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Abstract. In the study of tomography, there are often missing data values. This4

leads artifacts to present themselves in data reconstructions. We investigate this5

problem in a bistatic radar system that has a radio transmitter in a fixed location6

and a receiver flying around the transmitter in a circular path. Our data is collected7

by integrating over all ellipses in a given space that have the transmitter and receiver8

as foci. We reconstruct this numerical data and analyze the artifacts that present9

themselves when we place objects within and outside of the receiver’s path. Our10

research demonstrates how objects outside the receiver’s path can create artifacts11

inside the receiver’s path and vice versa. This shows an intrinsic limitation to a12

method that works well when the scanned region outside the receiver’s path is clear.13
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1. Introduction. Tomography is the mathematics, science, and engineering16

used to recover the interior structure of a nontransparent object using indirect data.17

Tomography imaging systems produce cross-sectional images that are used to find18

solutions to a wide range of problems in varying fields, such as the biosciences and19

aeronautics. For example, in the medical field, x-ray computed tomography (CT)20

produces cross-sectional images that are used to view the internal organs of a patient.21

With x-ray CT, an object is placed in a scanner and x-rays are taken over evenly22

distributed lines that pass through all parts of the object. We call such data complete23

tomographic data [17]. There are times, however, when we cannot acquire a complete24

data set due to either a limited view, limited angle, or lack of efficiency [3]. In many25

types of tomography, including x-ray tomography, photoacoustic tomography, and26

thermoacoustic tomography, data can only be obtained from a limited field of view.27

When we are missing data values, we call this data limited tomographic data [12].28

Tomography with limited tomographic data is more challenging than with complete29

tomographic data because standard tomographic algorithms need to be adjusted in30

order to get accurate reconstructions [14, 15].31

We focus specifically on limited tomographic data as it applies to radar. While32

radar was originally developed in order to determine the position of objects through33

echo-location, using radar for imaging has gained popularity, especially within the34

engineering community [19]. Radar-based imaging, however, faces challenges such35

as detecting microwave energy, transmitting microwave energy at high power, and36

interpreting and extracting information from received signals. While the first two37

problems have been addressed through hardware development, the third challenge is38

substantially a mathematical issue [2].39
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The images obtained from tomographic imaging systems are called reconstruc-40

tions. Reconstructions generated from limited tomographic data often contain arti-41

facts. Artifacts are additional singularities that are generated in a reconstruction and42

often superimpose reliable information. This is important because artifacts can create43

unwanted features in our image that may lead us to misinterpret data [10]. We focus44

on artifacts in reconstructions of a bistatic radar imaging system. In such systems,45

a transmitter and a receiver are in different locations. We simulate and reconstruct46

our receiver’s data to address three objectives: (1) describing the artifacts we obtain47

when we place objects within the receiver’s path using complete tomographic data,48

(2) describing the artifacts we obtain when we place objects outside of the receiver’s49

path using complete tomographic data, and (3) describing the artifacts we obtain50

when the receiver does not complete its circular path, i.e. using limited tomographic51

data.52

Our research looks at artifacts that result from placing a disk object within the53

receiver’s circular path and artifacts that result from placing a disk object outside54

of the receiver’s circular path. There is a lack of information regarding how objects55

outside a receiver’s path affect the reconstruction of the area within the receiver’s56

path. Our research addresses this gap. We demonstrate that there are limitations57

to this data acquisition method because artifacts can present themselves inside the58

receiver’s path when the region outside the receiver’s path is not clear.59

This paper is organized as follows. In section 2, we describe how we generate60

the data. In section 3, we describe how we generate our reconstructions using a61

back-projection operator and second central difference model. We demonstrate and62

analyze our reconstruction images in section 4. Finally in section 5, we draw unifying63

conclusions based off our analysis of reconstructions and describe the next steps to64

be taken.65

2. Data Generation. In our bistatic radar system, we have a receiver traveling66

along the unit circle and a transmitter at the origin. The data acquisition model that67

we study in this paper enables a transmitter to be a fixed object that is already in the68

region such as a radio or cell phone antenna and enables the receiver to be a small69

drone that can fly around a region undetected. When imaging an object, the waves70

from the transmitter are reflected off of the object and then travel to the receiver.71

As seen in Figure 1, the distance from the transmitter (T ) to the object (O) is d172

and the distance from the object to the receiver (R) is d2. The major diameter of73

the resulting ellipse is represented by d. We measure the strength of the signal at the74

receiver against time using the formula d1+d2
c = t where c is the speed of the waves.75

By the definition of an ellipse d1 + d2 = d. Therefore, at each time t, the receiver is76

measuring the integral of reflectivity for an ellipse that satisfies the equation d = ct77

and the receiver and transmitter are the foci [16].78

In this section, we define the integral over an ellipse with the characteristics79

illustrated in Figure 1. First, we parameterize our initial ellipse. Next, we introduce80

a rotation matrix that will give us the parameterization of each following ellipse81

based on time t. Then, we define our characteristic function. Upon solving for this82

function we calculate the line integral and implement a convolution to smooth our83

data. Finally, we describe a derivative method that sharpens the features of objects.84
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Fig. 1: Labeled bistatic radar system

This derivative method is inspired by Lambda Tomography [7, 6, 10].85

2.1. Ellipse Parameterization. First, we need to parameterize our initial el-86

lipse. Let s be the variable that parameterizes the ellipse. An ellipse centered at87

(x0, y0) can be parameterized using (2.1) where d = 2a is the length of the major88

diameter and b is length of the minor axis.89

(2.1)

{
x(s) = x0 + a(cos(s))

y(s) = y0 + b(sin(s))
90

The foci of our initial ellipse are (0,0) and (1,0) and therefore this ellipse is91

centered at ( 1
2 , 0). Let c be the distance between the center and either focus. Using92

formula b2 = a2 − c2, c = 1
2 and a = d

2 , we get b =
√
d2−1
2 . Therefore, our initial93

ellipse can be parameterized using (2.2).94

(2.2) ~γ(s) =

[
d cos(s)+1

2√
d2−1 sin(s)

2

]
95

2.2. Rotation Matrix. Since our receiver is traveling along the unit circle,96

we use a rotation matrix to find the parameterization of each ellipse at parameter97

s. Let φ be the angle between the major diameter of an ellipse and the x-axis.98

A(φ) =

[
cos(φ) − sin(φ)
sin(φ) cos(φ)

]
rotates an ellipse with major diameter d and foci (0,0)99

and (1,0) to the ellipse with foci (0,0) and (cos(φ), sin(φ)) and major diameter d. Since100
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our receiver is traveling along the unit circle, to parameterize an ellipse at position101

(cos(φ), sin(φ)) we multiply A(φ) and (2.2). We get ~γφ(s) = A(φ)~γ(s) rewritten below.102

(2.3) ~γφ(s) =

[
d cos(φ) cos(s)+cos(φ)−

√
d2−1 sin(φ) sin(s)

2
d sin(φ) cos(s)+sin(φ)+

√
d2−1 cos(φ) sin(s)

2

]
103

2.3. Characteristic Function. The integral of reflectivity will depend on the104

object that we are imaging, so we must define a characteristic function based on105

the shape of that object. A characteristic function is chosen because it models a106

homogeneous object in a homogeneous field, i.e. a water tower in a desert. Since we107

are studying artifacts and visible features of objects, objects with simple shape are108

easier to analyze. Thus, we focus on reconstructing disks. The characteristic function109

of a disk with center (x0, y0) and radius r is given by (2.4).110

(2.4) g(x, y) =

{
1, if

√
(x2 − x2

0) + (y2 − y2
0) ≤ r

0, otherwise
111

2.4. Line Integral. Lastly, in order to find the integral of reflectivity of an112

object over an ellipse, we calculate the line integral over each ellipse. s goes from 0113

to 2π, so using the formula for a line integral we have114

(2.5) Rf(d, φ) =

∫ 2π

0

g (~γφ(s)) ||~γ′φ(s)||ds115

After finding the derivative of ~γ(s) we get ~γ′(s) =
(
−d sin(s)

2 ,
√
d2−1 cos(s)

2

)
[5, 4].116

Since ~γφ(s) = A(φ)~γ(s), and A(φ) is a rotation, ~γφ(s) and ~γ(s) have the same norm.117

Similarly, ~γ′(s) and ~γφ
′(s) have the same norm. Thus, we can find the norm of ~γ′(s)118

using (2.6).119

(2.6) ||~γφ′(s)|| = ||~γ
′
(s)|| =

√
d2 − cos2(s)

2
120

By substituting equation (2.6) into equation (2.5), we obtain the final equation121

for finding the reflectivity of an object over an ellipse where s ∈ [0, 2π]. f is the122

characteristic function of the object we are imaging. Equation (2.7) represents this123

final equation.124

(2.7) Rf(d, φ) =

∫ 2π

0

g( ~γφ(s))

√
d2 − cos2(s)

2
ds125

We integrate over ellipses with foci at the origin and on the unit circle up to126

dmax = 7. These ellipses cover a [−2, 2] × [−2, 2] square. d is the major diameter127

of the ellipse and we need the whole ellipse to enclose the square [−2, 2] × [−2, 2].128

Any ellipse with foci at the origin and on the unit disk with dmax = 7 will enclose129

this square. We increment d ∈ [1, dmax] using ∆d = dmax−1
k where k is the number130

of points dividing [1, d]. For each d, we increment every φ within the interval [0, 2π]131

using ∆φ = 2π
l where l is the number of points dividing [0, φ]. We define di for132

i = 0, 1, 2, ..., k − 1 as di = 1 + i ∗∆d. We define φj for j = 0,...,l − 1, as133

(2.8) φj =
2πj

l
134
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Let E(d, φ) be the ellipse with foci (0,0) and (cos(φ), sin(φ)) and with major di-135

ameter d. We find Rf(d, φ) from t ∈ [0, 2π] using the trapezoidal rule, obtaining a136

specific intensity value for each E(di, φj). Our last step is to place each intensity137

value in a 2D array which we call ψ, where ψ[i, j] = Rf(di, φj). Using MATLAB,138

we programmed a function that incorporates all of these steps and outputs ψ. Algo-139

rithm 2.1 belows outlines this code. After generating ψ, we smooth our data using a140

convolution method. From here, we take the numerical second derivative in d of this141

smoothed data. Taking the derivative helps sharpen boundaries and rapid changes142

in values [7, 6, 10]. Using both the convolution and derivative methods allows us to143

better analyze artifacts that present themselves in our reconstructions.144

Algorithm 2.1 Data Generation Algorithm

Input k = number of points to divide ∆d
x̄ = all the curves of integration that go through x ∈ [−2, 2]2

l= number of points to divide φ
n= number of points to divide x̄
∆s= change in angle parameterizing the ellipse
Output ψ = 2D array with all the data values
dmax = 7
∆d = dmax−1

k

∆φ = φa−φb

l
for i in 0:k do

d = 1 + i ∗∆d
for j in 0:l do
φ = j ∗∆φ

~γφ =

[
d cos(φ) cos(s)+cos(φ)−

√
d2−1 sin(φ) sin(s)

2
d sin(φ) cos(s)+sin(φ)+

√
d2−1 cos(φ) sin(s)

2

]
characteristic = (

√
~γφ[0]− x0)2 + (~γφ[1]− y0)2)

if characteristic ≤ r then
f = 1

else
f = 0

end if
∆s = 2π

2n
trapezoidal = 0
for m = 0:n do

s = m*∆s

Rf = f ∗
√
d2−cos2(s)

2
trapezoidal + = Rf

end for
end for
ψ[i, j] = trapezoidal

end for
return ψ

2.5. Convolution Method. We want a general idea of relatively slow changes145

of values within our data set. We also want to pay little attention to oscillation be-146

tween nearby data values. Using a convolution method for smoothing helps important147
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patterns clearly stand out. We convovle our data with respect to d since the data are148

generally smoother in φ and thus convolution and smoothing are not needed.149

Let ω1 be our data after it has been smoothed using this convolution method. To150

produce ω1, we convolve ψ in d. We want to find the weighted average at each ψ[i, j].151

We fix φj and average values of ψ(di, φj) for nearby values of d. For the majority of152

our points, we use a five-point discrete convolution method that creates a symmetry153

around the point ψ[i, j] while focusing on di. For our edge cases, however, we do not154

have five points to work with. Therefore, we use different formulas for the first two i155

values and the last two i values. For every entry in ψ, we fill ω1 using Algorithm 2.2156

below, where k and l are defined in subsection 2.4. For each ψ[i, j] value, while the157

points immediately next to di hold significant weight, di holds the greatest weight.158

2.6. Derivative Method. In addition to the convolution method, we take the159

second central difference in d to approximate the second derivative of our smoothed160

data. Let ω2 be the final version of our data produced by implementing the deriv-161

ative method. To obtain ω2, we sharpen the smoothed ω1 data. The second cen-162

tral difference approximates the second derivative according to the formula f
′′
(xi) ≈163

g(xi+1)−2g(xi)+g(xi−1)
h2 where h = xi−xi−1 is the distance between neighboring x values164

in a discrete domain. For every entry in ω1, we fill ω2 using Algorithm 2.3 on the165

following page. As demonstrated by our first reconstructions in section 4, sharpening166

our data helps make artifacts in our reconstructions more identifiable. Thus ψ repre-167

sents the original data, ω1 represents the result of applying convolution to ψ, and ω2168

represents the result of applying the derivative method to ω1.169

Algorithm 2.2 Convolution Method

Input k, l as defined in Algorithm 2.1
Output ω1 = data smoothed using convolution
for i in 0:k do
for j in 0:l do
if i=0 then
ω1[i, j] = 3ψ[0,j]

6 + 2ψ[1,j]
6 + ψ[3,j]

6
end if
if i=1 then
ω1[i, j] = 2ψ[0,j]

8 + 3ψ[1,j]
8 + 2ψ[2,j]

8 + ψ[3,j]
8

end if
if i=k then
ω1[i, j] = ψ[k−2,j]

6 + 2ψ[k−1,j]
6 + 3ψ[k,j]

6
end if
if i=k-1 then
ω1[i, j] = ψ[k−3,j]

8 + 2ψ[k−2,j]
8 + 3ψ[k−1,j]

8 + 2ψ[k,j]
8

else
ω1[i, j] = ψ[i−2,j]

9 + 2ψ[i−1,j]
9 + 3ψ[i,j]

9 + 2ψ[i+1,j]
9 + ψ[i+2,j]

9
end if

end for
end for
return ω1



A MATHEMATICAL ANALYSIS OF RECONSTRUCTION ARTIFACTS IN RADAR 301

Algorithm 2.3 Derivative Method

Input k, l as defined in Algorithm 2.1
Output ω2 = data sharpened using second central difference
for i in 0:k do
for j in 0:l do
if i=1 then
ω2[i, j] = ω1[0,j]−2ω1[1,j]+ω1[2,j]

∆d
2

end if
if i=k then
ω2[i, j] = ω1[k−2,j]−2ω1[k−1,j]+ω1[k,j]

∆d
2

else
ω2[i, j] = ω1[i−1,j]−2ω1[i,j]+ω1[i+1,j]

∆d
2

end if
end for

end for
return ω2

3. Data Reconstruction. After generating ω2, we create reconstructions of170

disks with different radii and place them in various locations. We use both a back-171

projection dual operator and a linear interpolation method to create these reconstruc-172

tions.173

3.1. Back-projection. For each x̄ = (x1, x2), the backprojection operator inte-174

grates Rf (as described in (2.7)) over all ellipses E(d, φ) that contain x̄. Therefore,175

given x̄, for each φ ∈ [0, 2π], we find the value of d such that x̄ ∈ E(d, φ), and denote176

it by d(φ, x̄). As seen in Figure 2, we have one focus at the origin and another focus177

at φ̄ = (cos(φ), sin(φ)). We also know that d = d1 + d2, as described in section 2.178

Therefore, we can find the value of d based on a given φ and x̄ using equation (3.1).179

(3.1) d(φ, x̄) = ||x̄||+ ||x̄− φ̄||180

The back-projection operator evaluated at x̄ = (x1, x2) averages the data over all181

the curves of integration that go through x̄. It is defined by the equation (3.1) [13, 8]182

([13] explains why interpolation is useful). (3.2) gives the analytic definition of R∗183

when evaluated on Rf .184

(3.2) R∗Rf =

∫ 2π

0

Rf(d(φ, x̄), φ)dφ.185

We increment x̄ ∈ [−2, 2] × [−2, 2], our area of interest, using ∆x1 = ∆x2 = 4
n186

where n is a selected number of points. For each x̄ we increment φ using ∆φ = 2π
l , as187

defined in section 2. We store the increment count in variable p and substitute x̄ and188

φ into equation (3.1) to find d. However, d(φ, x̄) might not be equal to di for any i.189

We will now find the closest di less than or equal to d(φ, x̄) to estimate Rf(d(φ, x̄), φ).190
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Fig. 2: E(d,φ) that passes through x̄

To find this value, we must determine the correct i index. Let’s assume our indices191

start at 0. Index i iterates through d values, so we are searching for value di. Since192

di is the largest value such that di ≤ d(φ, x̄), we want i to be the largest integer such193

that di = 1 + (dmax − 1) in ≤ d(φ, x̄). Solving for i gives us equation (3.3).194

(3.3) i =

⌊
(d− 1)n

dmax − 1

⌋
195

We also need to find the correct φj value. The value for j depends on the starting196

and ending angle for φ. If we have complete tomographic data then φa = 0 and197

φb = 2π. Our range for φ could be less than 2π if we have limited tomographic data.198

We solve for φj using (3.4).199

(3.4) φj = φa +
(φb − φa)j

l
200

3.2. Interpolation. Linear interpolation is a method of curve fitting that esti-201

mates a function by fitting line segments between two data points. Now that we have202

i and j for each x̄,φ pair, we can use the following interpolation formula, where z is203

the resulting data point [1].204

(3.5) z =
(ω2[i+ 1, j]− ω2[i, j])(d− (1 + i∆d))

∆d
+ ω2[i, j]205

Let τ be a matrix representing the reconstruction at the array points x̄ = (x1, x2),206

where x̄ ∈ [−2, 2]×[−2, 2]. We calculate τ = R∗ω2 with the trapezoidal rule to numer-207

ically approximate R∗Rf as defined in equation (3.2). Each value of Rf(d(φ, x̄), φ) is208

found using equation (3.5). We plot τ using MATLAB’s imagesc(C) function, where209
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C is a 2D array. This function displays the data in C as an image where each element210

of C specifies the color for one pixel of the image. The result is an n1 × n2 grid of211

pixels where n1 is the number of rows and n2 is the number of columns in C [18].212

4. Reconstructions. In this paper we focus on reconstructions over region213

[−2, 2]× [−2, 2] where the object of interest is a disk. We set the radii of the disks that214

we analyze to be 1
4 , 1

2 , or 3
4 . For all of our reconstructions, we let k = 400, l = 400,215

and n = 400. Therefore, ∆d = dmax−1
k = 3

200 and ∆φ = φa−φb

l = π
200 . The x-axis of216

our images represents x1 which we increment by ∆x1 = 2−(−2)
400 = 1

100 . The y-axis of217

our images represents x2 which we increment by ∆x2 = 2−(−2)
400 = 1

100 .218

In Figure 3a, we reconstruct a disk centered at the origin with a radius r = 1
2 . In219

this reconstruction, we use the convolution method to smooth our data, but we do not220

use the derivative method for sharpening. In Figure 3b, we reconstruct the same disk221

object centered at the origin with a radius of 1
2 , with data that has been sharpened222

by the derivative method. It is difficult to see the details of the reconstruction in223

Figure 3a. In Figure 3b, however, we see more detail and a clearer outline of the224

disk. We see that the boundary of the disk is well-reconstructed. This illustrates the225

importance of using a derivative method to sharpen boundaries and rapid changes in226

data values. Therefore, we focus on reconstructions that employ both the convolution227

and derivative method to produce our data and the following images reconstruct τ .228

In terms of artifacts, we have a circle artifact with a radius of 1.5. We also have an229

ellipse artifact tangent to the rightmost border of the outer-circle.230

(a) reconstructed using data omitting the de-
rivative method

(b) τ reconstruction.

Fig. 3: Disk at (0,0) with r = 1
2

In Figure 4a, we reconstruct a disk centered at (0, 1
10 ) with radius r = 1

4 . In231

Figure 4b, we also have a disk centered at (0, 1
10 ) with a radius of 1

4 , but we also232

include a coloring for where the unit circle is using the color purple and a coloring233

for where the object should be located in the reconstruction using magenta. We use234

this same coloring for Figure 5b, Figure 6b, Figure 7b, Figure 8b, and Figure 9b.235
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Although the disk object is not centered at the origin, the origin is still within the236

disk. Similar to Figure 3b, Figure 4a and Figure 4b show that the disk’s boundary is237

well-reconstructed, but we have a white ellipse with a major diameter on the x-axis.238

Also like Figure 3, we have a circle artifact with a radius of 1.5.239

(a) τ reconstruction (b) Highlighted τ reconstruction

Fig. 4: Disk at
(
0, 1

10

)
with r = 1

4

In Figure 5a and Figure 5b, we reconstruct a disk with center (0, 1
2 ) and radius240

r = 1
4 . In these figures, we see that although the top border of the disk is reconstructed241

well, the bottom border of the disk is not clearly outlined. Instead, we have a v-shaped242

artifact that extends from the bottom border of the disk down towards the origin.243

(a) τ reconstruction (b) Highlighted τ reconstruction

Fig. 5: Disk at
(
0, 1

2

)
with r = 1

4

In Figure 6a and Figure 6b, we construct a disk that is centered at
(

1
2 , 0
)

with244

a radius r = 1
2 . By looking at Figure 6b, we see that this disk is tangent to the245

unit circle, which is represented in purple. We see that cardioid-shaped artifacts are246



A MATHEMATICAL ANALYSIS OF RECONSTRUCTION ARTIFACTS IN RADAR 305

starting to form on the right side of the outermost circle. These cardioid-shaped247

artifacts do not cross into the unit circle.248

(a) τ reconstruction (b) Highlighted τ reconstruction

Fig. 6: Disk at
(

1
2 , 0
)

with r = 1
2

In Figure 7a and Figure 7b, we reconstruct a disk centered at (1, 0) with radius249

r = 3
4 . In this case, we have a disk that is half inside and half outside of the unit250

circle. By looking at Figure 7a, we can clearly tell that the border of the disk is not251

reconstructed well. We also see cardioid-shaped artifacts forming both within and252

outside of the unit circle.253

(a) τ reconstruction (b) Highlighted τ reconstruction

Fig. 7: Disk at (1, 0) with r = 3
4

In Figure 8a and Figure 8b, we reconstruct a disk with center
(

3
2 ,

3
2

)
and r = 1

2 .254

Here, the object is entirely outside of the unit circle. The reconstructions produce the255

disk’s right and left boundaries, but not the top or bottom. There are cardioid-shaped256
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artifacts outside of the unit circle that cross into the unit circle. These cardioids are257

more noticeable than the cardioids in Figure 7a, Figure 7b, Figure 6a, and Figure 6b.258

(a) τ reconstruction (b) Highlighted τ reconstruction

Fig. 8: Disk at
(

3
2 ,

3
2

)
with r = 1

2

In Figure 9a and Figure 9b, we reconstruct a disk centered at (0,0) with r = 1
2 ,259

and a limited interval for φ. We restrict φ to be within [0, π] instead of [0, 2π]. In260

these figures, the top part of the disk is well-reconstructed, but the bottom extends261

out into a cardioid. There is a white ellipse at outermost circle’s start, with a major262

diameter at φ = 0, and at the outermost circle’s end with major diameter φ = π.263

(a) τ reconstruction (b) Highlighted τ reconstruction

Fig. 9: Disk at (0,0) with r = 1
2 , φ ∈ [0, π]

5. Conclusions. Figure 3a, Figure 3b, Figure 4a, and Figure 4b are reconstruc-264

tions of disks that are inside the unit circle and contain the origin. Figure 5a and265

Figure 5b reconstruct a disk that is inside the unit circle but the disks do not contain266
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the origin. Figure 6a and Figure 6b reconstruct a disk with a boundary that is tangent267

to the unit circle. Figure 7a and Figure 7b reconstruct a disk that is partially within268

and partially outside of the unit circle. Figure 8a and Figure 8b reconstruct a disk269

that is completely outside of the unit circle. Finally, Figure 9a and Figure 9b recon-270

struct a disk created from limited tomographic data. Based on these reconstructions271

as well as similar reconstructions, we see that272

1. If an object is within the receiver’s path (within the unit circle) and the origin273

is within the object, then the object’s boundary will be will reconstructed.274

There will, however, be an artifact curve outside the unit circle and a white275

ellipse artifact with its major diameter on the x-axis.276

277

2. If an object is within the receiver’s path but the object does not contain the278

origin, then we have a v-shaped artifact stretching from the origin to the279

object.280

281

3. If the object is partially within and partially outside of the receiver’s path or282

if the object is tangent to the receiver’s path, then we have the beginnings of283

cardioid-shaped artifacts.284

285

4. If the object is completely outside of the receiver’s path, then we have very286

obvious cardioid-shaped artifacts that appear both within and outside of the287

receiver’s path.288

289

5. If we have a limited interval for φ, meaning we cannot reconstruct the re-290

ceiver’s entire path, then our reconstructions have two white ellipses; one at291

φa and the other at φb.292

Our next steps are to use microlocal analysis to determine whether the artifacts293

described in the five points above are numerical [9, 11]. We seek to determine what is294

causing the white circle to appear in reconstructions described in conclusions 1 and 5295

and the cardioids described in conclusions 3 and 4. While we also worked with square-296

shaped and rectangle-shaped objects, we have yet to analyze these reconstructions.297

Our next steps involve drawing conclusions regarding reconstructions with rectangle-298

shaped and square-shaped objects and determining how our conclusions differ to the299

conclusions described above.300
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