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Abstract As one of the oldest known diseases to inflict humanity (since the Agricultural
Revolution about 12,000 years ago), malaria has proven to be a significant global challenge. Many
intervention strategies have been undertaken in the last few decades such as widespread
insecticide-treated bed nets (ITN), long-lasting insecticidal nets (LLIN) and indoor residual
spraying (IRS). Yet even with great success, malaria continues to be a ravaging disease requiring
inventive solutions. In this study, we develop a malaria early warning system, which utilizes an
adapted Ross-MacDonald model to assess individual risk and disease epidemiology. Strategies
for achieving a disease-free equilibrium state are also shown by performing local asymptotic
stability analysis. It is important to note that the stages of the mosquito life-cycle are highly
influenced by weather conditions, both in the aquatic and adult stages, as well as by the use of
insecticides (either through ITN/LLIN use or via IRS). Therefore, we consider regional data
parameters, such as weather conditions, parasite rate and resistance, to estimate deviated risk
from the baseline, with the final product being a progressive web application (i.e. a web and
mobile app). Such a product has widespread application primarily in holoendemic areas in Africa
to inform both native and tourist populations of their relative risk of contracting malaria.

1. Introduction
Malaria is mainly a tropical disease caused by the parasitic Plasmodium, transmitted via the bite
of infected female Anopheles mosquitoes. Plasmodium are a species of sexually-reproducing eu-
karyotic protozoans, whose life-cycle involves the affliction of two hosts - an invertebrate host (e.g.
mosquitoes) that serves as a vector for transmission and a site for sexual reproduction, and a verte-
brate host (e.g., reptiles, rodents, primates) where asexual reproduction and sexual development
occurs, leading to the disease we know as malaria [1].
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Of the five species of Plasmodium that affect humans, two are most notable: P. falciparum and P.
vivax. Since P. falciparum is most prevalent in sub-Saharan Africa, it is the primary focus of this
study.

Now consider the life cycle of an Anopheles mosquito. Both the immature and adult stages
are highly dependent on weather conditions such as temperature and precipitation. Mosquitoes
favor relatively warm tropical climates, stagnant water bodies, and a sufficient population of hosts
to acquire a blood meal (for the egg development process). Compounding to these factors that
mosquitoes prefer are the broader socioeconomic background of residents, land-use practices,
and the level of development of the area (including sanitation infrastructure and the availability
of medical care). All of these affect the prevalence level of malaria and, subsequently, its risk
of contraction for any particular location. As illustrated in Figure 1, the areas that meet these
criteria tend to have a larger percentage of the population at risk. This idea is the backbone of our
application; local variability is used to assess risk in relation to the annual baseline.

Figure 1. Percentage of population at risk of malaria in 2019. As shown, most of the risk is concentrated in
Africa and certain countries in southeast Asia and South America. Source of figure: [2].
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With nearly half the world’s population at risk of this disease, its eradication has been of pri-
mary concern to various organizations around the world, such as the World Health Organization
(WHO), the Bill and Melinda Gates Foundation, and the US President’s Malaria Initiative [3]. Al-
though significant steps have been taken towards its eradication by a multitude of such groups, it
is nevertheless a leading cause of death in many developing countries. Although it is preventable
and curable, it was responsible for 241 million cases and 627,000 deaths in 2020 alone [3]. The
continent of Africa, specifically the western and central regions, are most affected by this disease,
accounting for around 95% of the cases and 96% of the deaths, with a vastmajority of these deaths
(~80%) occurring in children under the age of 5 [3]. The socioeconomic development ofmany coun-
tries is greatly afflicted by malaria. The disease has been proven, since as early as 1965, to cause
much lower economic growth; reductions in malaria are associated with much higher economic
growth [4]. Thus, malaria warrants immediate global cooperative action [5].

A key tool in malaria prevention has been the insecticide-treated bed nets (ITNs) and long-
lasting insecticidal nets (LLINs) with their great success evident by the distribution of 2 billion nets
to sub-Saharan Africa between 2004-2020 [3]. The use of ITNs has proven to be useful for preven-
tion and even reduction of childhoodmortality [6]. In recent years, however, growing resistance of
themosquitoes to insecticides has renderedmany pyrethroid chemicals (and thus, ITNs and LLINs)
less effective [7]. Across nearly all of Africa, resistance has been observed to some extent and even
across different vector groups due to many different evolved mechanisms including knockdown
resistance [8].

Since ITNs and LLINs alone are not sufficient for eradicating malaria, a combination of preven-
tivemeasures is currently the best course of action. Therefore, we developed amalaria early warn-
ing system (MEWS) as a mobile application and website to warn users of their risk of contracting
malaria in a specific region. The goal is that it serves as a site for the spread of reliable, life-saving
information regarding malaria, as well as to inspire behavioral changes in people whether it be
through advising the use of bed nets or to stay away from stagnant water bodies servicing as
mosquito breeding spots. The MEWS will be an important component in the fight against malaria
as it provides real-time information to the general public about potential risk in order to prevent
additional cases.

Previous works for a malaria early warning system (MEWS) have had similar, but not identical,
ideas and methods. One online MEWS recognizes the effects rainfall has on transmission and
focuses on creating an early warning system for rain so the user can then predict the risk of con-
tracting malaria [9]. However, the risk itself is not calculated, or at least not blatantly stated, by the
system itself. In addition, most of the graphs presented focus only on rainfall and require inter-
pretation from the user, making the experience less user-friendly than our MEWS. Another online
MEWS provides more detailed information: Vulnerability, Seasonal Climate Forecasts, Monitoring
the Environment and Observed Malaria Morbidity, but can only be used in English, French, and
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Spanish, and does not offer any major African languages [10]. Moreover, it can only be accessed
as a website, not a mobile application, and demands some background knowledge from the user.
The website is furthermore ill-designed and hard to navigate, and similar to the previous MEWS,
it does not calculate the risk and present it to the user. There exists an MEWS as a mobile appli-
cation, but it is intended to be used by health workers for malaria reporting, case management,
and surveillance in the Greater Mekong Subregion, including Myanmar [11]. It is not designed for
the general public to use across many regions, unlike our MEWS. The novelty in our MEWS is that
it is accessible through the web or as a mobile application and is user-friendly, in that it aims to
penetrate to a larger user base, by not requiring any background knowledge from the user to in-
terpret the risk result shown. In addition to English, our MEWS also includes the most common
African languages: French, Swahili, Yoruba, and Igbo so those who are at higher risk of contracting
the disease can use the application.

Our MEWS will first obtain the user’s current location or the location he/she will travel to in the
future, then obtain the relevant data, such as temperature and parasite rate, to evaluate potential
infections and the user’s individual risk. For this, the MEWS requires mathematical modeling that
can be evaluated at any given time. Thus, our mathematical model consists mostly of differential
equations, forming a compartmental model.

The rest of the paper expands on themathematical model used, themathematical logic behind
it, as well as the application itself.

2. Mathematical Models
The model used in this study has a long history traced back to the first models of malaria from Sir
Ronald Ross in the early 1900s. His work was advanced in the following decades by those such
as Alfred J. Lotka and George Macdonald to more accurately capture the disease’s properties [12].
From the progression of these mathematical models came new ideas including entomological in-
oculation rate, basic reproduction number, and vectorial capacity which addressed the need to
assess transmission and epidemiology [12]. More recent advancements have improved the accu-
racy of past models by including properties related to immunity and climate. The epidemiology of
malaria since Macdonald has also highlighted the importance of endemicity when observing pop-
ulations with the disease. Requirements to meet potential eradication have been implemented
but ultimately failed [12].

Another crucial component ofmodelingmalaria is considering the role of weather onmosquito
population dynamics. The early work of Lysenko and Semashkomade initial discoveries of the tem-
peratures required to sustain transmission and was thus influential for malarial endemicity, high-
lighting malaria global maximums nearer to the equator [13][14]. Although other weather factors
such as rainfall and humidity contribute to malaria abundance, the role of temperature is espe-
cially important given that Plasmodium falciparum can maintain growth cycles until temperatures
drop below 20◦C [15].
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Using real-time weather data, insecticide resistance data, malaria prevalence, and bed net us-
age data, we generated solutions to our model equations numerically using the odeint command
from the scipy library method in Python (Version 3.10.1). What we get is the entomological inocu-
lation rate (EIR), which is used to inform the user of his/her relative risk at his/her location. This is
the basic premise of the MEWS progressive web application that we develop as part of this study.

In order to calculate the risk of contractingmalaria in a particular region, dynamicmathematical
models must be developed for both humans and mosquitoes. The human model and mosquito
model are SEIR and SEI models respectively. For the mosquito dynamics, it is important to include
both the adult stage and the immature/aquatic stage since both stages depend on one another.
Only adult mosquitoes bite for blood meals, thus only adult mosquito dynamics are an SEI model.
The immature mosquitoes will determine how many adult mosquitoes there will be. Therefore,
the immature dynamics are an important factor in analyzing malaria transmission. Since humans
have the ability to recover from malaria, the human dynamics are an SEIR model. Both the en-
tomological inoculation rate (EIR) and the reproduction number of the disease (𝑅0) are helpful in
determining the risk of contracting malaria. However, this paper only considers EIR.

2.1 Immature/Aquatic Mosquito Dynamics
The mosquito immature/aquatic stage is comprised of six classes: the egg class, four larva classes,
and the pupa class. Mosquitoes are first born as eggs on a body of water. After they hatch, they
are considered larvae, which go through four stages of development. After going through all the
larva stages, they become pupae and then finally grow into adult mosquitoes.

For simplicity, this model combines all four larva classes into one class, thus having a total
of three differential equations to represent the immature/aquatic stage of mosquitoes. Figure 2
illustrates the immature/aquatic stage dynamics.

Figure 2. A graphic flowchart that illustrates the immature/aquatic stage dynamic model. The 𝜋𝑀 term
substitutes 𝜂𝐸(𝑇 )

(

1 − 𝐸
𝐾𝐸

)

(𝑁𝑚).
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The variables 𝐸,𝐿, and 𝑃 are the number of eggs, larvae, and pupae respectively. In the figure
above, 𝜋𝑀 is a substitute variable that represents the expression 𝜂𝐸(𝑇 )

(

1 − 𝐸
𝐾𝐸

)

(𝑁𝑚). The param-
eter 𝜂𝐸(𝑇 ) is the number of eggs laid per adult female mosquito per day [16]. This parameter is
a temperature dependent function and its details can be found in Table 4, along with a graphical
visualization in Figure 6. To obtain the remaining proportion of potential eggs that can be laid in
the future, the proportion of current eggs, 𝐸, to egg carrying capacity, 𝐾𝐸(𝑅), is subtracted from 1.
Note that the carrying capacity, 𝐾𝐸 , as a function is dependent on rainfall (𝑅). An in-depth math-
ematical explanation for how rainfall is accounted for in the MEWS is provided later in the paper,
in the app section. The total number of adult female mosquitoes, 𝑁𝑚, is then multiplied by the
product of the number eggs laid per female mosquito per day, 𝜂𝐸(𝑇 ), and the proportion of po-
tential eggs that can be laid in the future,

(

1 − 𝐸
𝐾𝐸 (𝑅)

)

. It is necessary to subtract eggs that develop
into larva or die from this expression (See Table 2 for the descriptions of each parameter). The
larva class receives immature mosquitoes that survived the egg class and loses larva that either
progress to the pupa class or die off. The pupa class goes through a similar process with consider-
ation that the proportion that are female, 𝑞, are the only type of mosquitoes we want to observe
for the adult class. Thus, the differential equations derived from Figure 2 (where a dot represents
differentiation with respect to time 𝑡) are below:

𝐸̇ = 𝜂𝐸(𝑇 )
(

1 − 𝐸
𝐾𝐸(𝑅)

)

𝑁𝑚 − 𝜎𝐸(𝑇 )𝐸 − 𝜇𝐸(𝑇 )𝐸,

𝐿̇ = 𝜎𝐸(𝑇 )𝐸 − 𝜎𝐿(𝑇 )𝐿 − 𝜇𝐿(𝑇 )𝐿,

𝑃̇ = 𝜎𝐿(𝑇 )𝐿 − 𝑞𝜎𝑃 (𝑇 )𝑃 − 𝜇𝑃 (𝑇 )𝑃 .

The formula for carrying capacity is adapted fromWhite et al., which wasmodeled as a convolu-
tion of recent rainfall with some weighting function which had been included as either a constant,
linearly decreasing, or exponentially decreasing function. The constant weighting function was
used here for simplicity:

𝐾(𝑡) = 𝜆1
𝜏 ∫

𝑡

𝑡−𝜏
𝑟𝑎𝑖𝑛(𝑡′)𝑑𝑡′,

where 𝑟𝑎𝑖𝑛(𝑡) is daily rainfall and 𝜆 is the fitted scaling factor unique to the population data [17].

2.2 Adult Mosquito Dynamics (sensitive to insecticides)
After surviving the immature stage, female mosquitoes develop into adults, seek hosts for blood,
and thus, are susceptible to malaria. A female mosquito that bites an infectious human moves
from the susceptible class to the exposed class. A mosquito that becomes infectious at a rate 𝜎𝑚𝑠
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moves from the exposed class to the infectious class. Mosquitoes that die at the natural death
rate 𝜇𝑚𝑠 or die from contact of insecticide treated bed nets (ITNs) at a rate 𝜖𝐵𝐶𝐵𝛿𝐵 leave every class.
Figure 3 illustrates this sensitive adult mosquito dynamic.

Figure 3. A graphic flowchart that illustrates the sensitive adult mosquito dynamic model. The 𝜉 term
substitutes 𝜖𝐵𝐶𝐵𝛿𝐵.

It is important to note that the expression (1−𝑓 ) represents the proportion of female mosquitoes
sensitive to an ITN compared to those resistant to insecticide. The differential equations derived
from Figure 3 are as seen below:

̇𝑆𝑚𝑠 = 𝑞𝜎𝑃 (𝑇 )(1 − 𝑓 )𝑃 −
𝛽𝐻𝑚𝑠𝐼𝐻𝑆𝑚𝑠

𝑁𝐻
−
(

𝜇𝑚𝑠 + 𝜖𝐵𝐶𝐵𝛿𝐵
)

𝑆𝑚𝑠,

̇𝐸𝑚𝑠 =
𝛽𝐻𝑚𝑠𝐼𝐻𝑆𝑚𝑠

𝑁𝐻
− 𝜎𝑚𝑠𝐸𝑚𝑠 −

(

𝜇𝑚𝑠 + 𝜖𝐵𝐶𝐵𝛿𝐵
)

𝐸𝑚𝑠,

̇𝐼𝑚𝑠 = 𝜎𝑚𝑠𝐸𝑚𝑠 −
(

𝜇𝑚𝑠 + 𝜖𝐵𝐶𝐵𝛿𝐵
)

𝐼𝑚𝑠.

2.3 Adult Mosquito Dynamics (resistant to insecticides)
Similar to the adult mosquitoes sensitive to ITNs, Figure 4 illustrates the dynamics for the adult
mosquitoes resistant to insecticide.
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Figure 4. A graphic flowchart that illustrates the resistant adult mosquito dynamic model. The 𝜉 term
substitutes 𝜖𝐵𝐶𝐵𝛿𝐵(1 − 𝑢).

Note that 𝑓 is used instead of (1 − 𝑓 ) to differentiate between resistant and sensitive mosquitoes,
while the expression (1 − 𝑢) is used to differentiate the killing rates due to insecticide (𝛿𝐵) [18]. The
parameters 𝜎𝑚𝑠 and 𝜎𝑚𝑟 ( rates for resistant/sensitive adult mosquitoes to become infectious) are
temperature dependent functions. For simplicity, let the value of 𝜎𝑚𝑠 = 𝜎𝑚𝑟 ∶= 𝜎𝑚 (See Table 4).
Therefore, the differential equations derived from Figure 4 are as seen below:

̇𝑆𝑚𝑟 = 𝑞𝜎𝑃 (𝑇 )𝑓𝑃 −
𝛽𝐻𝑚𝑟𝐼𝐻𝑆𝑚𝑟

𝑁𝐻
−
(

𝜇𝑚𝑟 + 𝜖𝐵𝐶𝐵𝛿𝐵(1 − 𝑢)
)

𝑆𝑚𝑟,

̇𝐸𝑚𝑟 =
𝛽𝐻𝑚𝑟𝐼𝐻𝑆𝑚𝑟

𝑁𝐻
− 𝜎𝑚𝑟𝐸𝑚𝑟 −

(

𝜇𝑚𝑟 + 𝜖𝐵𝐶𝐵𝛿𝐵(1 − 𝑢)
)

𝐸𝑚𝑟,

̇𝐼𝑚𝑟 = 𝜎𝑚𝑟𝐸𝑚𝑟 −
(

𝜇𝑚𝑟 + 𝜖𝐵𝐶𝐵𝛿𝐵(1 − 𝑢)
)

𝐼𝑚𝑟.

2.4 Human Dynamics
In a region where malaria is prevalent, humans become susceptible as soon as they are born or
when they migrate to that particular region. In the human dynamic model, this is the recruitment
rate, 𝜋𝐻 . A human bitten by an infectious mosquito (resistant or susceptible to insecticide) moves
from the susceptible class to the exposed class. In the model below, bed net efficacy, 𝜖𝐵, and bed
net coverage, 𝐶𝐵, are considered to determine the probability of transmission when bed nets are
being used. The human dynamic model is described in Figure 5 below.
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Figure 5. A graphic flowchart that illustrates the human dynamic model. The 𝜉𝑆 and 𝜉𝑅 terms substitute
(1 − 𝜖𝐵𝐶𝐵)(

𝛽𝑚𝑠𝐻𝐼𝑚𝑠
𝑁𝐻

) and (1 − 𝜖𝐵𝐶𝐵)(
𝛽𝑚𝑟𝐻𝐼𝑚𝑟
𝑁𝐻

), respectively.

Let 𝜇𝐻 be the natural death rate for humans and let 𝜎𝐻 be the rate at which humans become
infectious. The parameter 𝛾𝐻 is the rate at which humans recover. Since immunity from malaria
is only temporary, Ψ𝐻 is the rate at which humans from the recovered class move back into the
susceptible class. The differential equations derived from Figure 5 are as seen below:

̇𝑆𝐻 = 𝜋𝐻 − (1 − 𝜖𝐵𝐶𝐵)
(

𝛽𝑚𝑠𝐻𝐼𝑚𝑠
𝑁𝐻

𝑆𝐻 +
𝛽𝑚𝑟𝐻𝐼𝑚𝑟
𝑁𝐻

𝑆𝐻

)

− 𝜇𝐻𝑆𝐻 + Ψ𝐻𝑅𝐻 ,

̇𝐸𝐻 = (1 − 𝜖𝐵𝐶𝐵)
(

𝛽𝑚𝑠𝐻𝐼𝑚𝑠
𝑁𝐻

𝑆𝐻 +
𝛽𝑚𝑟𝐻𝐼𝑚𝑟
𝑁𝐻

𝑆𝐻

)

− 𝜇𝐻𝐸𝐻 − 𝜎𝐻𝐸𝐻 ,

̇𝐼𝐻 = 𝜎𝐻𝐸𝐻 − 𝛾𝐻𝐼𝐻 − 𝜇𝐻𝐼𝐻 − 𝛿𝐻𝐼𝐻 ,

̇𝑅𝐻 = 𝛾𝐻𝐼𝐻 − 𝜇𝐻𝑅𝐻 − Ψ𝐻𝑅𝐻 .

Malarial superinfection and waning immunity complicates the most accurate model represen-
tation of immunity, especially in holoendemic populations where complete susceptibility renewal
rarely occurs. Dynamics of recurring infection have been considered in recent models [16].
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Table 1. Description of State Variables

Variables Interpretation
𝐸 Number of eggs
𝐿 Number of larvae (combination of all 4 instar

stages)
𝑃 Number of pupae

𝑆𝑚𝑠 Number of susceptible mosquitoes that are sensi-
tive to insecticides

𝐸𝑚𝑠 Number of exposed mosquitoes that are sensitive
to insecticides

𝐼𝑚𝑠 Number of infectious mosquitoes that are sensitive
to insecticides

𝑆𝑚𝑟 Number of susceptible mosquitoes that are resis-
tant to insecticides

𝐸𝑚𝑟 Number of exposed mosquitoes that are resistant
to insecticides

𝐼𝑚𝑟 Number of infectious mosquitoes that are resistant
to insecticides

𝑆𝐻 Number of susceptible humans
𝐸𝐻 Number of exposed (infected but not infectious) hu-

mans
𝐼𝐻 Number of infectious humans
𝑅𝐻 Number of recovered humans
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Table 2. Description of Parameters

Parameters Interpretation

𝜂𝐸(𝑇 ) Eggs per female mosquito per day
𝐾𝐸(𝑅) Carrying capacity of eggs
𝑞 Proportion of female mosquitoes
𝑁𝑚 Total number of mosquitoes
𝜎𝐸(𝑇 ) Development rate of eggs to larvae
𝜇𝐸(𝑇 ) Natural death rate of eggs
𝜎𝐿(𝑇 ) Development rate of larvae to pupae
𝜇𝐿(𝑇 ) Natural death rate of larvae
𝜎𝑃 (𝑇 ) Development rate of pupae to adult
𝜇𝑃 (𝑇 ) Natural death rate of pupae

𝑓 Proportion of resistant mosquitoes
𝛽𝐻𝑀 Transmission probability from infected human to a

susceptible mosquito
𝜇𝑚𝑠 Natural death rate of susceptible mosquitoes that

are sensitive to insecticides
𝜖𝐵 Efficacy of bed nets
𝐶𝐵 Coverage of bed nets
𝛿𝐵 Bed net-induced mortality rate
𝜎𝑚𝑠 Development rate of mosquitoes that are sensitive

to insecticides from exposed to infectious
𝜇𝑚𝑟 Natural death rate of susceptible mosquitoes that

are resistant to insecticides
𝑢 Decrease in mortality rate of resistant mosquitoes

in comparison to sensitive mosquitoes
𝜎𝑚𝑟 Development rate of mosquitoes that are resistant

to insecticides from exposed to infectious

𝜋𝐻 Recruitment rate of humans
𝛽𝑚𝑠𝐻∕𝛽𝑚𝑟𝐻 Transmission probability from infected mosquito

(that is sensitive to insecticides/resistant to insecti-
cides) to a susceptible human

𝛽𝐻𝑚𝑠∕𝛽𝐻𝑚𝑟 Transmission probability from infected human to
a susceptible mosquito (that is sensitive to insecti-
cides/resistant to insecticides)
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𝜇𝐻 Natural death rate of humans
Ψ𝐻 Rate of immunity loss of humans
𝜎𝐻 Development rate of humans from exposed to in-

fectious class (Corresponds to time taken for Plas-
modium to complete its schizogonic cycle)

𝛾𝐻 Recovery rate of humans from malaria
𝛿𝐻 Death rate of humans from malaria
𝑁𝐻 Total number of humans

Table 3. Values for Parameters

Parameters Baseline Values Reference
𝑞 0.5 (dimensionless) [19]
𝑓 0.1 (dimensionless) Assumed
𝑢 0.95 (dimensionless) [20]
𝜋𝐻 2.19 (per day) [20]
𝛾𝐻 1/30 (per day) [21]
Ψ𝐻 0.0056 (per day) [18]
𝜎𝐻

(

(12)(3.04)
365

)

(per day) [16]
𝜇𝐻 0.00004 (per day) [16]

Table 4. Functions for Dependent Parameters

Parameters Functions Reference
𝜂𝐸(𝑇 ) max(0,−0.153𝑇 2 + 8.61𝑇 − 97.7) [16]
𝜎𝐸,𝑃 (𝑇 ) max(0, 6(−0.05 + 0.005𝑇 − 2.139 × 10−16𝑒𝑇 −

281357.656𝑒−𝑇 ))
[21]

𝜎𝐿(𝑇 ) max(0, 6
4
(−0.05 + 0.005𝑇 − 2.139 × 10−16𝑒𝑇 −

281357.656𝑒−𝑇 ))
[21]

𝜇𝐸,𝐿,𝑃 (𝑇 ) 8.929 × 10−6𝑇 4 − 9.271 × 10−4𝑇 3 + 3.536 ×
10−2𝑇 2 − 0.5814𝑇 + 3.509

[21]

𝛽𝐻𝑚𝑠,𝐻𝑚𝑟(𝑇 ) max(0, 0.022(−0.00014𝑇 2 + 0.027𝑇 − 0.322)) [16]
𝛽𝑚𝑠𝐻,𝑚𝑟𝐻 (𝑇 ) max(0, 0.24(−0.00014𝑇 2 + 0.027𝑇 − 0.322)) [16]
𝜎𝑚 max(0, 0.000112𝑇 (𝑇 − 15.384)(

√

35 − 𝑇 )) [21]
𝜇𝑚𝑠,𝑚𝑟

(

1
max(0.1,−11.8239+3.3292𝑇−0.0771𝑇 2)

)

[21]

                                                                                                         381



The high temperature dependency of the various parameters used in our model, as shown in
Figure 6 below, serve as a crucial element in our MEWS. It can also be seen, as previously stated,
how warmer tropical climates support the spread of malaria.

Temperature Dependent Parameters

Figure 6. The figures above show the temperature-related dynamics of the model parameters, for which
the equations are listed in Table 4.
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2.5 EIR
The entomological inoculation rate (EIR) gives the rate of infectious bites per unit time (generally
per day) per person. In the application, EIR is themainmetric used to determine risk. The equation
is described below:

𝐸𝐼𝑅 = 𝛽(1 − 𝜖𝐵𝑐𝐵)
(

𝐼𝑚𝑠 + 𝐼𝑚𝑟
𝑁𝐻

)

.

The EIR is defined as the product of the rate of transmission (considering the effect of bed net
usage) and the proportion of infectious mosquitoes to humans [16]. The proportion of infectious
mosquitoes to humans is defined as the total number of infectiousmosquitoes (both resistant and
sensitive) over the total number of humans.

3. Progressive Web Application
There have been many advances in the multi-decade global effort to eradicate malaria. The use
of bed nets, better living conditions, destruction of breeding sites, and more have proved to be
effective in the decades past. However, insecticide resistance, among other issues, pose the next
big obstacle to malaria eradication by 2040, one of United Nation’s goals. Therefore, in response
to these issues and as a culmination to this research paper, a web/mobile application has been
developed using various technologies, including Python, JavaScript, HTML/CSS.

3.1 Data
Data is a major part of the app; acquiring and processing it posed one of the biggest issues dur-
ing this study. To ensure a reliable risk approximation, we obtained data from multiple different
sources, including locally saved datasets as well as APIs (Application Programming Interface). An
in-depth explanation for each data point, including weather, insecticide resistance, malaria preva-
lence and mortality, and bed net usage, as well as their respective sources is provided below.

3.1.1 Weather
Temperature and precipitation have significant impacts on mosquito dynamics as many previous
papers have studied [22][23]. Temperature affects nearly every single parameter in the aquatic
and adult stages, whereas precipitation mainly influences the carrying capacity (𝐾𝐸) of the eggs.
This in turn has ripple effects that leads to changes in populations ofmosquitoes aswell as humans.
The differential equations are solved using using the odeint command from the scipy library. Since
the model is solved for a time range of 365 days before the present day, we used decadal monthly
average temperature and precipitation data fromWorldClim as an estimate forweather conditions
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until 7 days before the present day. For the last week of the model solution, more accurate data
is sourced from the WeatherAPI (Please note that accurate historical weather for more than one
week can be accessed through the API with a paid subscription) [24][25].

The rainfall data is used to estimate rainwater accumulation in a specific region, in order to
understand the existence of conditions favorable for the laying and development of mosquito
eggs. Accumulation is calculated using the equation below, where 𝜏 represents the rate of loss of
accumulated water (via evaporation or ground absorption). The value used for 𝜏 in our model is
7, signifying that it takes about 7 days, on average, for accumulated rainwater to disappear. This
yields the following equation,

𝑅̇ = 𝑟𝑎𝑖𝑛(𝑡) −
(1
𝜏

)

𝑅.

The result is two arrays of length 365 consisting of temperature and rainwater accumulation
data, respectively. As such, for each iteration of the model, these conditions are updated, and
used to inform the parameter values, as described earlier in the paper.

3.1.2 Insecticide Resistance
The use of ITN/LLINs and IRS brought about huge success in combating malaria, vastly reducing
the number of cases and deaths [3][26]. Unfortunately, however, this success turned out to be
a double-edged sword. Alongside saving millions of lives, it also lead to widespread resistance in
mosquitoes, thus rendering the very tools that were effective a while ago, almost useless. This
growing concern is one of the influences for this study and the development of this product. Until
stronger insecticides are created or newer methods for fighting malaria are found, this app is
expected to help ensure that populations, not only those local to Africa but also foreign tourists,
are aware of the present risk of malaria in their respective regions.

3.1.3 Malaria Prevalence and Mortality
Knowing the demographic information for the user’s location can allow us to accurately set the
initial values for the state variables, i.e., 𝑆𝐻 , 𝐼𝐻 , etc. As such, a raster image is sourced fromWorld-
Pop, which consists of pixel-wise population data, with a resolution of 0.00833333 decimal degrees
or approximately 1 kilometer [27].

This population data is coupled with the parasite rate raster image from the Malaria Atlas
Project to, in turn, acquire the estimated number of infected humans (𝐼𝐻 ) [28]. As expected, highly
endemic areas will have higher parasite rates, thus leading to higher estimates of EIR. The Malaria
Atlas Project is also the source of malaria-related human mortality data, corresponding to the pa-
rameter 𝛿𝐻 in our model.

                                                                                                         384



3.1.4 Bed Net Usage
A present-day malaria model would not be an accurate representation of reality if it did not in-
corporate bed net usage and its effect on the mortality of mosquitoes for sensitive and resistant
classes appropriately. The Malaria Atlas Project website hosts a research project that was con-
ducted to gather this information, which was graciously made available for open access, enabling
us to use it freely [28].

4. Results
4.1 Mathematical Proofs and Theorems
4.1.1 Basic Qualitative Properties
We monitor the temporal dynamics of mosquito populations using our mathematical model. All
the state variables and parameters are non-negative. The parameters related to natural mortality
at each life-stage and the environmental carrying capacity are positive and finite. Similarly the
grouping and process for bounding from [29] and [19] is closely followed. The state variables are
grouped by life-cycle stage, organism, and adult insecticide resistance status, let:

1 = (𝑆𝐻 , 𝐸𝐻 , 𝐼𝐻 , 𝑅𝐻 ), 2 = (𝑆𝑚𝑠, 𝐸𝑚𝑠, 𝐼𝑚𝑠),

3 = (𝑆𝑚𝑟, 𝐸𝑚𝑟, 𝐼𝑚𝑟), 4 = (𝐸𝑚, 𝐿𝑚, 𝑃𝑚).

Definition 1
Following [19], for the time-dependent parameters the following quantities are defined:

𝑎∗ = sup
𝑡≥0

𝑎(𝑡), 𝑎∗ = inf
𝑡≥0

𝑎(𝑡).

For the immature mosquito groups, since (1 − (𝐸∕𝐾𝐸))+ ≥ 0, then 𝐸(𝑡) ≤ 𝐾𝐸 for all 𝑡. Thus, using
Definition 1, it can be deduced from the immature mosquito compartments using the larval stage
described in the model that

𝐿̇ = 𝜎𝐸(𝑇 )𝐸 − [𝜎𝐿(𝑇 ) + 𝜇𝐿(𝑇 )]𝐿 ≤ 𝜎∗
𝐸𝐾𝐸 − (𝜎∗

𝐿 + 𝜇∗
𝐿)𝐿,

so that following by the Gronwall inequality is

lim sup
𝑡→∞

𝐿(𝑡) ≤
𝜎∗
𝐸𝐾𝐸

𝜎∗
𝐿 + 𝜇∗

𝐿
= 𝐿◊.

With the bounds from above in the equations, it is similarly found that:

lim sup
𝑡→∞

𝑃 (𝑡) ≤
𝜎∗
𝐿𝐿

◊

𝜎∗
𝑃 + 𝜇∗

𝑃
= 𝑃◊.
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Let 𝑁𝑚𝑠 = 𝑆𝑚𝑠 + 𝐸𝑚𝑠 + 𝐼𝑚𝑠 and 𝑁𝑚𝑟 = 𝑆𝑚𝑟 + 𝐸𝑚𝑟 + 𝐼𝑚𝑟. Using the above equation, furthermore it can
be shown for adult mosquito groups:

𝑁̇𝑚𝑠 = 𝜎𝑃 (𝑇 )(1 − 𝑓 )𝑃 − (𝜇𝑚𝑠(𝑡) + 𝜖𝐵𝐶𝐵𝛿𝐵)𝑁𝑚𝑠 ≤ 𝜎∗
𝑃 (1 − 𝑓 )𝑃◊ − (𝜇∗

𝑚𝑠 + 𝜖𝐵𝐶𝐵𝛿𝐵)𝑁𝑚𝑠,

from which it follows

lim sup
𝑡→∞

𝑁𝑚𝑠(𝑡) ≤
𝜎∗
𝑃 (1 − 𝑓 )𝑃◊

𝜇∗
𝑚𝑠 + 𝜖𝐵𝐶𝐵𝛿𝐵

= 𝑁◊
𝑚𝑠.

and similarly,

lim sup
𝑡→∞

𝑁𝑚𝑟(𝑡) =
𝜎∗
𝑃 (𝑓 )𝑃

◊

𝜇∗
𝑚𝑟 + 𝜖𝐵𝐶𝐵𝛿𝐵(1 − 𝑢)

= 𝑁◊
𝑚𝑟.

Lastly, the human compartment can be shown:

𝑁̇𝐻 = 𝜋𝐻 − 𝜇𝐻𝑁𝐻 (𝑡) − 𝛿𝐻𝐼𝐻 (𝑡) ≤ 𝜋𝐻 − 𝜇𝐻𝑁𝐻 (𝑡).

It follows that 𝑑𝑁𝐻∕𝑑𝑡 < 0 if 𝑁𝐻 (𝑡) > 𝜋𝐻∕𝜇𝐻 . A standard comparison theorem can be used so
that 𝑁𝐻 (𝑡) ≤ 𝑁𝐻 (0)𝑒−𝜇𝐻 (𝑡) + 𝜋𝐻

𝜇𝐻
[1 − 𝑒−𝜇𝐻 (𝑡)]. Thus, 𝑁𝐻 ≤ 𝜋𝐻∕𝜇𝐻 if 𝑁𝐻 (0) ≤ 𝜋𝐻∕𝜇𝐻 . Additionally, if

𝑁𝐻 (0) > 𝜋𝐻∕𝜇𝐻 , then 𝑁𝐻 (𝑡) → 𝜋𝐻∕𝜇𝐻 as 𝑡 → ∞. That is,

lim sup
𝑡→∞

𝑁𝐻 (𝑡) ≤ 𝜋𝐻∕𝜇𝐻 = 𝑁◊
𝐻 .

Lemma 1. All solutions of the model with non-negative initial values remain non-negative and
bounded for all 𝑡 > 0.

Proof. The right side of the equations in the model are continuously differentiable and locally-
Lipschitz at 𝑡 = 0. From the Picard-Lindelöf theorem, it follows that a unique solution of the model
with non-negative initial conditions exists in a region Ω for all 𝑡 > 0. Since it was assumed that
(1 − 𝐸

𝐾𝐸
)+ ≥ 0 for all 𝑡 ≥ 0, then 𝐸(𝑡) ≤ 𝐾𝐸 for all 𝑡 ≥ 0. Therefore, 𝐸(𝑡) ≤ 𝐾𝐸 for all 𝑡 ≥ 0. From the

other equations that follow, the solutions of the other state variables from themodel are bounded
and the solutions of the model are bounded.

Theorem 1. The region Ω = Ω1 ×Ω2 ×Ω3 ×Ω4 is positively-invariant and attracts all solutions of the
model.
Let

Ω1 =
(

𝐵1 ∈ ℝ4
+ ∶ 𝑁𝐻 (𝑡) ≤

Π𝐻

𝜇𝐻

)

,

Ω2 =
(

𝐵2 ∈ ℝ3
+ ∶ 𝑁𝑚𝑠 ≤ 𝑁◊

𝑚𝑠

)

,

Ω3 =
(

𝐵3 ∈ ℝ3
+ ∶ 𝑁𝑚𝑟 ≤ 𝑁◊

𝑚𝑟

)

,

Ω4 =
(

𝐵4 ∈ ℝ3
+ ∶ 𝐸𝑚 ≤ 𝐾𝐸 , 𝐿𝑚 ≤ 𝐿◊, 𝑃𝑚 ≤ 𝑃◊

)

.
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Proof. This result follows from Lemma 1. The invariance of Ω4 is established from if 𝐸(𝑡) > 𝐾𝐸 ,
then 𝐸̇ < 0. Also, 𝐿̇ < 0 when 𝐿(𝑡) > 𝐿◊(𝑡) and 𝑃̇ < 0 when 𝑃 (𝑡) > 𝑃◊(𝑡). Similarly, for both Ω2

and Ω3, 𝑁̇𝑣𝑠 < 0 when 𝑁𝑣𝑠(𝑡) > 𝑁◊
𝑣𝑠(𝑡) and 𝑁̇𝑣𝑟 < 0 when 𝑁𝑣𝑟(𝑡) > 𝑁◊

𝑣𝑟(𝑡). Lastly, for Ω1, 𝑁̇𝐻 < 0
when 𝑁𝐻 (𝑡) > 𝑁◊

𝐻 (𝑡). Hence, the region Ω = Ω1 × Ω2 × Ω3 × Ω4 is positively invariant with respect
to the model and attracts all positive solutions, since the sub-regions Ω𝑖(𝑖 = 1, 2, 3, 4) are positively-
invariant and attracting with respect to the model, therefore it is sufficient to study the model
within this range.

4.1.2 Existence and Asymptotic Stability of Equilibria
Here the dynamics of the autonomous version of themodel are studiedwhereweather-dependant
parameters of the model are considered to be constants. It is convenient for the following ento-
mological quantity to be identified, 𝑟0, which is the net production number which measures the
average rate at which new adult female mosquitoes are produced. We begin with the following
equation:

0 = 𝐸̇ = 𝜂𝐸(𝑀∗) −
𝜂𝐸(𝐸∗)(𝑀∗)

𝐾𝐸
−𝐾1(𝐸∗)

= 𝐾𝐸𝜂𝐸(𝑀∗) −
𝜂𝐸(𝐸∗)(𝑀∗)𝐾𝐸

𝐾𝐸
−𝐾1(𝐸∗)𝐾𝐸 ,

⟹ 𝐸∗ =
𝜂𝐸(𝑀∗)𝐾𝐸

𝐾𝐸𝐾1 + 𝜂𝐸(𝑀∗)
.

Following the simplification for 𝐸∗, the following equations must be solved so that𝑀∗ may be
substituted to solve for 𝐸∗. This is done by using subsequent equation solutions in the following
order to write𝑀∗ in terms of 𝐸∗.

𝐿∗ =
𝜎𝐸(𝐸∗)
𝐾2

,

𝑃 ∗ =
𝜎𝐿(𝐿∗)
𝐾3

=
𝜎𝐿𝜎𝐸(𝐸∗)
𝐾2𝐾3

,

𝑀∗ =
𝑞𝜎𝑃 (𝑃 ∗)

𝐾4
=

𝑞𝜎𝑃𝜎𝐿𝜎𝐸(𝐸∗)
𝐾2𝐾3𝐾4

,

where,

𝐾1 = 𝜎𝐸 + 𝜇𝐸 , 𝐾2 = 𝜎𝐿 + 𝜇𝐿,

𝐾3 = 𝑞𝜎𝑃 + 𝜇𝑃 , 𝐾4 = 𝜇𝑚𝑟 + 𝜖𝐵𝐶𝐵𝛿𝐵(1 − 𝑢).
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Now 𝐸∗ is solved with substitution giving:

𝐸∗ =
𝜂𝐸

(

𝑞𝜎𝑃 𝜎𝐿𝜎𝐸 (𝐸∗)
𝐾2𝐾3𝐾4

)

𝐾𝐸

𝐾1𝐾𝐸 + 𝜂𝐸
(

𝑞𝜎𝑃 𝜎𝐿𝜎𝐸 (𝐸∗)
𝐾2𝐾3𝐾4

) ,

𝐾1𝐾𝐸 +
𝜂𝐸𝑞𝜎𝑃𝜎𝐿𝜎𝐸(𝐸∗)

𝐾2𝐾3𝐾4
=

𝜂𝐸𝑞𝜎𝑃𝜎𝐿𝜎𝐸
𝐾2𝐾3𝐾4

𝐾𝐸 ,

𝐾1𝐾2𝐾3𝐾4𝐾𝐸 + 𝜂𝐸𝑞𝜎𝑃𝜎𝐿𝜎𝐸(𝐸∗) = 𝜂𝐸𝑞𝜎𝑃𝜎𝐿𝜎𝐸𝐾𝐸 ,

𝐸∗ =
(𝜂𝐸𝑞𝜎𝑃𝜎𝐿𝜎𝐸 −𝐾1𝐾2𝐾3𝐾4)𝐾𝐸

𝜂𝐸𝑞𝜎𝑃𝜎𝐿𝜎𝐸
,

𝐸∗ = 𝐾𝐸

(

1 −
𝐾1𝐾2𝐾3𝐾4

𝜂𝐸𝑞𝜎𝑃𝜎𝐿𝜎𝐸

)

,

Hence,

𝑟0 =
𝜂𝐸𝑞𝜎𝑃𝜎𝐿𝜎𝐸
𝐾1𝐾2𝐾3𝐾4

.

Similarly to the method of inspection described by [29] ,𝑟0 can be determined as follows: it is the
product of the rate at which the eggs are laid by adult female mosquitoes (𝜂𝐸), the probability that
the eggs survive and hatch into larvae

(

𝜎𝐸
𝐾1

)

, the probability that the larvae survive and develop

into pupae
(

𝜎𝐿
𝐾2

)

, the probability that the pupae survive and mature into adult female mosquitoes
(

𝑞𝜎𝑃
𝐾3

)

, and the average lifespan of an adult female mosquito
(

1
𝐾4

)

. The threshold quantity (𝑟0)
is similar to the vectorial reproduction number, for which mosquito population exists whenever
𝑟0 > 1 and no mosquito population exists for 𝑟0 < 1 at equilibrium [30].

Now the asymptotic properties of different entomological states and disease presence are ex-
plored for understanding model behavior and related thresholds. The autonomous model has:

(i) A trivial disease free equilibrium (DFE) where no mosquitoes exist:

1 = (𝑆∗
𝐻 , 𝐸

∗
𝐻 , 𝐼

∗
𝐻 , 𝑅

∗
𝐻 , 𝑆

∗
𝑚𝑠, 𝐸

∗
𝑚𝑠, 𝐼

∗
𝑚𝑠, 𝑆

∗
𝑚𝑟, 𝐸

∗
𝑚𝑟, 𝐼

∗
𝑚𝑟, 𝐸

∗, 𝐿∗, 𝑃 ∗) =
(

𝜋𝐻

𝜇𝐻
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

)

.
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(ii) A non-trivial sensitive-only disease-free boundary equilibrium:

2 = (𝑆∗
𝐻 , 0, 0, 0, 𝑆

∗
𝑚𝑠, 0, 0, 0, 0, 0, 𝐸

∗, 𝐿∗, 𝑃 ∗),

where, 𝑆∗
𝐻 = 𝜋𝐻

𝜇𝐻
, 𝑆∗

𝑚𝑠 =
𝜎𝑃 (1−𝑓 )𝑃 ∗

𝜇𝑚𝑠+𝜖𝐵𝐶𝐵𝛿𝐵
, 𝐸∗ = 𝐾𝐸

(

1 − 1
𝑟0

)

, 𝐿∗ = 𝜎𝐸𝐸∗

𝜎𝐿+𝜇𝐿
, and 𝑃 ∗ = 𝜎𝐿𝐿∗

𝜎𝑃+𝜇𝑃
.

(iii) A non-trivial resistant-only disease-free boundary equilibrium:

3 = (𝑆∗∗
𝐻 , 0, 0, 0, 0, 0, 0, 𝑆∗∗

𝑚𝑟, 0, 0, 𝐸
∗∗, 𝐿∗∗, 𝑃 ∗∗),

where, 𝑆∗∗
𝐻 = 𝜋𝐻

𝜇𝐻
, 𝑆∗∗

𝑚𝑟 =

𝜇𝑚𝑟 + 𝜖𝐵𝐶𝐵𝛿𝐵(1 − 𝑢), 𝐸; ∗∗= 𝐾𝐸

(

1 − 1
𝑟0

)

, 𝐿; ∗∗=
𝜎𝐿 + 𝜇𝐿, and 𝑃 ; ∗∗=
𝜎𝑃 + 𝜇𝑃 .

(iv) A non-trivial coexistence equilibrium which represents an equilibrium where the component of
each state variable of the model is nonzero:

4 = (𝑆∗∗∗
𝐻 , 𝐸∗∗∗

𝐻 , 𝐼∗∗∗
𝐻 , 𝑅∗∗∗

𝐻 , 𝑆∗∗∗
𝑚𝑠 , 𝐸

∗∗∗
𝑚𝑠 , 𝐼

∗∗∗
𝑚𝑠 , 𝑆

∗∗∗
𝑚𝑟 , 𝐸

∗∗∗
𝑚𝑟 , 𝐼

∗∗∗
𝑚𝑟 , 𝐸

∗∗∗, 𝐿∗∗∗, 𝑃 ∗∗∗).

The next generation operator method can be used to analyze the local asymptotic stability of
the DFE [31]. The associated matrix F (new infection terms) and matrix V (linear transition terms)
are given, respectively, by:

𝐹 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0 𝛽𝐻𝑚𝑠𝑆𝑚𝑠∗

𝑁∗
𝐻

0 0 0 0 0 0
0 0 0 0 0 𝛽𝐻𝑚𝑟𝑆𝑚𝑟∗

𝑁∗
𝐻

0 0 0 0 0 0
0 𝛽𝑚𝑠𝐻𝑆∗

𝐻

𝑁∗
𝐻

0 𝛽𝑚𝑟𝐻𝑆∗
𝐻

𝑁∗
𝐻

0 0

0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐸𝑚𝑠

𝐼𝑚𝑠
𝐸𝑚𝑟

𝐼𝑚𝑟
𝐸𝐻

𝐼𝐻

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

and,

𝑉 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜎𝑚𝑠 + 𝜇𝑚𝑠 0 0 0 0 0
−𝜎𝑚𝑠 𝜇𝑚𝑠 0 0 0 0
0 0 𝜎𝑚𝑟 + 𝜇𝑚𝑟 0 0 0
0 0 −𝜎𝑚𝑟 𝜇𝑚𝑟 0 0
0 0 0 0 𝜎𝐻 + 𝜇𝐻 0
0 0 0 0 −𝜎𝐻 𝛾𝐻 + 𝛿𝐻 + 𝜇𝐻

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐸𝑚𝑠

𝐼𝑚𝑠
𝐸𝑚𝑟

𝐼𝑚𝑟
𝐸𝐻

𝐼𝐻

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦
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The reproduction number (0) of the model which considers the absence of all insecticide-
based interventions, which in this model is only insecticide treated bed nets, is given by:

0 = 𝜌(𝐹𝑉 −1),

which gives,

0 =
√

0𝑚𝑠 +0𝑚𝑟

=
√

(

0𝑚𝑠𝐻 ×0𝐻𝑚𝑠
)

+
(

0𝑚𝑟𝐻 ×0𝐻𝑚𝑟
)

.

It is assumed in the model that the transmission rates between sensitive and resistant mosquito
classes are equal where 𝛽𝑚𝑠𝐻 = 𝛽𝑚𝑟𝐻 and 𝛽𝐻𝑚𝑠 = 𝛽𝐻𝑚𝑟, thus are denoted as 𝛽𝑚𝐻 and 𝛽𝐻𝑚, respectively.
Additionally, it is assumed in the model that the natural death rates and the developmental rates
of sensitive and resistant mosquito classes are equal where 𝜇𝑚𝑟 = 𝜇𝑚𝑠 and 𝜎𝑚𝑟 = 𝜎𝑚𝑠 respectively,
thus are denoted as 𝜇𝑚 and 𝜎𝑚, respectively. Each of the constituent values at DFE are solved as,

𝑚𝑠𝐻 = 𝑚𝑟𝐻 =
𝛽𝑚𝐻𝑆∗

𝐻𝜎𝐻
𝑁∗

𝐻 (𝜎𝐻 + 𝜇𝐻 )(𝛾𝐻 + 𝜇𝐻 + 𝛿𝐻 )
,

𝐻𝑚𝑠 =
𝛽𝐻𝑚𝑆∗

𝑚𝑠𝜎𝑚
𝑁∗

𝐻 (𝜎𝑚 + 𝜇𝑚)𝜇𝑚
,

𝐻𝑚𝑟 =
𝛽𝐻𝑚𝑆∗

𝑚𝑟𝜎𝑚
𝑁∗

𝐻 (𝜎𝑚 + 𝜇𝑚)𝜇𝑚
.

Also note for the DFE conditions,

𝑆∗
𝑚𝑠 =

𝜎𝑃 (1 − 𝑓 )𝑃 ∗

𝜇𝑚
,

𝑆∗
𝑚𝑟 =

𝜎𝑃 (𝑓 )𝑃 ∗

𝜇𝑚
.

The value 𝐶 which is similar to 0 (although it also contains bed net coverage) is given as:

𝐶 =
√

(

𝐶𝑚𝑠𝐻 ×𝐶𝐻𝑚𝑠
)

+
(

𝐶𝑚𝑟𝐻 ×𝐶𝐻𝑚𝑟
)

,
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but now with each of the constituent  values solved as,

𝑚𝑠𝐻 = 𝑚𝑟𝐻 =
(1 − 𝜖𝐵𝐶𝐵)𝛽𝑚𝐻𝑆∗

𝐻𝜎𝐻
𝑁∗

𝐻 (𝜎𝐻 + 𝜇𝐻 )(𝛾𝐻 + 𝜇𝐻 + 𝛿𝐻 )
,

𝐻𝑚𝑠 =
𝛽𝐻𝑚𝑆∗

𝑚𝑠𝜎𝑚
𝑁∗

𝐻 (𝜎𝑚 + 𝜇𝑚 + 𝜖𝐵𝐶𝐵𝛿𝐵)(𝜇𝑚 + 𝜖𝐵𝐶𝐵𝛿𝐵)
,

𝐻𝑚𝑟 =
𝛽𝐻𝑚𝑆∗

𝑚𝑟𝜎𝑚
𝑁∗

𝐻 (𝜎𝑚 + 𝜇𝑚 + 𝜖𝐵𝐶𝐵𝛿𝐵)(𝜇𝑚 + +𝜖𝐵𝐶𝐵𝛿𝐵)
.

where for the DFE conditions,

𝑆∗
𝑚𝑠 =

𝜎𝑃 (1 − 𝑓 )𝑃 ∗

𝜇𝑚 + 𝜖𝐵𝐶𝐵𝛿𝐵
, 𝑆∗

𝑚𝑟 =
𝜎𝑃 (𝑓 )𝑃 ∗

𝜇𝑚 + 𝜖𝐵𝐶𝐵𝛿𝐵(1 − 𝑢)
.

The results below follow from Theorem 2 in [31].

Lemma 2: The trivial disease free equilibrium is locally-asymptotically stable if 0(𝐶) < 1, and
unstable if 0(𝐶) > 1.
The0 of the model is the geometric mean of the reproduction numbers for human-to-mosquito
(0,𝐻𝑀 ,𝐶,𝐻𝑀 ) andmosquito-to-human (0,𝑀𝐻 ,𝐶,𝑀𝐻 ) transmission interactions. Due to two gen-
erations being required to complete the human-vector-human or vector-human-vector malaria
transmission cycle, the geometric mean is present. The general epidemiological implication of this
lemma is that a small influx of infected mosquitoes would not generate a large outbreak when0

is less than unity and the disease would die out over time. Although, this may not always be the
case due to backwards bifurcation as explored in [32].

As mentioned by [19], it can be shown using the next generation operator method that the
associated reproduction number of the autonomous model is given by:

0𝑚𝑠 =
√

𝐻𝑚𝑠 ×𝑚𝑠𝐻 ,

and

0𝑚𝑟 =
√

𝐻𝑚𝑟 ×𝑚𝑟𝐻 ,

where separate calculations done by inspection for 0𝑚𝑠 and 0𝑚𝑟 shows, respectively:

𝑚𝑠𝐻 = (1 − 𝜖𝐵𝐶𝐵)𝛽𝑚𝑠𝐻

(

𝜎𝐻
𝜎𝐻 + 𝜇𝐻

)(

1
𝛾𝐻 + 𝜇𝐻 + 𝛿𝐻

)

,

𝐻𝑚𝑠 =
(𝛽𝐻𝑀𝑆∗

𝑚𝑠

𝑁∗
𝐻

)(

𝜎𝑚𝑠
𝜎𝑚𝑠 + 𝜇𝑚𝑠 + 𝜖𝐵𝐶𝐵𝛿𝐵

)

,
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and

𝑚𝑟𝐻 = (1 − 𝜖𝐵𝐶𝐵)𝛽𝑚𝑟𝐻

(

𝜎𝐻
𝜎𝐻 + 𝜇𝐻

)(

1
𝛾𝐻 + 𝜇𝐻 + 𝛿𝐻

)

,

𝐻𝑚𝑟 =
(𝛽𝐻𝑀𝑆∗

𝑚𝑟

𝑁∗
𝐻

)(

𝜎𝑚𝑟
𝜎𝑚𝑟 + 𝜇𝑚𝑟 + 𝜖𝐵𝐶𝐵𝛿𝐵(1 − 𝑢)

)

,

thus giving the results:

0𝑚𝑠 =

√

(1 − 𝜖𝐵𝐶𝐵)𝛽𝑚𝑠𝐻𝜎𝐻𝛽𝐻𝑀𝑆∗
𝑚𝑠𝜎𝑚𝑠

(𝜎𝐻 + 𝜇𝐻 )(𝛾𝐻 + 𝜇𝐻 + 𝛿𝐻 )𝑁∗
𝐻 (𝜎𝑚𝑠 + 𝜇𝑚𝑠 + 𝜖𝐵𝐶𝐵𝛿𝐵)

,

and

0𝑚𝑟 =

√

(1 − 𝜖𝐵𝐶𝐵)𝛽𝑚𝑟𝐻𝜎𝐻𝛽𝐻𝑀𝑆∗
𝑚𝑟𝜎𝑚𝑟

(𝜎𝐻 + 𝜇𝐻 )(𝛾𝐻 + 𝜇𝐻 + 𝛿𝐻 )𝑁∗
𝐻 [𝜎𝑚𝑟 + 𝜇𝑚𝑟 + 𝜖𝐵𝐶𝐵𝛿𝐵(1 − 𝑢)]

.

Theorem 2: Relating to the competitive-exclusion principle, the sensitive-only (resistant-only)
boundary equilibrium is locally-asymptotically stable if 0𝑚𝑠(0𝑚𝑟) > 1 and 0𝑚𝑟(0𝑚𝑠) < 1.

Conjecture 1: The model has a non-trivial coexistence equilibrium where all the states are
nonzero and locally-asymptotically stable whenever 𝑚𝑖𝑛{0𝑚𝑠,0𝑚𝑟} ≥ 1.

4.2 Application results
As stated before, the application was primarily built using Python’s backend framework Flask, and
HTML/CSS and JavaScript in the frontend. Themap shown to the user is generated using the Open
Layers API in JavaScript. The code corresponding to the model was written in Python, and solved
as a system of ordinary differential functions, using the odeint command from the scipy library.
Data handling and API calls were done using Python as well.

Here is a how a normal user interaction would work. Every time a user clicked on the "Calculate
Risk in my Area" button as shown in Figure 7, a request is sent to the backend along with the coor-
dinates of the user’s location. Several pieces of data are acquired, either locally stored or through
third-party API calls, as discussed in Section 3.1. After acquiring this data, the model is solved us-
ing the odeint command and the entomological inoculation rate (EIR) is generated according to the
equations mentioned previously. Recall that the equation for EIR as stated in section 2.5 is

𝐸𝐼𝑅 = 𝛽(1 − 𝜖𝐵𝑐𝐵)
(

𝐼𝑚𝑠 + 𝐼𝑚𝑟
𝑁𝐻

)

.

After themodel is solved as stated before, the final values of 𝐼𝑚𝑠, 𝐼𝑚𝑟, and𝑁𝐻 are taken and plugged
into the EIR equation. Likewise, the value of 𝛽 is calculated from the function defined in Table 4,
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with 𝜖𝐵 and 𝑐𝐵 sourced fromAPIs or locally saved datasets. This EIR value is then used to inform the
relative risk of the user, which is shown to the user visually using the graph that is subsequently
generated. The threshold for what should be considered high risk proved difficult to find during
our research. An EIR value greater than 0.03 per day was chosen to be high risk in our MEWS, since
it equates to around 10 infectious bites per year, but this value can and should be modified with
further research.

There are several features of this application that makes it user-friendly and effective, as we
have claimed. For starters, the application supports multiple African languages, including some
of the most common ones, such as French, Swahili, Yoruba, and Igbo. It links several resources
in the toggle bar to the left for the user to learn more about malaria, from reputable sources like
the WHO. The application itself is extremely easy to use, with only needing the user to click the
one button in the center of the screen. The results do not demand the user to be educated about
malaria or compartmental models. It is shown in their local preferred language, as well as through
the use of colors, as demonstrated in Figure 7. Additionally, the fact that this is available as both
a website and mobile application ensures that the target audience is broadened, and the user is
provided with the choice and convenience of using either. These features were included after we
identified the shortcomings of some of the other MEWS that we stated in the Introduction.

Figure 7. Sample outputs of the PWA based on different locations. The one on the left, where there is high
risk, is the Nigerian city of Abuja. The right, where there is low risk, is Tempe, Arizona.
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The above results correspond to the following model outputs in the backend. As can be seen,
Tempe barely has any infection going around, as a result of it having historically lowmalaria preva-
lence and the lack of a high population of infected mosquitoes or humans, and so the EIR is essen-
tially 0. However, there is a large number of infected mosquitoes and humans in Abuja, therefore
leading to the warning shown to the user, with the EIR value for this city being around 0.4, meaning
on average, a person will be bitten around 0.4 times by infectious mosquitoes every day. Although
thismay seem like a small number, it corresponds to around 150 infectious bites per year, meaning
a person has relatively high risk of contracting malaria in this location. In extremely holoendemic
areas, EIR values can go up to a whopping 500 per year. Please do note that the graphs are bound
to change based on the initial starting conditions, which are included in Table 3 above.

For both locations in the plots below, the populations of mosquitoes show asymptotic behavior
over time as it nears the carrying capacity. The susceptible human population decays at the death
rate of humans, and specifically for Abuja, the infected human class recovers over time as well.
However, this is where the difference in the level of risk of both locations come into picture. The
population of susceptible humans falls drastically in Abuja; this is because, unlike Tempe where
people are mostly dying of non-malaria related causes, people in Abuja are contracting and dying
of malaria at higher numbers, leading to a huge drop in their population and consequently a high
EIR value.
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Figure 8. Output of the compartmental model for the city of Abuja, Nigeria. Top left corresponds to the
Immature/Aquatic Mosquito Stage, top right to the Sensitive Adult Mosquito Stage, bottom left to the
Resistant Adult Mosquito Stage, and bottom right to the Human dynamics. Please note the use of scientific
notation in the plot axes of the top two and the bottom left graphs.
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Figure 9. Output of the compartmental model for the city of Tempe, Arizona. Top left corresponds to the
Immature/Aquatic Mosquito Stage, top right to the Sensitive Adult Mosquito Stage, bottom left to the
Resistant Adult Mosquito Stage, and bottom right to the Human dynamics. Please note the use of scientific
notation in the plot axes for the top left graph.

5. Discussion and Conclusion
We have presented a practical and important tool for preventing additional malaria cases through
a web andmobile application. Used in combination with other preventivemeasures, such as LLINs
and ITNs, the application will be highly effective in helping prevent new cases. Insecticide resis-
tance is important to consider since it affects transmission rates, thus it is used in the application’s
mathematical model. Lastly, the application is user-friendly (simple to use and requires minimal
interpretation from the user) and accessible to many (available in multiple languages).

In this study, adult mosquitoes and humans are given an SEI and SEIR model respectively in
order to properly observe transmission. Both adult mosquitoes and humans are susceptible to
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malaria. In addition, they both go through an exposed stage before becoming infectious. However,
it is assumed that adult mosquitoes do not recover from malaria in contrast to humans. Bed
net usage is also taken into consideration in the adult mosquito and human dynamics because it
affects the rate of transmission.

Although immature mosquitoes cannot transmit malaria, they are an essential component in
the mathmodel. Without it, there could possibly be overestimation or underestimation of malaria
burden [16]. As pupae mature into adults and adults reproduce to lay eggs, it is evident that im-
mature and adult mosquitoes cannot be independently observed. The parameters in the imma-
ture stage are mostly temperature dependent, and since the adult dynamics is highly dependent
on the immature stage and the human dynamics is highly dependent on adult mosquitoes, the
overall model is dependent on the temperature. Temperature values for these parameters are
obtained through a particular parameter in the immature dynamic, carrying capacity (𝐾𝐸), which
is dependent on precipitation since mosquitoes lay their eggs in bodies of water. The carrying ca-
pacity of eggs determines the maximum number of eggs to be laid in a particular region, which in
turn determines the number of adult mosquitoes in that region. Therefore, carrying capacity has
an indirect effect on the rate of transmission.

Using some values from the differential equations of the mosquito and human dynamics, the
entomological inoculation rate (EIR) informs the risk of infection. That result is evaluated and then
translated into a simple, user-friendly message, notifying the user of whether he or she is in a high
or low risk region. Another way to determine risk is calculating the basic reproduction number
(𝑅0). Ideally, EIR and 𝑅0 would both be used as additional tools for determining an individual’s
risk. Unfortunately, due to its complexity, 𝑅0’s results were impractical. Thus, only EIR was used to
determine risk of infection.

The work presented in this paper provides a means of predicting an individual’s risk of con-
tracting malaria in a particular region. Such a prediction is vital in combating the spread of malaria
because it can prevent an individual from traveling to a high-risk area, or it could encourage the in-
dividual to take protectivemeasures, such as sleeping under a bed net or taking anti-malarial drugs
before traveling. Using the differential equations in the mathematical model, we monitor possi-
ble transmission by calculating the number of immature mosquitoes, potential infectious adult
mosquitoes, and infected humans in each region. The results from the differential equations pro-
vide the necessary values for calculating EIR, which will inform the user’s risk. The intention is to
format this early warning system as a mobile application and a website so the public can have
access to it and stay informed.

Theweather components including temperature and rainfall used in themodel were integrated
based on the previous work of other authors who fit parameters from fitting data sets with consid-
eration of other models. Alternative models should also be taken into consideration such as the
agent-based modeling approaches that emphasize weather effects on malaria incidence [33][34].

Although our dynamic MEWS is an important step forward in providing location and time-
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specific malaria risk assessments to susceptible individuals, this study has several limitations. We
could have worked with HydroSheds data to better inform the carrying capacity parameter for
eggs in the aquatic stage. Furthermore, it is possible to obtain more granular weather data going
back more than a year in the past. However, this requires a paid subscription. There are many
such possibilities for improving upon the model we have used in this application, as well as the
early warning system as a whole. Our main goal was to take the first step in creating an actual
product by tackling some of the issues other MEWS presented, since to our knowledge, no one
has attempted to do anything similar. We hope it will encourage others to adapt our model and
build upon it, with the vision of eradicatingmalaria, or at the very least, act as a temporary remedial
until an effective vaccine or better forms of combating malaria are discovered.

Acknowledgments
We would like to thank Dr. Fabio Milner, Director of the Simon A. Levin Mathematical, Computa-
tional and Modeling Sciences Center (Levin Center), for giving us the opportunity to participate in
the Quantitative Research in the Life and Social Sciences program. We would also like to thank
Co-Directors Dr. Abba Gumel and Dr. John Nagy for their efforts in planning and executing the
program’s instruction and activities. We also recognize the work of the many administrative staff
and tutors who supported this effort. This research was conducted as part of 2022 QRLSSP at the
Levin Center (MCMSC) at Arizona State University (ASU). This project has been partially supported
by grants from the National Science Foundation (NSF Grant-DMS-1757968 and NSF Grant FAIN-
2150492), the National Security Agency (NSA Grant H98230-20-1-0164), the Office of the President
of ASU, and the Office of the Provost of ASU. We are especially grateful to Dr. Abba Gumel and
Dr. Steffen Eikenberry for their guidance, as well as Hovig Artinian, Theophilus Kwofie, and Jordy
Rodriguez for their support throughout the research.

References
[1] Smith, M. L., & Styczynski, M. P. (2018). Systems Biology-Based Investigation of Host-Plasmodium

Interactions. Trends in parasitology, 34(7), 617–632.

[2] Max Roser andHannah Ritchie (2019) - "Malaria". Published online at OurWorldInData.org. Retrieved
from: https://ourworldindata.org/malaria [Online Resource]

[3] Geneva: World Health Organization. (2021). World malaria report 2021. World Health Organization.
https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2021

[4] Gallup, J., & Sachs, J. (2001). The economic burden of malaria, The American Journal of Tropical
Medicine and Hygiene Am J Trop Med Hyg, 64(1_suppl). https://www.ajtmh.org/view/journals/tpmd/
64/1_suppl/article-p85.xml

                                                                                                         398

 https://ourworldindata.org/malaria
https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2021
https://www.ajtmh.org/view/journals/tpmd/64/1_suppl/article-p85.xml
https://www.ajtmh.org/view/journals/tpmd/64/1_suppl/article-p85.xml


[5] Centers for Disease Control and Prevention. (2021, December 16). CDC -Malaria - malaria worldwide
- impact of malaria. Centers for Disease Control and Prevention. Retrieved from https://www.cdc.gov/
malaria/malaria_worldwide/impact.html

[6] Binka, F. N., Indome, F., & Smith, T. (1998). Impact of spatial distribution of permethrin-impregnated
bed nets on child mortality in rural northern Ghana., The American journal of tropical medicine and
hygiene, 59(1), 80-85. https://www.ajtmh.org/view/journals/tpmd/59/1/article-p80.xml

[7] Eikenberry, S.E., Gumel, A.B. (2018). Mathematical modeling of climate change andmalaria transmis-
sion dynamics: a historical review. J. Math. Biol. 77, 857–933.https://doi.org/10.1007/s00285-018-1229-7

[8] Hemingway, J., Ranson, H., Magill, A., Kolaczinski, J., Fornadel, C., Gimnig, J., Coetzee, M., Simard,
F., Roch, D. K., Hinzoumbe, C. K., Pickett, J., Schellenberg, D., Gething, P., Hoppé, M., & Hamon, N.
(2016). Averting amalaria disaster: will insecticide resistance derail malaria control?. Lancet (London,
England), 387(10029), 1785–1788. https://doi.org/10.1016/S0140-6736(15)00417-1

[9] Grover-Kopec, E., Kawano, M., Klaver, R. W., Blumenthal, B., Ceccato, P., & Connor, S. J. (2005). An
online operational rainfall-monitoring resource for epidemicmalaria early warning systems in Africa.
Malaria Journal, 4(1), 1-5. https://link.springer.com/article/10.1186/1475-2875-4-6

[10] Malaria early warning system. Climate Data Library. (n.d.). Retrieved July 15, 2022, from https://iridl.
ldeo.columbia.edu/maproom/Health/Regional/Africa/Malaria/System.html

[11] Win Han Oo, Win Htike, Cutts, J.C. et al. A mobile phone application for malaria case-based reporting
to advance malaria surveillance in Myanmar: a mixed methods evaluation. Malar J 20, 167 (2021).
https://doi.org/10.1186/s12936-021-03701-6

[12] Smith, D. L., Battle, K. E., Hay, S. I., Barker, C.M., Scott, T.W., &McKenzie, F. E. (2012). Ross,macdonald,
and a theory for the dynamics and control ofmosquito-transmitted pathogens. PLoS pathogens, 8(4),
e1002588. https://doi.org/10.1371/journal.ppat.1002588

[13] Lysenko, A., & Semashko, I. (1968). Geography ofmalaria. amedical-geographical study of an ancient
disease. Itogi Nauk Med Geogr. Retrieved from https://endmalaria.org/sites/default/files/lysenko.pdf

[14] Eikenberry, S.E., Gumel, A.B. (2019). Mathematics of Malaria and Climate Change. In: Kaper, H.,
Roberts, F. (eds) Mathematics of Planet Earth. Mathematics of Planet Earth, vol 5. Springer, Cham.
https://doi.org/10.1007/978-3-030-22044-0_4

[15] Centers for Disease Control and Prevention. (2022). Where malaria occurs. Centers for Disease Con-
trol and Prevention. https://www.cdc.gov/malaria/about/distribution.html

[16] Agusto, F. B., Gumel, A. B., & Parham, P. E. (2015). Qualitative assessment of the role of temperature
variations on malaria transmission dynamics. Journal of Biological Systems, 23(04), 1550030. https:
//www.worldscientific.com/doi/abs/10.1142/s0218339015500308

                                                                                                       399

https://www.cdc.gov/malaria/malaria_worldwide/impact.html
https://www.cdc.gov/malaria/malaria_worldwide/impact.html
https://www.ajtmh.org/view/journals/tpmd/59/1/article-p80.xml
https://doi.org/10.1007/s00285-018-1229-7
https://doi.org/10.1016/S0140-6736(15)00417-1
https://link.springer.com/article/10.1186/1475-2875-4-6
https://iridl.ldeo.columbia.edu/maproom/Health/Regional/Africa/Malaria/System.html
https://iridl.ldeo.columbia.edu/maproom/Health/Regional/Africa/Malaria/System.html
https://doi.org/10.1186/s12936-021-03701-6
https://doi.org/10.1371/journal.ppat.1002588
https://endmalaria.org/sites/default/files/lysenko.pdf
https://doi.org/10.1007/978-3-030-22044-0_4
https://www.cdc.gov/malaria/ about/distribution.html
https://www.worldscientific.com/doi/abs/10.1142/s0218339015500308
https://www.worldscientific.com/doi/abs/10.1142/s0218339015500308


[17] White, M. T., Griffin, J. T., Churcher, T. S., Ferguson, N. M., Basáñez, M. G., & Ghani, A. C. (2011).
Modelling the impact of vector control interventions on Anopheles gambiae population dynamics.
Parasites & vectors, 4(153). https://doi.org/10.1186/1756-3305-4-153

[18] Mohammed-Awel, J., Iboi, E. A., & Gumel, A. B. (2020). Insecticide resistance and malaria control: A
genetics-epidemiology modeling approach. Mathematical biosciences, 325, 108368. https://doi.org/
10.1016/j.mbs.2020.108368

[19] Kamaldeen Okuneye, Steffen E. Eikenberry & Abba B. Gumel. (2019). Weather-driven malaria trans-
mission model with gonotrophic and sporogonic cycles. Journal of Biological Dynamics, 13, 288-324.

[20] Mohammed-Awel, J., & Gumel, A. B. (2019). Mathematics of an epidemiology-genetics model
for assessing the role of insecticides resistance on malaria transmission dynamics. Mathe-
matical Biosciences, 312, 33-49. https://www-sciencedirect-com.ezproxy1.lib.asu.edu/science/article/pii/
S0025556417306636#fig0001

[21] Enahoro, I., Eikenberry, S., Gumel, A. B., Huijben, S., & Paaijmans, K. (2020). Long-lasting insecticidal
nets and the quest for malaria eradication: a mathematical modeling approach. Journal of Mathe-
matical Biology, 81(1), 113-158. https://link.springer.com/article/10.1007/s00285-020-01503-z

[22] Beck-Johnson, L. M., Nelson, W. A., Paaijmans, K. P., Read, A. F., Thomas, M. B., & Bjørnstad, O. N.
(2013). The effect of temperature on Anopheles mosquito population dynamics and the potential
for malaria transmission. PloS one, 8(11).

[23] Parham, P. E., & Michael, E. (2010). Modeling the effects of weather and climate change on
malaria transmission. Environmental health perspectives, 118(5), 620–626. https://doi.org/10.1289/
ehp.0901256

[24] WorldClim. Maps, graphs, tables, and data of the global climate. 2022. https://worldclim.org/

[25] WeatherAPI. JSONandXMLWeather API andGeolocationDeveloper API. 2022. https://www.weatherapi.
com/

[26] Bhatt, S., Weiss, D. J., Cameron, E., Bisanzio, D., Mappin, B., Dalrymple, U., Battle, K., Moyes, C. L.,
Henry, A., Eckhoff, P. A., Wenger, E. A., Briët, O., Penny, M. A., Smith, T. A., Bennett, A., Yukich, J.,
Eisele, T. P., Griffin, J. T., Fergus, C. A., Lynch, M., . . . Gething, P. W. (2015). The effect of malaria
control on Plasmodium falciparum in Africa between 2000 and 2015. Nature, 526(7572), 207–211.
https://doi.org/10.1038/nature15535

[27] WorldPop Hub. Open and high-resolution geospatial data on population distributions, demographic
and dynamics, with a focus on low and middle income countries. 2022. https://hub.worldpop.org/doi/
10.5258/SOTON/WP00004

[28] Malaria Atlas Project. International research collaboration that tracksmalaria data primarily in Africa.
2022. https://malariaatlas.org/

                                                                                                       400

https://doi.org/10.1186/1756-3305-4-153
https://doi.org/10.1016/j.mbs.2020.108368
https://doi.org/10.1016/j.mbs.2020.108368
https://www-sciencedirect-com.ezproxy1.lib.asu.edu/science/article/pii/S0025556417306636#fig0001
https://www-sciencedirect-com.ezproxy1.lib.asu.edu/science/article/pii/S0025556417306636#fig0001
https://link.springer.com/article/10.1007/s00285-020-01503-z
https://doi.org/10.1289/ehp.0901256
https://doi.org/10.1289/ehp.0901256
https://worldclim.org/
https://www.weatherapi.com/
https://www.weatherapi.com/
https://doi.org/10.1038/nature15535
https://hub.worldpop.org/doi/10.5258/SOTON/WP00004
https://hub.worldpop.org/doi/10.5258/SOTON/WP00004
https://malariaatlas.org/


[29] Brozak, S. J., Mohammed-Awel, J., & Gumel, A. B. (2022). Mathematics of a single-locus model for as-
sessing the impacts of pyrethroid resistance and temperature on population abundance of malaria
mosquitoes. Infectious Disease Modelling, 7(3), 277–316. https://doi.org/10.1016/j.idm.2022.05.007

[30] Okuneye, K., Abdelrazec, A., & Gumel, A. B. (2018). Mathematical analysis of a weather-driven model
for the population ecology of mosquitoes. Mathematical biosciences and engineering : MBE, 15(1),
57–93. https://doi.org/10.3934/mbe.2018003

[31] Van den Driessche, P., & Watmough, J. (2002). Reproduction numbers and sub-threshold endemic
equilibria for compartmental models of disease transmission. Mathematical biosciences, 180(1-2),
29-48.

[32] Garba, S. M., Gumel, A. B., & Abu Bakar, M. R. (2008). Backward bifurcations in dengue transmission
dynamics. Mathematical biosciences, 215(1), 11–25. https://doi.org/10.1016/j.mbs.2008.05.002

[33] Weidong Gu, Gerry F. Killeen, Charles M. Mbogo, James L. Regens, John I. Githure, & John C. Beier.
(2003). An individual-based model of Plasmodium falciparum malaria transmission on the coast of
Kenya, Transactions of The Royal Society of Tropical Medicine and Hygiene, 97(1), 43–50. https://doi.
org/10.1016/S0035-9203(03)90018-6

[34] Hoshen, M. B., & Morse, A. P. (2004). A weather-driven model of malaria transmission. Malaria jour-
nal, 3, 32. https://doi.org/10.1186/1475-2875-3-32

                                                                                                       401

https://doi.org/10.1016/j.idm.2022.05.007
https://doi.org/10.3934/mbe.2018003
https://doi.org/10.1016/j.mbs.2008.05.002
https://doi.org/10.1016/S0035-9203(03)90018-6
https://doi.org/10.1016/S0035-9203(03)90018-6
https://doi.org/10.1186/1475-2875-3-32

	1. Introduction
	2. Mathematical Models
	2.1 Immature/Aquatic Mosquito Dynamics
	2.2 Adult Mosquito Dynamics (sensitive to insecticides)
	2.3 Adult Mosquito Dynamics (resistant to insecticides)
	2.4 Human Dynamics
	2.5 EIR

	3. Progressive Web Application
	3.1 Data
	3.1.1 Weather
	3.1.2 Insecticide Resistance
	3.1.3 Malaria Prevalence and Mortality
	3.1.4 Bed Net Usage 


	4. Results
	4.1 Mathematical Proofs and Theorems
	4.1.1 Basic Qualitative Properties
	4.1.2 Existence and Asymptotic Stability of Equilibria

	4.2 Application results

	5. Discussion and Conclusion
	Acknowledgments



