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Why Quantum Software?

For wider adoption, tools are required to make quantum algorithms and hardware
more accessible. Quantum software helps with both!

Provides languages and abstractions to reason about algorithms and verify logic

Translates and optimizes information from high-level specifications to low level
representations that are compatible with hardware

Creates models that improve our understanding of quantum systems

Accelerates research
111111
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Development of Quantum Programming Toolchains

First programming languages from academia,
2000 — mid 2010s

*  Quantum Computation Language (QCL), -
-QCL program
* Quipper: A scalable quantum programming language —
classical input
*  ScaffCC: a framework for compilation and analysis of
quantum computing programs

Software emerges from industry, clhssloal oulpk

quantum operations

—

measurement values
late 2010s f ; ¢ ‘
binar uantum
@ Q i S k it \Y\:”y P E N N Y I_ /\ N E program Ztate ma(::hine state

Figure 3.1: The hybrid architecture of QCL

> Cirq

Figure: http://www.itp.tuwien.ac.at/~oemer/doc/quprog.pdf
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http://www.itp.tuwien.ac.at/~oemer/doc/quprog.pdf

Quantum Software Explosion,
Late 2010s - Today sim [ KET

Many packages have emerged that are highly ‘:l

specialized or focus on points in the compute stack. <N B S K ;
«  Circuit optimization < It Su pe r'staq
* Gate synthesis @2 -

*  Error mitigation CEY:E:& @Cean \6‘ ’) Torch

*  Resource estimation . Quantum

Circuit / device simulation ) B LnDE

e ...and more! QuTlP

mltl Quantum Toolbox in Python
j q UNICH

@ANTUM
Amazon Braket Q E R M I T TOOLKIT

While this is great progress, quantum application and device development has
outpaced the middleware!
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WIP: The Quantum Software Stack

Layers involved in classical computing circa 1950s vs current classical computing and quantum tool flows

~1950s Classical Computing Classical Today Quantum Computing

Algorithms

Algorithms

Algorithms

High-Level Languages

High-level QC Languages.
Compilers.
Optimization.

Error Correcting Codes
Orchestrate classical gate
control,
Orchestrate qubit motion
and manipulation.

Compiler

Architecture

Modular hardware blocks:
Gates, registers

Assembly Language VLSI Circuits

Vacuum Tubes, Relay Circuits

Figure: https://arxiv.org/abs/1903.10541
Northwestern 6



https://arxiv.org/abs/1903.10541

Software Stack Research

* Device compilation
* Logic and gate synthesis

Quantum Computing Stack

. Algorit
* Programming languages gorithms
* Quantum intermediate representations IS g;f;:guage&
* Resource estimation Optimization.
Error Correcting Codes
* Error m|t|gat|0n Orchestrate classical gate

control,

* Optimal control N
* Interfaces with classical hardware

* Heterogeneous system interfacing

* Architecture and security in the guantum cloud

e Hybrid HPC ecosystem management
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Additional Examples of Quantum Software

* Circuit simulators
* Device design and analysis tools
* Device characterization

* Benchmarking suites
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Today’s Quantum Hardware

* Scale: < ~1000 qubits per device....millions are
needed for fault-tolerance!

* Fault-tolerance — quantum computation where many
physical qubits encode a single logical qubit

* Architectural constraints: Error rates, coherence
windows, gate sets, operation time, qubit
connectivity, etc.

* High variation between qubit technologies

* Extremely low temperatures / high isolation often
required

Figure: https://arxiv.org/abs/2403.08780
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Today’s Quantum Hardware

IBM Nazca

* Heterogeneity: Significant variation between devices, even of same base technology.
IBM Brisbane

* Quality: Noise prevents large circuit widths and depths in quantum programs.

9-0-9 909 009
®© 6 6 6 ¢ o &
909 909 909 9
6 6 6 & & ¢ o
& 900 669 60
¢ 6 o & & ¢ o
¢-0-9 909 909 o
6 6 6 & & ¢ o
® 900 909 909
¢ 6 o & 6 & o
909 909 909 o
6 6 & 6 & & o
¢ 909 609 909
6 6 6 6 & & o
©0-6-6 ©6-6-0 6-6-0

9-0-0 0-0-9 0-0-0
RERERE:
§-0-6 ¢-0d oo0-d o
BRERXER:
$ 600 d-0-6 b0d
$ 6 6 6 6 & ¢
$-0-0 ¢-0d 6o0-d o
ERERER!
$ 60 600 oot
RERERER:
$-0-0 -0 604 o
I ERERER:
$ 909 600 409
I RERERE
0-6-0 6-6-0 ©6-6-0

Northwestern




The Role of the Compiler

Compilation involves translation of source code into a machine-ready specification in a
way that preserves program semantics. Important considerations include:

e Supported hardware instructions
* Rules of the hardware (connectivity, operator time, etc.)
e Optimization rules

Northwestern




Motivating Quantum Compiler Research

1. Reliability and architectural constraints block o
widespread adoption of quantum technologies. Qubits
How do we adapt programs to intrinsic QC gault-tg/e(;ant sg)or'st (Factoring), P
, ~qQ6 | ¥ Orover’s (search)etc. o
pf‘opertles? ‘ . A optimizatio'n, Qua.ntum Chemistry, Q("‘ﬂ:“”, ",zfv
2. System improvements via hardware alone will lead SR U e‘o@‘l/ -~
. . . Lo o7
to unacceptable scaling timelines. _g“offg/
g\’/”¢
Two-qubit (transmon) gate error has lowered ” :g}f’/
by ~0.77x per year,! but the rate at which Pl L A e
systems improve must be accelerated! ;
| —=
Today Time
Let’s consider a simplified compiler pipeline including gate decomposition,
placement, routing, and low-level optimization!
arXiv:2005.02464
13
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Gate Decomposition

Translate multi-qubit gates into the supported gate set with unitary synthesis

import qiskit

gqiskit.transpile(circ,basis_gates = ["x","sx","rz","cx"]).draw("mpl", fold=-1,)
circ = giskit.QuantumCircuit(3)
ciRcicex (0,8 1792 Global Phase: 5m/8
circ.measure_active() e\"\- Jo (@
circ.draw("mpl", fold=-1,) xe S
#print(circ.draw("latex_source")) 63 _> a1 ~

q2

do m measure = 2 S ﬂz

q1 (@

qiskit.transpile(circ,basis_gates = ["x","sx","rz","ecr"]).draw("mpl", fold=-1,)

Giobal Phase: 1178

QZ 0‘ — a0 )

measure

3
measure
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Placement and Routing

* Noise aware mapping to assign logical
qubits to best regions on-chip
o Consider: errors, coherence, gate time, etc.
* Inject SWAP operations to make quantum

circuit agree with backend connectivity
o Minimize to prevent additional gate error

(e)

..........

Coherence time (T2, us)

Fig. 4: (a) Layout of a 6- qublt quantum computer, (b)-(e) are pos51ble routes from A to FE. Note that options (b)(c)(d) have identical number

of swaps and (e) incurs higher swaps. An intelligent policy would choose one from (b)(c)(d).

Figure: https://arxiv.org/abs/1805.10224
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https://arxiv.org/abs/1805.10224

Gate Commutation Relations

Low-level Optimization =

£
B

- R
Tanva = MDD u; 0 v; 0 _ v 0 u; 0
\NPANY \NPANY 0 u 0 v, =0 0 s
e Gate cancellation with commutativity rules -
* Pulse-level optimization
Standard QAOA Circuit Compilation Aggregated Instruction QAOA Circuit Compilation

Optimized pulses for instruction G;

S
9 — Hix E Mz
§ iy o T My
=2 ] —  Hiz
a. T Haz4yy k=]
E % Hiy
£ T Haz+yy
6 0 <
0 16 32 48 64 80 96 112 128 144 6
Time (ns) 0 16 32 48 64 80 96 112 128 144

Figures: https://arxiv.org/abs/1902.01474 Time (ns)
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Additional Complexity...

Many stages of compilation are stochastic / heuristic to minimize cost function
Hardware and applications might need other special considerations

[Submitted on 29 Aug 2022 (v1), last revised 7 Sep 2022 (this version, v2)]

Let Each Quantum Bit Choose Its Basis Gates

Sophia Fuhui Lin, Sara Sussman, Casey Duckering, Pranav S. Mundada, Jonathan M. Baker, Rohan S. Kumar, Andrew A. Houck, Frederic T. Chong
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[Submitted on 3 Dec 2020 (v1), last revised 19 Mar 2021 (this version, v3)]
CutQC: Using Small Quantum Computers for Large Quantum Circuit Evaluations

Wei Tang, Teague Tomesh, Martin Suchara, Jeffrey Larson, Margaret Martonosi

Quantum
doubles t
(NISQ) de
low qubit]
This pape
cannot bd

Classical
alternativ|
system ru
Overall, tl

[Submitted on 11 Sep 2021]
ADAPT: Mitigating Idling Errors in Qubits via Adaptive Dynamical Decoupling

Poulami Das, Swamit Tannu, Siddharth Dangwal, Moinuddin Qureshi
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[Submitted on 27 Feb 2024]
Scaling quantum computing with dynamic circuits
Almudena Carrera Vazquez, Caroline Tornow, Diego Riste, Stefan Woerner, Maika Takita, Daniel J. Egger

Quantum computers process information with the laws of quantum mechanics. Current quantum hardware is noisy, can only store information for a short time, and is limited to a few
quantum bits, i.e., qubits, typically arranged in a planar connectivity. However, many applications of quantum computing require more connectivity than the planar lattice offered by
the hardware on more qubits than is available on a single quantum processing unit (QPU). Here we overcome these limitations with error mitigated dynamic circuits and circuit-cutting
to create quantum states requiring a periodic connectivity employing up to 142 qubits spanning multiple QPUs connected in real-time with a classical link. In a dynamic circuit,
quantum gates can be classically controlled by the outcomes of mid-circuit measurements within run-time, i.e., within a fraction of the coherence time of the qubits. Our real-time
classical link allows us to apply a quantum gate on one QPU conditioned on the outcome of a measurement on another QPU which enables a modular scaling of quantum hardware.
Furthermore, the error mitigated control-flow enhances qubit connectivity and the instruction set of the hardware thus increasing the versatility of our quantum computers. Dynamic
circuits and quantum modularity are thus key to scale quantum computers and make them useful.
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The Future of Quantum Systems

 Modular architectures
* Many technologies
* Quantum clouds

QEC on the horizon

ntel’s Road to a Universal Quantum Computer Is
Q ona Via Chiplets

By Agam Shah

The Top 5 Benefits of
Modular Quantum
Computing for Business

Continued opportunity for scaling with HW
/ SW co-design:

1. Make the most of existing
architecture

2. Guide the design of future
infrastructure

Northwestern

Development Roadmap 18M Quantum

2016-2019 e 2020 e 2021e 2022e 2023e 2024 2025 2026 2027 2028 2029

2033+

Run quantum circus
the 18 Quantum Platform

allow 100 gates

Innovation Roadmap

..........
novation

rrrrrrrrrr

ccuted by 1M
) ontgst

1BM Quantum / ® 2023 IBM Corporation


https://newsroom.ibm.com/2023-12-04-IBM-Debuts-Next-Generation-Quantum-Processor-IBM-Quantum-System-Two,-Extends-Roadmap-to-Advance-Era-of-Quantum-Utility
https://www.hpcwire.com/2022/10/11/intels-road-to-a-universal-quantum-computer-is-via-chiplets/
https://ionq.com/posts/the-top-5-benefits-of-modular-quantum-computing-for-business

Open-ended Problems for

Quantum Software

* System characterization and benchmarking

* Architecturally-dependent quantum error
mitigation (QEM)

* Synergistic implementations of QEM and

A P

ntel’s Road to a Universal Quantum Computer Is

Qona

Via Chiplets

By Agam Shah

The Top 5 Benefits of
Modular Quantum
Computing for Business

QEC
* Heterogeneous system interfacing

* Modularity-aware algorithm mapping and
compilation

e Scalable software stacks

* Architecture and security in the quantum
cloud

* Hybrid HPC ecosystem management

Lo 202

[2022/10/11/1
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https://newsroom.ibm.com/2023-12-04-IBM-Debuts-Next-Generation-Quantum-Processor-IBM-Quantum-System-Two,-Extends-Roadmap-to-Advance-Era-of-Quantum-Utility
https://www.hpcwire.com/2022/10/11/intels-road-to-a-universal-quantum-computer-is-via-chiplets/
https://ionq.com/posts/the-top-5-benefits-of-modular-quantum-computing-for-business

Opportunities for Multidisciplinary Engagement

Much space for applied mathematicians to contribute!
* Optimization everywhere within the software stack

* New techniques for gate synthesis / optimal control
* Formal methods for validation / verification

* New QEC codes

Northwestern 21
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