2.1)
is well-posed (in Ω) both epidemiologically and mathematically. Therefore, it is sufficient
to study the dynamics of the basic model (2.1) in the region Ω. Having established the
well-posedness of the basic model, the existence and asymptotic stability of its disease-free
equilibrium (DFE) will now be analysed.

3 Analysis of the Basic Model

3.1 Local Asymptotic Stability of DFE

The basic model (2.1) has a DFE, obtained by setting the right-hand sides of the model to
zero (with Eh = Ih = Ev = Iv = 0), given by

E0 = (S∗h, E
∗
h, I
∗
h, R

∗
h, S

∗
v , E

∗
v , I
∗
v ) =

(
Πh

µh
, 0, 0, 0,

Πv

µv
, 0, 0

)
.

The next generation operator method can be used to analyze the local asymptotic stability
of the DFE [42]. Using the notation in [42], the associated matrix F (of new infection terms)
and matrix V (of linear transition terms) are given, respectively, by

F =


0 0 0 bβvh

S∗h
N∗h

0 0 0 0

0 bβhv
S∗v
N∗h

0 0

0 0 0 0

 and V =


σh + µh 0 0 0
-σh γh + µh + δh 0 0
0 0 σv + µv 0
0 0 -σv µv

.
It then follows that (noting that S∗h = Πh/µh and S∗v = Πv/µv)

R0 = ρ(FV −1) =
√

R0,hvR0,vh, (3.1)

where,

R0,hv =

(
bβhvΠvµh

Πhµv

)(
σh

σh + µh

)(
1

γh + δh + µh

)
,

and,

R0,vh = (bβvh)

(
σv

σv + µv

)(
1

µv

)
.

The result below follows from Theorem 2 of [42].

Theorem 3.1 The DFE of the basic model (2.1), denoted by E0, is locally-asymptotically 
stable if R0 < 1, and unstable if R0 > 1.

145



The quantity R0 is referred to as the basic reproduction number of the model (2.1) [2]. It
represents the average number of new malaria cases generated by an infectious human (or
mosquito) when introduced into a completely susceptible mosquito (or human) population.
The reproduction number of the basic model (2.1) (R0) is the geometric mean of the re-
production numbers for human-to-vector (R0,hv) and vector-to-human (R0,vh) interactions.
The geometric mean arises from the fact that two generations are required to complete the
human-vector-human or vector-human-vector malaria transmission cycle.

3.2 Interpretation of the reproduction number (R0)

The terms in R0,hv and R0,vh are interpreted epidemiologically as follows. The first term in
R0,hv represents the infection rate from an infectious human to a susceptible vector. The
second term represents the probability that an individual in the exposed class (Eh(t)) survives
long enough to enter the infectious class (Ih(t)). Finally, the third term represents the average
duration of an individual in the infectious class (Ih(t)). The product of these three terms
gives R0,hv.

Similarly, the first term in R0,vh represents the infection rate from an infectious vector
to a susceptible human. The second term represents the probability that a vector in the
exposed class (Eh(t)) survives long enough to enter the infectious class (Ih(t)). Finally, the
third term represents the average duration of a vector in the infectious class (Ih(t)). The
product of these three terms gives R0,vh.

The epidemiological implication of Theorem 3.1 is that a small influx of infected individ-
uals (i.e. in the basin of attraction of the disease-free equilibrium, E0) will not generate a
large outbreak in the community when the threshold quantity is less than unity. In order for
the effective control of the disease to be independent of the initial sizes of the sub-populations
of the basic model (2.1), a global asymptotic stability result has to be established for the
disease-free equilibrium (E0). This is done below.

3.3 Global Asymptotic Stability of DFE

It is convenient to define R̃0 = R0|δh=0. We claim the following result:

Theorem 3.2 The DFE of the basic model 2.1, E0, is globally-asymptotically stable in Ω
whenever R̃0 < 1.

Proof. The proof of Theorem 3.2 is based on using the approach in [24]. Consider the basic

model (2.1) with δh = 0. Thus,
dNh(t)

dt
= Πh − µhNh. Hence,

lim sup
t→∞

Nh(t) = N∗h =
Πh

µh
.

From now on, Nh(t) will be replaced by its limiting value N∗h . Further, let R̃0 < 1. It is
convenient to rewrite the equations for the rate of change of the infected populations of the
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basic model (2.1) as follows:

d

dt


Eh(t)
Ih(t)
Ev(t)
Iv(t)

 =


(F − V )Eh(t)

Ih(t)
Ev(t)
Iv(t)

−M

Eh(t)
Ih(t)
Ev(t)
Iv(t)

 , (3.2)

where the next generation matrices F and V are as defined in Section 3.1 and the non-
negative matrix, M , is given by:

M =


0 0 0 bβvh

(
1− Sh(t)

Nh(t)

)
0 0 0 0

0
bβhv
N∗h

(S∗v − Sv(t)) 0 0

0 0 0 0

 .
Since Sv(t) ≤ S∗v and Sh(t) ≤ Nh(t) for all t > 0 in Ω, it follows that the matrix M is
non-negative. Hence, Equation (3.2) can be rewritten as:

d

dt


Eh(t)
Ih(t)
Ev(t)
Iv(t)

 ≤ (F − V )


Eh(t)
Ih(t)
Ev(t)
Iv(t)

 . (3.3)

Now, consider the linear ODE system given by Equation (3.3), with the inequality replaced
by equality. If R̃0 < 1, then ρ(FV −1) < 1, which implies that all of the eigenvalues of the
matrix F − V are negative. From this, it follows that the system given by Equation (3.3) is
stable whenever R̃0 < 1. Thus, (Eh(t), Ih(t), Ev(t), Iv(t)) → (0, 0, 0, 0) as t → ∞. Applying
a standard comparison theorem [48], we see that (Eh(t), Ih(t), Ev(t), Iv(t)) → (0, 0, 0, 0) for

the nonlinear system given by the equations for
dEh(t)

dt
,
dIh(t)

dt
,
dEv(t)

dt
, and

dIv(t)

dt
in the

basic model (2.1). By substituting Eh(t) = Ih(t) = Ev(t) = Iv(t) = 0 into the equations for

Sh(t) and Sv(t) in the basic model (2.1), it can be seen that Sh(t)→
Πh

µh
and Sv(t)→

Πv

µv
as

t → ∞. Thus, the DFE of the basic model (2.1), E0, is globally asymptotically stable in Ω 
whenever R̃0 < 1.

The epidemiological implication of Theorem 3.2 is that, for the special case of the basic 
model (2.1) with δh = 0, bringing (and maintaining) the reproduction threshold R0 to a 
value less than unity is necessary and sufficient for the effective control (or elimination) of 
the disease. It should be mentioned that the result in Theorem 3.2 may not hold if the 
assumption δh = 0 is relaxed. This is because mosquito-borne disease models, such as the 
basic model (2.1), undergo the phenomenon of backward bifurcation if the disease-induced 
mortality in the host population (δh in the case of the basic model (2.1)) is not set to zero 
or is not negligible [22, 23]. In a backward bifurcation situation, disease control when the 
reproduction number of the model is less than unity depends on the initial sizes of the sub-
populations of the model. Thus, the analysis in Theorem 3.2 shows that δh > 0 is necessary 
for the presence of backward bifurcation in the basic model (2.1).
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It can be seen from the expression for R0 in Equation (3.1) that the value of R̃0 = R0|δh=0

can be reduced by reducing the biting rate (b), the probability of transmission per bite on a
susceptible human (βhv), the probability of infection per bite on an infectious human (βvh),
and mosquito birth rate (Πv). It can also be reduced by increasing the recovery rate (γh) and
the death rate of mosquitoes (µv). Hence, control strategies, such as the use of larvicides
(reduces Πv), adulticides (increases µv), long-lasting insecticidal nets (decreases b), insect
repellents (decreases b), vaccination (reduces βhv and βvh), and treatment (increases γh) can
lead to effective control of the disease provided they bring (and maintain) R̃0 to a value
less than unity. The result in Theorem 3.2 is numerically-illustrated in Figure 3, where
numerous initial conditions of the special case of the basic model (2.1), with δh = 0, are
shown to converge to the DFE, E0 (when the parameters were chosen such that R̃0 < 1).

Figure 3: Simulations of the basic model (2.1) showing convergence of multiple initial conditions to 
the DFE, E0. Parameter values used are as given by the baseline values in Table 2, with δh = 0 
and b = 0.5 (so that, R̃0 = 0.762 < 1).

3.4 Numerical Simulations of the Basic Model
In this section, the basic model (2.1) will be simulated using the baseline values in Table 
2 (unless otherwise stated) to assess the population-level impact of various anti-malaria 
control strategies. In particular, the following vector-based control strategies will be assessed: 
larvicides, adulticides, personal protection against mosquito bites, and an integrated vector 
management strategy (IVM). First of all, simulating the basic model (2.1), using the baseline 
values of the parameters in Table 2, shows convergence of the initial solutions to an endemic 
equilibrium (where the number of infected humans at steady-state is non-zero), as depicted 
in Figure 4. For this simulation, the value of the reproduction number of the model is
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R0 = 3.047 > 1. It is intuitive that the disease will persist in the population if R0 > 1, since,
in this case, each infected individual will generate, on average, three other new infections in
humans (via the vector) or three infections in the vector.

Figure 4: Output of a numerical simulation depicting total number of infected humans (Eh(t)+Ih(t))
as a function of time for multiple initial conditions. Parameter values are as given by the baseline
values in Table 2 (so that R0 = 3.047).

3.4.1 Effect of larviciding

Larviciding is a control strategy that targets mosquito larvae, killing them before they can
mature into pupae (which, later, metamorphose into adult mosquitoes). Therefore, in the
context of the basic model (2.1), larviciding reduces the per capita birth rate of mosquitoes
(Πv). Consequently, larviciding is incorporated into the basic model (2.1) by rescaling the
parameter Πv as follows:

Πv → Πv(1− elcl), (3.4)

where 0 ≤ el ≤ 1 represents the efficacy of the larvicides and 0 ≤ cl ≤ 1 represents the
coverage of the larvicides in the community. Using Equation (3.4) in the basic model (2.1)
shows that the reproduction number R0 now becomes:

R0,l =
√

(R0,hv,l)(R0,vh,l),

where,

R0,hv,l =

(
bβhvΠv(1− elcl)µh

Πhµv

)(
σh

σh + µh

)(
1

γh + δh + µh

)
,
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Figure 5: Contour plot of the reproduction number R̃0,l as a function of larvicide efficacy (el) and
coverage (cl). Other parameter values used are as given by the baseline values in Table 2, with
δh = 0.

and,

R0,vh,l = (bβvh)

(
σv

σv + µv

)(
1

µv

)
.

It should be noted that when el = cl = 0, the quantity R0,l reduces to R0. Let R̃0,l = R0,l|δh=0.
Figure 5 depicts a contour plot of R̃0,l as a function of larvicide efficacy (el) and coverage
(cl). This figure shows that R̃0,l decreases with increasing larvicide efficacy and coverage.
Further, this figure shows that very high coverage and efficacy of larvicides will be needed to
achieve effective control of the disease in the community (i.e. bring and maintain R̃0,l < 1).
Hence, the use of larvicides alone seems to be realistically infeasible to singularly lead to the
effective control of the disease in the community.

3.4.2 Effect of adulticiding

Adulticiding is a control strategy that targets the killing of adult mosquitoes. Therefore, in
the context of the basic model (2.1), adulticiding increases the natural death rate of adult
mosquitoes (µv). Consequently, adulticiding is incorporated into the basic model (2.1) by
rescaling the parameter µv as follows:

µv → µv(1 + eaca), (3.5)

where 0 ≤ ea ≤ 1 represents the efficacy of the adulticides and 0 ≤ ca ≤ 1 represents the
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Figure 6: Contour plot of the reproduction number R̃0,a as a function of adulticide efficacy (el) and
coverage (cl). Other parameter values used are as given by the baseline values in Table 2, with
δh = 0.

coverage of the adulticides in the community. Using Equation (3.5) in the basic model (2.1)
shows that the reproduction number R0 now becomes:

R0,a =
√

(R0,hv,a)(R0,vh,a),

where,

R0,hv,a =

(
bβhvΠvµh

Πhµv(1 + eaca)

)(
σh

σh + µh

)(
1

γh + δh + µh

)
,

and,

R0,vh,a = (bβvh)

(
σv

σv + µv(1 + eaca)

)(
1

µv(1 + eaca)

)
.

It should be noted that when ea = ca = 0, the quantity R0,a reduces to R0. Let R̃0,a = 
R0,a|δh=0. Figure 6 depicts a contour plot of R̃0,a as a function of adulticide efficacy (ea) 
and coverage (ca). This figure shows that R̃ 0,a decreases with i ncreasing adulticide efficacy 
and coverage. Further, this figure s hows t hat, e ven w ith v ery h igh c overage a nd efficacy, 
adulticiding alone is unable to achieve effective control of the disease in the community (i.e. 
bring and maintain R̃0,a < 1). Hence, the use of adulticides alone is infeasible to effectively 
control the disease.
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3.4.3 Effect of personal protection against mosquito bite

Personal protection involves the application of insect repellent on humans to repel adult
female mosquitoes from biting the humans. The use of personal protection aims to decrease
the biting rate (b) of mosquitoes. In the context of the basic model (2.1), the use of personal
protection is incorporated by re-scaling the parameter b as follows:

b→ b(1− epcp), (3.6)

where 0 ≤ ep ≤ 1 represents the efficacy of the personal protection and 0 ≤ cp ≤ 1 represents
the coverage of the personal protection in the community. Using Equation (3.6) in the basic
model (2.1) shows that the reproduction number now becomes:

R0,p =
√

(R0,hv,p)(R0,vh,p),

where,

R0,hv,p =

(
b(1− epcp)βhvΠvµh

Πhµv

)(
σh

σh + µh

)(
1

γh + δh + µh

)
,

and,

R0,vh,p = (b(1− epcp)βvh)
(

σv
σv + µv

)(
1

µv

)
.

It should be noted that when ep = cp = 0, the quantity R0,p reduces to R0. Let R̃0,p =

R0,p|δh=0. Figure 7 depicts a contour plot of R̃0,p as a function of personal protection effi-
cacy (ep) and coverage (cp). This figure shows that R̃0,p decreases with increasing personal
protection efficacy and coverage. Further, this figure shows that very high coverage and
efficacy of personal protection will be needed to achieve effective control of the disease in the
community (i.e. bring and maintain R̃0,p < 1). Hence, the use of personal protection alone
seems to be realistically infeasible to singularly lead to the effective control of the disease in
the community.

3.4.4 Effect of integrated vector management strategy (IVM)

Although the singular use of any of the vector-based strategies discussed earlier proved
incapable of leading to effective control (or elimination) of malaria in a community, the
use of a combination of these strategies may produce the desired result. In this section,
we simulate the combined use of larvicides, adulticides, and personal protection against
mosquito bites. The following three effectiveness levels of IVM are considered:

• Low Effectiveness Level: Larvicides at 100% efficacy and 25% coverage (i.e. el = 1
and cl = 0.25) and adulticides at 50% efficacy and 25% coverage (i.e. ea = 0.5 and
ca = 0.25).

• Moderate Effectiveness Level: Larvicides at 100% efficacy and 50% coverage (i.e. el = 1
and cl = 0.5) and adulticides at 50% efficacy and 50% coverage (i.e. ea = 0.5 and
ca = 0.5).
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Figure 7: Contour plot of the reproduction number R̃0,p as a function of personal protection efficacy
(ep) and coverage (cp). Other parameter values used are as given by the baseline values in Table 2,
with δh = 0.

• High Effectiveness Level: Larvicides at 100% efficacy and 75% coverage (i.e. el = 1
and cl = 0.75) and adulticides at 50% efficacy and 75% coverage (i.e. ea = 0.5 and
ca = 0.75).

For each of the above IVM effectiveness levels, various values for personal protection efficacy
(ep) and coverage (cp) will be used. Applying the modifications to the basic model (2.1) to
include the implementation of control strategies based on the use of larivicides, adulticides,
and personal protection against mosquito bites, it follows that the reproduction number for
the IVM strategy, denoted R0,m, is given by:

R0,m =
√

(R0,hv,m)(R0,vh,m),

where,

R0,hv,m =

(
b(1− epcp)βhvΠv(1− elcl)µh

Πhµv(1 + eaca)

)(
σh

σh + µh

)(
1

γh + δh + µh

)
,

and,

R0,vh,m = (b(1− epcp)βvh)
(

σv
σv + µv(1 + eaca)

)(
1

µv(1 + eaca)

)
.

It is convenient to define R̃ 0,m = R0,m|δh=0.
Figure 8a depicts a contour plot of R̃0,m as a function of personal protection efficacy (ep) 
and coverage (cp) for the low effectiveness level of the IVM strategy. The figure shows that
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(a)

(b)

(c)

Figure 8: Simulations of the basic model (2.1) for the impact of IVM. Contour plot of the repro-
duction number (R̃0,m) as a function of personal protection efficacy (ep) and coverage (cp). Other 
parameter values are as given by the baseline values in Table 2, with δh = 0 and various values of 
ep and cp. (a) Low effectiveness level of IVM. (b) Moderate effectiveness level of IVM. (c) High 
effectiveness level of IVM.
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a high efficacy and coverage of personal protection is necessary to achieve effective control
of the disease in a community (i.e. bring and maintain R̃0,m < 1). In particular, if personal
protection efficacy is fixed at 80%, a personal protection coverage greater than 70.4% will
be needed. Hence, the IVM strategy at the low effectiveness level may not lead to effective
control of the disease.

Figure 8b depicts a contour plot of R̃0,m as a function of personal protection efficacy
(ep) and coverage (cp) for the moderate effectiveness level of the IVM strategy. The figure
shows that a moderately high efficacy and coverage of personal protection is necessary to
achieve effective control of the disease in a community (i.e. bring and maintain R̃0,m < 1).
In particular, if personal protection efficacy is fixed at 80%, a personal protection coverage
greater than 48.8% will be needed. Hence, the IVM strategy at the moderate effectiveness
level can potentially lead to effective control of the disease.

Figure 8c depicts a contour plot of R̃0,m as a function of personal protection efficacy (ep)
and coverage (cp) for the high effectiveness level of the IVM strategy. The figure shows that a
very low efficacy and coverage of personal protection is necessary to achieve effective control
of the disease in a community (i.e. bring and maintain R̃0,m < 1). In particular, if personal
protection efficacy is fixed at 80%, a personal protection coverage greater than 3.7% will
be needed. Hence, the IVM strategy at the high effectiveness level is very likely to lead to
effective control of the disease.

4 Vaccination Model (Extension of Basic Model)
Although there is currently no safe and effective vaccine being widely used in humans against
malaria, a candidate vaccine known as RTS,S is undergoing clinical trials in humans in Kenya,
Malawi, and Ghana [47]. This fact motivates the need to extend the basic model (2.1) to
incorporate a possible anti-malaria vaccine.

4.1 Formulation of Vaccination Model

The basic model (2.1) is now extended to include a compartment, Vh(t), for individuals
vaccinated against malaria at time t. The population of vaccinated individuals is generated
by the vaccination of susceptible individuals at a rate ηh. It is decreased by breakthrough
infection (where a vaccinated susceptible individual becomes infected) at a rate (1− εh)bβvh,
where b and βhv are as defined in Section 2.2 and 0 < εh ≤ 1 is the vaccine protective
efficacy against the acquisition of malaria infection. Further, the population is decreased
due to the waning of the vaccine (at a rate ωh) and by natural death (at the rate µh). Thus,
the equation for the rate of change of the population of vaccinated susceptible individuals
(Vh(t)) is given by the non-linear differential equation:

dVh(t)

dt
= ηhSh(t)− (1− εh)bβhv

Iv(t)

Nh(t)
Vh(t)− ωhVh(t)− µhVh(t). (4.1)

Furthermore, the total human population is now given by Nh(t) = Sh(t) + Vh(t) + Eh(t) +
Ih(t) + Rh(t). Using (4.1) into the basic model (2.1) gives the following vaccination model
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Parameter Description Baseline
value

Reference

ηh Vaccination rate of suscep-
tible humans

Varied N/A

ωh Vaccine waning rate
1

5× 365
per

day
Estimated

εh Vaccine efficacy (0,1] Assumed
Table 3: Description of vaccine-related parameters of the vaccination model (4.2).

for malaria transmission dynamics:

dSh(t)

dt
= Πh − bβhv

Iv(t)

Nh(t)
Sh(t)− ηhSh(t) + ωhVh(t)− µhSh(t),

dVh(t)

dt
= ηhSh(t)− (1− εh)bβhv

Iv(t)

Nh(t)
Vh(t)− ωhVh(t)− µhVh(t),

dEh(t)

dt
= bβhv

Iv(t)

Nh(t)
(Sh(t) + (1− εh)Vh(t))− σhEh(t)− µhEh(t),

dIh(t)

dt
= σhEh(t)− γhIh(t)− µhIh(t)− δhIh(t),

dRh(t)

dt
= γhIh(t)− µhRh(t),

dSv(t)

dt
= Πv − bβvh

Ih(t)

Nh(t)
Sv(t)− µvSv(t),

dEv(t)

dt
= bβvh

Ih(t)

Nh(t)
Sv(t)− σvEv(t)− µvEv(t),

dIv(t)

dt
= σvEv(t)− µvIv(t).

(4.2)

The vaccine-related parameters of the vaccination model (4.2) are described in Table 3. It 
should be noted that the vaccination model (4.2) reduces to the basic model (2.1) when 
ηh = ωh = 0 and εh = 1 (since this implies that Vh(t) → 0 as t → ∞).

4.2 Analysis of the Vaccination Model

The dynamics of the vaccination model (4.2) will be studied in the following feasible region:
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Ω∗ = Ω∗h ∪ Ω∗v,

where,

Ω∗h =

{
(Sh, Vh, Eh, Ih, Rh) ∈ R5

+ : Nh ≤
Πh

µh

}
,

and,

Ω∗v =

{
(Sv, Ev, Iv) ∈ R3

+ : Nv ≤
Πv

µv

}
.

Using similar analyses as in Section 2.3, it can be shown that region Ω∗ is positively-invariant
and attracting with respect to the vaccination model (4.2). The vaccination model (4.2) has
a DFE given by

E0,v = (S∗h, V
∗
h , E

∗
h, I
∗
h, R

∗
h, S

∗
v , E

∗
v , I
∗
v ) =

(
S∗h, V

∗
h , 0, 0, 0,

Πv

µv
, 0, 0

)
,

where, S∗h =
Πh(µh + ωh)

µh(µh + ωh + ηh)
and, V ∗h =

Πhηh
µh(µh + ωh + ηh)

. The associated next generation

matrices, Fv and Vv, for the vaccination model (4.2) are given, respectively, by

Fv =


0 0 0 bβvh

S∗h + (1− εh)V ∗h
N∗h

0 0 0 0

0 bβhv
S∗v
N∗h

0 0

0 0 0 0

 and Vv =


σh + µh 0 0 0
-σh γh + µh + δh 0 0
0 0 σv + µv 0
0 0 -σv µv

,
from which it follows that the vaccination reproduction number of the vaccination model
(4.2), denoted by Rv, is given by:

Rv = ρ(FvV
−1
v ) =

√
RV,hvRV,vh,

where,

Rv,hv =

(
bβhvΠvµh

Πhµv

)(
σh

σh + µh

)(
1

γh + δh + µh

)
,

and,

Rv,vh =

(
bβvh(S

∗
h + (1− εh)V ∗h )

N∗h

)(
σv

σv + µv

)(
1

µv

)
.

The result below follows from Theorem 2 of [42].

Theorem 4.1 The DFE (E0,v) of the vaccination model (4.2) is locally-asymptotically stable 
if Rv < 1, and unstable if Rv > 1.
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Here, too, it is instructive to consider a special case of the vaccination model (4.2) without
disease-induced mortality in humans (i.e., with δh set to zero) and with perfect protective

vaccine efficacy (i.e., with εh = 1). Setting δh = 0 into (4.2) shows that Nh(t) =
Πh

µh
= N∗h

as t→∞. It is convenient to define R̃v = Rv|δh=0,εh=1. We claim the following result.

Theorem 4.2 The DFE of the special case of the vaccination model (4.2), with δh = 0 and
εh = 1, is globally-asymptotically stable in Ω∗ whenever R̃v < 1.

Proof. Consider the vaccination model (4.2) with δh = 0 and εh = 1. Further, let
R̃0 < 1. The proof of Theorem 4.2 is based on using the comparison theorem (as in the
proof of Theorem 3.2). The equations for the rate of change of the infected populations of
the vaccination model (4.2) can be re-written as:

d

dt


Eh(t)
Ih(t)
Ev(t)
Iv(t)

 = (Fv − Vv)


Eh(t)
Ih(t)
Ev(t)
Iv(t)

−Mv


Eh(t)
Ih(t)
Ev(t)
Iv(t)

 , (4.3)

where the next generation matrices Fv and Vv are as defined in Section 4.2 and the matrix
Mv is given by:

Mv =


0 0 0 bβvh

(
S∗h
N∗h
− Sh
Nh

)
0 0 0 0

0 bβhv

(
S∗v
N∗h
− Sv
Nh

)
0 0

0 0 0 0

 .

Since Sh(t) ≤ S∗h and Sv(t) ≤ S∗v for all t in Ω∗, it follows that the matrixMv is non-negative.
Hence, equation (4.3) can be rewritten in terms of the following inequality:

d

dt


Eh(t)
Ih(t)
Ev(t)
Iv(t)

 ≤ (Fv − Vv)


Eh(t)
Ih(t)
Ev(t)
Iv(t)

 . (4.4)

Now, consider the linear ODE system given by Equation (4.4), with the inequality replaced
by equality. If R̃v < 1, then ρ(FV −1) < 1, which implies that all of the eigenvalues of (F-V)
are negative. From this, it follows that the system given by Equation (4.4) is stable whenever
R̃v < 1. Thus, (Eh(t), Ih(t), Ev(t), Iv(t)) → (0, 0, 0, 0) as t → ∞. Applying the standard
comparison theorem [48], we see that (Eh(t), Ih(t), Ev(t), Iv(t))→ (0, 0, 0, 0) for the nonlinear

system given by the equations for
dEh(t)

dt
,
dIh(t)

dt
,
dEv(t)

dt
, and

dIv(t)

dt
in Equation (4.2). By

substituting Eh = Ih = Ev = Iv = 0 into the remaining equations in Equation (4.2), we get
(Sh(t), Vh(t), Eh(t), Ih(t), Rh(t), Sv(t), Ev(t), Iv(t) → (S∗h, V

∗
h , 0, 0, 0, S

∗
v , 0, 0) as t → ∞ when
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R̃v < 1. Thus, the DFE of the vaccination model (4.2) is globally-asymptotically stable
in Ω∗ whenever R̃v < 1. The epidemiological implication of Theorem 4.2 is that, for the
special case of the vaccination model (4.2) with δh = 0 and εh = 1, the implementation of
a routine anti-malaria immunization in the community could lead to the effective control of
the disease if it results in bringing (and maintaining) the vaccination reproduction number
(R̃v) to a value less than unity.

4.3 Numerical Simulations

In this section, the vaccination model (4.2) will be simulated (using the baseline values
in Table 2 and Table 3, unless otherwise stated) to assess the population-level impact of
vaccination in a community. In particular, the singular use of an anti-malaria vaccine and
an extended IVM program (involving larviciding, adulticiding, personal protection against
malaria bites, and vaccination) will be assessed.

4.3.1 Effect of vaccination

Vaccination is aimed at providing vaccinated susceptible individuals with some protection
against the acquisition of malaria infection. In other words, vaccination is aimed at boosting
the immunity of vaccinated susceptible individuals to fight against malaria infection. It is

convenient to define cv =
V ∗h
N∗h

to be the vaccine coverage at the disease-free steady-state.

In other words, cv is the proportion of susceptible individuals in the community that have
been vaccinated at steady-state. Figure 9 depicts a contour plot of Rv, as a function of
vaccine efficacy (εh) and coverage (cv), for the special case of the vaccination model (4.2)
with δh = 0. This figure shows that the vaccination reproduction number (Rv) decreases
with increasing vaccine coverage. Furthermore, even if the efficacy of the vaccine is 100%,
very high coverage of the vaccine (at least 89.2%) will be needed to eliminate the disease in
the community (i.e., to bring and maintain Rv < 1). This coverage level seems realistically
unattainable. Hence, this study shows that the use of an anti-malaria vaccine alone seems
may not realistically lead to malaria elimination in malaria-endemic settings. In other words,
even if a highly efficacious vaccine becomes available in the near future, such vaccine has to
be complemented with other anti-malaria control strategies to achieve the laudable goal of
malaria elimination in a malaria-endemic community (and, subsequently, malaria eradication
globally).

4.3.2 Effect of extended integrated vector management strategy (IVM)

In this section, the combined impact of vaccination and IVM strategy will be assessed. For
these simulations, we consider two levels of the now extended IVM strategy (i.e., the previous
IVM strategy implemented on the basic model (2.1) combined with a vaccination program).
They are described below:

• Low Effectiveness Level of Extended IVM Strategy: here, we set larvicides at 100%
efficacy and 25% coverage (i.e., el = 1 and cl = 0.25), adulticides at 50% efficacy and
25% coverage (i.e., ea = 0.5 and ca = 0.25), and personal protection at 50% efficacy
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Figure 9: Contour plot of the vaccine reproduction number (Rv), for the special case of the vaccina-
tion model (4.2) with δh = 0, as a function of vaccine efficacy (εh) and coverage (cv) under the low
effectiveness level conditions. Other parameter values are as given by the baseline values in Tables
2 and 3, with various values of εh and cv.

and 25% coverage (i.e., ep = 0.5 and cp = 0.25) and various vaccination effectiveness
(as measured in terms of vaccine efficacy and coverage).

• Moderate Effectiveness Level of Extended IVM Strategy: In this setting, larvicides
is set at 100% efficacy and 50% coverage (i.e., el = 1 and cl = 0.5), adulticides at
50% efficacy and 50% coverage (i.e., ea = 0.5 and ca = 0.5), and personal protection
at 50% efficacy and 50% coverage (i.e., ep = 0.5 and cp = 0.5). Various vaccination
effectiveness (as measured in terms of vaccine efficacy and coverage) are considered.

As in the case of the IVM strategy formulated for the basic model (2.1), we define the
reproduction number of the extended IVM strategy, denoted Rv,m, as:

Rv,m =
√

Rv,hv,mRv,vh,m,

where,

Rv,hv,m =

(
b(1− epcpβhvΠv(1− elclµh

Πhµv(1 + eaca)

)(
σh

σh + µh

)(
1

γh + δh + µh

)
,

and,

Rv,vh,m =

(
b(1− epcpβvh(S∗h + (1− εh)V ∗h )

N∗h

)(
σv

σv + µv(1 + eaca)

)(
1

µv(1 + eaca)

)
.
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(a)

(b)

Figure 10: Simulations of the special case of the vaccination model (4.2), with δh = 0, for the impact
of the extended IVM strategy. Contour plot of the reproduction number (Rv,m) as a function of
vaccine efficacy (εh) and coverage (cv). Other parameter values are as given by the baseline values in
Table 2, with various values of ep and cp. (a) Low effectiveness level of extended IVM. (b) Moderate
effectiveness level of extended IVM.
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Figure 10a depicts a contour plot of Rv,m, as a function of vaccine efficacy (εh) and 
coverage (cv) under the low effectiveness level of the extended IVM strategy, for the special 
case of the vaccination model (4.2) with δh = 0. In order to apply the result of Theorem 4.2, 
the plot will be analyzed at εh = 1. The figure shows that, even with 100% vaccine efficacy, a 
high vaccine coverage is necessary to achieve effective control of the disease in a community 
(i.e., bring and maintain Rv,m < 1). In particular, a vaccine coverage greater than 75.0%
will be needed. This level of coverage may not be realistically attainable in malaria-endemic 
settings. Hence, this study suggests that the extended IVM strategy at low effectiveness level 
may not realistically lead to the elimination of malaria in a malaria-endemic community.

Figure 10b depicts a contour plot of Rv,m, as a function of vaccine efficacy (εh) and 
coverage (cv) under the moderate effectiveness level of the extended IVM strategy, for the 
special case of the vaccination model (4.2) with δh = 0. The figure shows that, with the 100%
vaccine efficacy (needed for Theorem 4.2 to apply), malaria elimination is feasible if at least 
33.9% of the unvaccinated susceptible population is vaccinated. This vaccine coverage seems 
reasonably attainable in malaria-endemic areas. Hence, this study shows that the prospect of 
malaria elimination in endemic areas using the extended IVM strategy is promising provided 
it is implemented at moderate effectiveness level.

Discussion and Conclusion
Malaria is a deadly infectious disease that continues to induce major public health and 
socio-economic burden in many parts of the world. The disease, which is spread in humans 
via effective bites from malaria-infected adult female Anopheles mosquitoes, accounts for 
millions of cases and over 500,000 deaths (mostly in children under the age of 5), on average 
every year. Concerted global efforts are now underway to combat or eliminate the menace of 
malaria. This study is based on the use of a basic mathematical model for gaining insight into 
the transmission dynamics of malaria in an endemic setting, and to assess the community-
wide impact of various vector-based control strategies. The compartmental model, which is 
of the form of a deterministic system of nonlinear differential equations, was further extended 
to incorporate a possible vaccine for malaria.

Rigorous analysis of the basic model shows that its disease-free equilibrium is locally-
asymptotically stable if the associated reproduction number is less than unity. The implica-
tion of this result is that malaria can be effectively controlled if the initial number of infected 
individuals or mosquitoes is small enough, provided the control measures implemented can 
reduce (and maintain) this reproduction number to a value less than unity. Furthermore, 
this equilibrium is shown to be globally-asymptotically stable (using a comparison theorem 
argument), for a special case of the model without malaria-induced death in the human host 
population, when the associated reproduction number is less than unity. For this (latter 
case), bringing the associated reproduction number to a value less than unity is necessary 
and sufficient for the effective control or elimination of malaria.

The basic model is simulated using parameter values relevant to malaria dynamics in 
endemic areas in sub-Saharan Africa, with focus on assessing the impact of three vector-
based control measures (namely, larviciding, adulticiding, and personal protection against 
mosquito bites using insect repellents) and their combinations (i.e. integrated vector man-
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agement (IVM) strategy). The simulation results obtained show that the singular implemen-
tation of any of the aforementioned strategies may not realistically lead to the elimination
of malaria (although each can be effective in reducing, but not eliminating, malaria burden
if their coverage and efficacy are high enough). However, combining these strategies (in an
integrated vector management fashion) results in possible malaria elimination starting with
the moderate effectiveness level of this (IVM) strategy. In other words, when vaccination is
added to the armory of the anti-malaria control measures, the simulation results obtained
in this study show that the prospects for global malaria eradication are promising if the
extended IVM strategy is implemented at effectiveness level that is at least moderate.

This study can be extended in numerous directions, such as to incorporate the effect of
other control strategies (e.g. gene editing strategies to modify the DNA of the mosquito),
impact of anthropogenic climate change, changes in land usage, and human mobility (immi-
gration and migration).
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