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Abstract. We exhibit an algorithm with continuous instructions for two robots moving without

collisions on a track shaped as a wedge of three circles. We show that the topological complexity of
the configuration space associated with this problem is 3. The topological complexity is a homotopy
invariant that can be thought of as the minimum number of continuous instructions required to
describe the movement of the robots between any initial configuration to any final one without

collisions. The algorithm presented is optimal in the sense that it requires exactly 3 continuous
instructions.
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1. Introduction

It is an important problem in robotics to coordinate the movements of vehicles along a system of
tracks without collisions. This problem was originally studied by Ghrist in [7] by constructing the
configuration space Cn(G) of n particles on a graph G, given by

Cn(G) = {(x1, . . . , xn) ∈ Gn |xi ̸= xj for i ≠ j}.
Every collision-free movement between two configurations of n points on the graph G corresponds to

a path in the configuration space Cn(G). The motion planning problem consists of finding a function
that assigns to any pair of points in the configuration space, a path between them.

Mathematically, we can formalize this idea with the aid of the evaluation fibration. For any path-
connected space X, let P (X) denote the space of continuous paths in X. The evaluation fibration
ev : P (X) → X×X sends a path α to its endpoints: ev(α) = (α(0), α(1)). A section s of this fibration
takes a pair of points as input and gives a path between those points as output. This section can be
viewed as a rule

s : X ×X → P (X)

which assigns to each pair of initial and final positions, a path between them in X. If s is continuous,
we have that any small perturbation in the initial and final positions will lead to only small variations
between the assigned paths. Farber [4] proved that it is impossible to find a section that is continuous
over the whole domain X ×X if space X is not contractible. Motivated by this, Farber introduced
the topological complexity of a space, see [3] for a more recent survey on the subject. The topological
complexity of X, denoted by TC(X), is a measure of this inability to find a continuous section over
the whole domain. The topological complexity of a space is invariant under homotopy.

We provide an explicit algorithm for two robots moving in a wedge of three circles Γ, which is
optimal in the sense that the motion planning is performed with the minimal number of instabilities
given by the topological complexity, TC(C2(Γ)).

The organization of the paper is as follows. In the second section, we describe the statement of the
motion planning problem in our case and give a thourough description of the configuration space. In
the third section, we introduce the topological complexity.

Our approach consists of presenting a comprehensive construction of the configuration space for
the case of two robots moving on a wedge of circles and then building a deformation retract of this
space into a simpler space that we call the network. We dedicate section 4 to this construction. We
also describe here some homeomorphic spaces to the network that will make possible the calculation
of the topological complexity in the next section.

In section 5, we use the homotopy invariance to calculate the topological complexity of the config-
uration space, which provides us with the minimal number of instructions for our algorithm.

We exhibit an algorithm with a minimal number of instructions in section 6. This is the main
section of this article. We give a detailed description of the instructions in the configuration space as
well as in the physical space. We show how these instructions work in a sample case of two robots
moving from a particular initial configuration to a final one.

This paper is the result of an undergraduate research project at Wilbur Wright College supervised
by Professor Hellen Colman.

2. Motion Planning Problem

We consider two robots confined to move on a graph given by three loops joined at a point, where
a collision between robots is not allowed. This restricted movement of the robots in tracks is quite
common in applications of motion planning and can be viewed as an instance of the problem of
simultaneous control of two objects avoiding collisions with each other.

While there is a lot of literature about motion planners in graphs, there are relatively few explicit
examples of efficient motion planning algorithms carried out in detail in particular graphs. For a
different approach to construct an algorithm in a lollilop graph, see [1].
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Our problem involves constructing a program that allows two robots to move from their initial
positions to their final ones without collisions. We want our algorithm to be robust, in the sense that
small variations in the measuring of initial and final positions should lead to just small variations in
those paths.

We will now define some terms that we will use throughout the paper. A robot is a mechanical
system capable of moving autonomously. The physical space is the physical environment in which the
robots move.

In our setting, the robots are two points (A,B) and the physical space Γ is a wedge of three circles,
Γ =

∨
3 S

1.

2.1. Configuration Space. Although the motion planning problem is defined in the physical space
where the robots move, we will study another auxiliary space where it will be easier to design the
motion: the configuration space. A state of the system is a specification of the positions of all robots,
and the configuration space is the space of all possible states.

Motion planning problems involve navigation of the system through the configuration space in
order to achieve a certain objective. The problem of finding individual paths for each robot in the
physical space from initial to final positions translates into finding a single path in the configuration
space from initial to final states.

Let (A,B) be two robots moving in a graph Γ that consists of three circles joined at a point. The
physical space is a wedge of circles as shown in figure 1.

Figure 1. Physical space Γ =
∨

3 S
1

In order to construct the configuration space X of two robots moving on a track Γ, X = C2(Γ),
first we find the Cartesian product of Γ× Γ of all states and then exclude the diagonal ∆ of collision
states. Formally, the configuration space is

X = C2(Γ) = Γ× Γ−∆ =
(∨

3

S1 ×
∨
3

S1
)
−∆

The space Γ×Γ consists of three groups of three tori joined by a wedge of three circles. The circles
in this wedge are meridians of the three tori in each group, and each group is a union of three tori
with a common parallel circle. See figure 2.
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Figure 2. Cartesian product (
∨

3 S
1)× (

∨
3 S

1)

The product Γ× Γ consists of nine tori in total and is considerably complicated to visualize since
even though the dimension of the space is two, it is not possible to embed it in R3.

To remove the diagonal, we take into consideration that the collision points are the states where
the two robots are in the same circle in Γ: only one of the tori in each group would contain the entire
diagonal circle. Once the diagonal is removed, each of these three tori will be cut open across its
diagonal circle and homeomorphic to a cylinder. The other two tori in each group will be missing one
point after the diagonal is removed.

The configuration space is then composed of six tori and three cylinders all joined in an intricate
way. Our approach will be to construct a flat representation of this space that will allow us to
manipulate the space and understand it better. In this representation, each of the circles in the wedge
are considered segments with the extreme points identified and each torus corresponds to a square
with the edges identified as in the figure 3.

Figure 3. Interval to circle and square to torus

To track the robots in this representation, we will use the Cartesian system of coordinates, where
the x-axis represents the positions of the first robot A and the y-axis represents the positions of the
second robot B. Each state represents the combined positions of the two robots (A,B) in Γ × Γ.
Alternatively, we will also use a triangle shape △ for the robot A and a square shape □ for the robot
B. Figure 4 depicts the flat representation of Γ× Γ.
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Figure 4. Flat Representation of Γ× Γ

The next step is to subtract the diagonal ∆ from the Cartesian product of Γ × Γ to obtain the
configuration space X = Γ × Γ −∆. Our configuration space X consists of six squares with vertices
removed and with the edges identified; and three pairs of triangles, each pair with one edge identified.
The squares correspond to those configurations where the two robots are on different circles in Γ, and
the triangles correspond to the positions of robots in the same circle. Therefore, the configuration
space X consists of six squares and six triangles with the identifications are shown in figure 5.

Figure 5. Flat representation of Γ× Γ−∆

3. Topological Complexity

The notion of topological complexity of the configuration space X, TC(X), was introduced by
Farber in [4]. If X is the configuration space of robots moving in a physical space Γ, then the
topological complexity is a homotopy invariant that measures the navigational complexity of robots
moving in Γ. This number can be defined as the minimum number of continuous rules required to
describe the movement between any two points in X. A motion planning algorithm takes a pair of
points as input, the initial and the final states, and returns a continuous path as output between
them. In other words, a motion planning algorithm is a section s : X ×X → PX of the evaluation
map ev : PX → X ×X. That is, the section s receives as input the initial and final positions of the
robots (Ai, Bi) and (Af , Bf ) and returns as output a path α : I → X such that α(0) = (Ai, Bi) and
α(1) = (Af , Bf ).

As we stated before, we would like a robust motion planning algorithm. Unfortunately, most
navigation plans are discontinuous. Farber showed that a continuous navigation plan exists if and only
if X is contractible and for non-contractible spaces considered navigation plans that are continuous
only when restricted to subsets of the whole Cartesian product X ×X. The topological complexity of
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X is the minimal k for which X ×X can be covered by k open subsets over each of which the section
is continuous. These open sets are called domains of continuity.

In the same paper, Farber proved that the topological complexity is invariant under homotopy.

Theorem 3.1. [4, theorem 3] If X has the same type of homotopy as Y , then TC(X) = TC(Y ).

This result will allow us to find the topological complexity of our configuration space by deforming
X into a simpler space with the same type of homotopy and then calculating its topological complexity.

4. Homotopy of the Configuration Space

As previously mentioned, topological complexity is the same across spaces with the same type of
homotopy. Finding another space N that is homotopically equivalent to X will reduce the complexity
of the configuration space and allow us to work on a relatively simpler space, which will be of great
use not only to calculate the topological complexity but also to describe the final algorithm.

4.1. The network N. We construct a homotopy

H : X × I → X

that deforms the whole spaceX into a graph, which we call the networkN . We denoteH(x, t) = Ht(x).
We have that H0(X) = X and H1(X) = N , where N is a graph.

The network N ⊂ X consists of horizontal, vertical and diagonal segments with the identifications
showed in figure 6.

Figure 6. The network N

We refer to the network parts in squares as cross segments and in triangles as diagonal segments.
The deformation of squares into cross segments is illustrated in figure 7 and the triangles into

diagonal segments in figure 8.

Figure 7. Cross segments
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Figure 8. Diagonal segments

We show in figure 9 a diagram representing the traces Ht(x) of the homotopy H for some x ∈ X.
These traces will be useful to transit in and out of the network N in the configuration space X.

Figure 9. Homotopy traces in X

4.2. The chain C. Following the identification of sides in the flat representation of X, we can observe
that the network N is homeomorphic to a chain of circles.

Observe that the points along the diagonal are removed from our product space, forming tori with
a removed point. Each torus minus a point is deformed into the cross segments in the corresponding
square, namely a figure eight. See figure 10.

Figure 10. Torus minus a point into a figure eight

As we glue the two triangle parts along their identified edge, we obtain a parallelogram with two
sides identified. Once that we glue these sides of the parallelogram together, we obtain a cylinder.
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Each cylinder is deformed into the diagonal segments in the corresponding triangles, namely a circle.
See figure 11.

Figure 11. Cylinder into a circle

We obtained a figure eight from each of the six squares in X and a circle from each of the three
parallelograms. In total, 12 circles + 3 circles = 15 circles. We will call this union of circles the chain
C. We have that the network N is homeomorphic to the chain C.

We use the following naming system for the cross and diagonal segments in N . The cross segments
are S1, S2, ...S12 and diagonal segments are u1, u2, v1, v2, z1, z2. Observe that the pairs of diagonal
segments (u1, u2), (v1, v2) and (z1, z2) form a circle each. See figure 12.

Figure 12. Labelling segments in the network N

Then we draw the chain of 15 circles accordingly, as reflected in figure 13.
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Figure 13. Chain of 15 circles C

We will refer to the outer circles S1, S2, ...S12 in the chain C as border circles and inner circles
as connecting circles. The outermost semicircles forming the border circles will be called exterior
semicircles and the innermost ones will be the interior semicircles. In the construction of our motion
planning algorithm, these exterior semicircles will have a distinguished role. The exterior semicircles
in C and in N are shown in figures 14 and 15.

Figure 14. Exterior semicircles in the chain C

Figure 15. Exterior semicircles in the network N
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The chain circles in C that correspond to vertical cross segments in the network N are called vertical
circles, and the circles that correspond to horizontal cross segments inN are horizontal circles. Vertical
circles correspond to positions in the physical space at which robot A is at a pole (see definition 6.1)
while robot B is at any place other than a pole in a different circle. Similarly, horizontal circles are
the positions in Γ at which robot B is at a pole while robot A is at a position other than a pole in a
different circle. Vertical and horizontal circles in C are shown in figure 16.

Figure 16. Horizontal and vertical circles in C

4.3. The bouquet of circles B. Now, we will find a homotopy equivalent space to the chain C. We
see that each circle in the chain has two distinguished points that connect it to other circles. When we
compress an interior semicircle into these points through homotopy, the interior semicircle contracts
to a point, and the exterior semicircle forms a teardrop shape, as shown in the figure 17.

Figure 17. A Circle deforming into a Teardrop

As we apply the operation to the entire chain C, all interior semicircles except one will collapse
into a point. The process will follow as these 11 interior semicircles collapse one by one forming eleven
teardrops until they reach the last circle. At the final step, the two distinguished points will collapse
into one forming two more teardrops. Hence, the total is 13 teardrops. We can observe this occurring
in the figure 18.
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Figure 18. Border circles into 13 teardrops

As stated before, the connecting circles in the chain C consist of two different semicircles joined by
their endpoints. When we identified these endpoints, each connecting circle forms two teardrops.

Therefore, we have 6 teardrops from connecting circles and 13 from border circles, forming a total
of 19 teardrops joined at one point, namely, a bouquet of 19 circles, B =

∨
19 S

1. See figure 19.
Observe that the connecting semicircles in C lie on the outer rim of B.

Figure 19. Bouquet B of 19 circles

We have that the configuration space X = C2(Γ) is homotopic to a bouquet of 19 circles:

X ≃ N ∼= C ≃ B

where ≃ means homotopy equivalence and ∼= means homeomorphism.

5. Topological Complexity of X

In order to find the number of instructions for our motion planning algorithm, we consider the
topological complexity of the configuration space, TC(X).

Farber calculated the topological complexity of a graph G based on its first Betti number. The
first Betti number of a graph G with n vertices, m edges and k connected components equals b1(G) =
m− n+ k.

Theorem 5.1. [5] Let G be a connected graph, then

(1) TC(G) =


1 if b1(G) = 0

2 if b1(G) = 1

3 if b1(G) ≥ 2
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Here b1(G) denotes the first Betti number of G.

We have shown that the configuration space X is homotopy equivalent to N . Then we showed that
the network N is homeomorphic to a chain of circles C, which is homotopic to a wedge of 19 circles
B. We know that the topological complexity of X will be equal to that of B by theorem 3.1. Since
the first Betti number of a bouquet of nineteen circles is b1 = 19 ≥ 2, we have that TC(B) = 3 and
therefore, TC(X) = 3.

Theorem 5.2. The topological complexity of the configuration space of two robots moving on a
wedge of three circles, is three.

We conclude that any motion planning algorithm will require at least three continuous instructions
in this scenario.

6. Motion Planning Algorithm

Our goal is to give an explicit description of three continuous instructions in the physical space
where the robot motion takes place.

We will start by building the algorithm in the configuration space and then translate these instruc-
tions to the physical space by using all the constructions we have shown previously. Recall that any
position in the physical space Γ corresponds to a state in the configuration space X. Our first step
will be to move any state in X to the corresponding state in the network N following the traces of
the homotopy shown in section 4.1.

The following definitions of specific positions and states in Γ and X will help to describe our
algorithm.

Definition 6.1. The vertex is the center point of the physical space at which the three circles intersect
and the poles are the antipodal points to the vertex in each circle in the physical space Γ.

The states in the network N correspond to positions of the robots in Γ where at least one robot
is at a pole and the other at a different circle or both robots are at antipodal positions in the same
circle.

Definition 6.2. The nodes in the chain C are the intersection points of the circles. The nodes where
three circles intersect will be called j-points.

Definition 6.3. When a state is located in the interior of a cross segment in X, we will say it is a
cross state. In the physical space Γ, cross states translate as the position of at least one robot being
at the pole and the other at any of the other two circles but not at the vertex. A cross state in the
chain C will correspond to a point in a border circle that is not a j-point. See figures 20 and 21.

Figure 20. Cross states in N and C
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Figure 21. An example of cross state in Γ

Definition 6.4. A cross center is a cross state where two robots are at the intersection of horizontal
and vertical network segments. A cross center corresponds to the positions in which both robots are
at poles in different circles in Γ. We can observe this state in the chain C at the nodes that are not
j-points. See figure 23.

Figure 22. Cross center states in N and C

Figure 23. An example of cross center state in Γ

Definition 6.5. When the state is in the interior of a diagonal segment in the network N , we will
say that the state is a diagonal state. In Γ, this state will correspond to antipodal positions in any
circle, but neither is at the vertex. Diagonal states correspond to points in connecting circles with the
exception of j-points. See figures 24 and 25.
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Figure 24. Diagonal states in N and C

Figure 25. An example of diagonal state in Γ

We observe that j-states are states in N that are neither diagonal nor cross states. There are two
types of j-states: vertical and horizontal. Vertical j-states are those located between a diagonal segment
and a vertical cross segment, whereas horizontal j-states are found between a diagonal segment and a
horizontal cross segment.

A j-state occurs when one robot in the physical space Γ is at a center while the other is at a pole.
In a vertical j-state, robot B is at the vertex, whereas in a horizontal j-state, robot A is at the vertex
while the other robot is at a pole. In the chain C, they correspond to the intersection points of border
and connecting circles. Vertical j-point is between a connecting circle and two vertical circles, and a
horizontal j-point is between a connecting circle and two horizontal circles. See figure 26 and 27.

Figure 26. j-states in N and Γ
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Figure 27. An example of j-state in Γ

In the network N the counterclockwise orientation is given by the orientation in X: along the
x-axis from left to right and along the y-axis upwards. This orientation in the physical space and the
chain C is illustrated in figures 28 and 29.

Figure 28. Counterclockwise direction in N and C

Figure 29. Counterclockwise direction in Γ

6.1. Algorithm in the configuration space. In this section, we will describe the instructions
needed to move an initial state Pi in X to the final state Pf .

Recall from section 4 that the first step of the algorithm consists of projecting the initial and final
states Pi and Pf into the network N following the traces of the homotopy H : X× I → X as in figure
9. We will denote the projections P ∗

i = H1(Pi) and P ∗
f = H1(Pf ) .

Next, we will construct the algorithm in the network N to move from P ∗
i to P ∗

f . The following
definitions will help to describe the algorithm in the network N and chain C.
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Definition 6.6. The initial node CN i is the node in the chain C corresponding to the cross center or
j-state in N at which the robots are initially located in N. If P ∗

i is a cross state, then the initial chain
node CN i is the cross center of that cross state. If P ∗

i is a diagonal state, then the initial chain node
CN i is the closest j-point in the counterclockwise direction. If P ∗

i is a node itself, then CN i = P ∗
i

Similarly, the final node CNf is the node in the chain C corresponding to the final state P ∗
f .

Definition 6.7. The zigzag circle is the union of the exterior semicircles in the chain C. See figure
14 and 15.

In figure 30 we show the zigzag circle in both network N and chain C with the counterclockwise
orientation.

Figure 30. Zigzag circle in N and C

Observe that the zigzag circle positions that are not nodes, correspond in Γ to configurations in
which the robot that is not at a pole or vertex is positioned at one of the two innermost semicircles
opposite to the robot at the pole. We show sample positions of robots in the zigzag circle in figure 31.

Figure 31. Example of zigzag circle positions in Γ

Once the states are nodes, the idea of our algorithm will be to move robots from a node to another
following the zigzag circle in the counterclockwise direction.

First we move the initial and final states P ∗
i and P ∗

f in N to initial and final nodes CN i and CNf

following the shortest path or counterclockwise shortest path as described before.
As a result of this step, the states are nodes in the network N .
Next, we move counterclockwise in the zigzag circle from CNi to CNf , which is the fundamental

step of our algorithm.
Finally, we reverse the motion from CNf to P ∗

f .

Algorithm 6.8. Therefore, the algorithm in the network N is as follows.
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(1) First Step If P ∗
i is a cross state, move by a shortest path to the initial chain node CN i. If it

is a diagonal state, move counterclockwise to CN i. If P ∗
i is a node, stay motionless. Do the

same with the final state to obtain CNf .
(2) Second Step Move from CN i to CNf following the zigzag circle counterclockwise. If CN i =

CNf , stay motionless.
(3) Third Step Reverse the movement in first step to obtain P ∗

f .

Algorithm 6.9. When transitioning to the chain C, we obtain the following motion planning algo-
rithm:

(1) First Step If P ∗
i is on a border circle, move shortest path to initial chain node CN i. Other-

wise, move counterclockwise to CN i. Do the same with the final state to obtain CNf .
(2) Second Step Move the robots from CN i to CNf counterclockwise through exterior circles

in the chain C. If CN i = CNf , stay motionless.
(3) Third Step Reverse the movement in first step to move back from CNf to P ∗

f .

We can extend the range of the algorithm in the network and chain to all sets of points in the
configuration space X by adding at the beginning and end, the steps given by the traces of the
homotopy.

Algorithm 6.10. Hence, the algorithm in the configuration space X is:

(1) Preliminary Step Move from Pi to P ∗
i following the traces of the homotopy. Do the same

to move from Pf to P ∗
f .

(2) Main Step Move from P ∗
i to P ∗

f following the above algorithm 6.8 described in N .

(3) Final Step Reverse the movement in preliminary step to move from P ∗
f to Pf .

6.2. Algorithm in the physical space. We deduce now the instructions in the physical space Γ.
The goal will be first to move the robots such that they will be in a network position, then to translate
the algorithm in N to the physical space.

The movement determined by the traces of the homotopy is translated to the physical space as
follows: if the robots are in the same circle, move them away from each other until they reach an
antipodal position and if they are in different circles, move them until one reaches a pole position. In
both cases ratio of the robots’ speeds are given by the slopes of the homotopy traces shown in figure
9.

Once the initial and final positions are retracted to the network, we describe the movement within
the network. The first step is to move any point in the network to a node. Then the movement will
proceed between nodes.

The fundamental observation here is that the counterclockwise movement following the zigzag circle
in the chain C restricts the movement in the physical space as shown in figure 31.

Recall that states in the network can be described as positions in which at least one robot is at a
pole if the robots are in different circles and antipodal positions if the robots are in the same circle.
If the robots are not already at a node, move the robot that is not at a pole to the pole following
the shortest path if they are at different circles and move the robots simultaneously counterclockwise
until one arrives at the vertex and the other at a pole if they are in the same circle.

Definition 6.11. We will say that the two robots are in a pole-pole position in Γ if they are both at
poles. Observe that these positions correspond to cross center states in the network N .

Definition 6.12. We will say that the two robots are in a pole-vertex position in Γ if one is at a pole
and another is at the vertex. Observe that these positions correspond to j-states in the network N .

Therefore, all nodes in the network can be described in the physical space as pole-pole or pole-vertex
positions.

Now we will describe the movement in the physical space between these positions following the
counterclockwise direction in the zigzag circle. We will say that are allowed semicircles the two
innermost semicircles opposite to the stationary robot as shown in figure 31.
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The following movements mV P and mPV describe the way to exit a pole-vertex or a pole-pole
position.

mV P From pole-vertex to contiguous pole-pole: Move the robot that is at the vertex counterclock-
wise in the allowed semicircles until it reaches the pole.

mPV From pole-pole to contiguous pole-vertex: Move the only robot that can move counterclockwise
in the allowed semicircles until it reaches the vertex.

Definition 6.13. A zigzag movement from a pole-vertex to a pole-pole position is a series of con-
catenated movements mV PmPV mV P · · ·mV P as before where the first movement originates in the
given pole-vertex position and the last movement finishes at the given pole-pole position. Similarly,
a zigzag movement from a pole-pole to a pole-vertex position is a series of concatenated movements
mPV mV P · · ·mPV .

Algorithm 6.14. The algorithm for network positions is as follows.

(1) First Step If the two robots are at a pole-pole or pole-vertex position, stay motionless.
Otherwise, if the robots are at different circles, move the robot that is not at a pole to the
pole following the shortest path. If they are in the same circle, move the robots simultaneously
counterclockwise until one arrives at the vertex and the other at a pole. Do the same for the
final positions. Let us call initial pole position and final pole position the output of this step.

(2) Second Step Move from the initial pole position to the final one following the zigzag move-
ment.

(3) Third Step Reverse the movement in the first step to go from the final pole position to the
final position in the network.

Algorithm 6.15. To extend the previous algorithm to all the possible positions in the physical space,
we add the preliminary and final steps given by the traces of the homotopy.

(1) Preliminary Step If the initial position of the robots are in the same circle, move them away
from each other until they reach an antipodal position and if they are in different circles, move
them until one reaches a pole position. Do the same with the final position. Let us call initial
network position and final network position the output of this step

(2) Main Step Move from the initial to the final network position as in algorithm 6.14.
(3) Final Step Reverse the movement in the preliminary step to move from the final network

position to the final position.

The above algorithm is discontinuous: if the initial or final configuration is a node, then a small
perturbation of P may lead to a different motion. Note that if, for instance, we restrict the algorithm
to the states Pi and Pf that are not nodes the algorithm is continuous here.

We previously proved that TC(X) is 3. Our objective then will be to exhibit the three domains of
continuity.

We will restrict the algorithm to the pairs in the following three regions U ′, V ′, and W ′ of the
Cartesian product X × X. The first region U ′ is the set of points Pi and Pf , such that neither of
them is a node,

U ′ = {(Pi, Pf )/Pi ̸∈ CN,Pf /∈ CN}.
The second region V ′ consists of the pair of points, initial and final, such that one of them is a node
and the other is not,

V ′ = {(Pi, Pf )/(Pi ̸∈ CN,Pf ∈ CN) or (Pi ∈ CN,Pf ̸∈ CN)}.

The third region W ′ covers the rest of the Cartesian product,

W ′ = {(Pi, Pf )/Pi ∈ CN,Pf ∈ CN}

where both initial and final points are nodes.
Let U , V , and W be small open neighborhoods of U ′, V ′, and W ′ respectively such that U , V , and

W deform into U ′, V ′, and W ′. These are our domains of continuity.
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Remark. Alternatively, we can also consider our sets U ′, V ′, and W ′ as the ENR’s required in the
original definition of tame motion planner by Farber [6] or as the sets required in the generalized
version by Calcines [2] since we are dealing with ANR’s.

6.2.1. Sample case. Now, we will show how our motion planning algorithm works in a sample case.
Observe that the initial and final configuration does not have a corresponding motion in chain C.

Figure 32. Preliminary Step in X: Pi → P ∗
i , Pf → P ∗

f

Figure 33. Preliminary Step in Γ
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Figure 34. First Step in N and C: P ∗
i → CN i, P

∗
f → CNf

Figure 35. First Step in Γ
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Figure 36. Second Step in N and C: Move from CN i to CNf
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Figure 37. Second Step in Γ

Figure 38. Third Step in N and C: CNf → P ∗
f
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Figure 39. Third Step in Γ

Figure 40. Final Step in N and C: CNf → P ∗
f

Figure 41. Final Step in Γ
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