
Newsjournal of the Society for Industrial and Applied Mathematics                             sinews.siam.org

Volume 54/ Issue 9
November 2021 

S
O

C
IE

T
Y

 f
o

r 
IN

D
U

S
T

R
IA

L 
an

d
 A

P
P

LI
E

D
 M

A
T

H
E

M
A

T
IC

S
36

00
 M

ar
ke

t 
S

tr
ee

t,
 6

th
 F

lo
o

r
P

h
ila

d
el

p
h

ia
, P

A
 1

91
04

-2
68

8 
U

S
A

N
on

pr
of

it 
O

rg
U

.S
. P

os
ta

ge
P

A
ID

P
er

m
it 

N
o 

36
0

B
el

lm
aw

r, 
N

J

Phase Transitions in the Heart and                      
the Genesis of Cardiac Arrhythmia
By D’Artagnan Greene               
and Yohannes Shiferaw

Approximately one in five human 
deaths occur when the periodic beat-

ing of the heart suddenly transitions into a 
chaotic rhythm [7]. This transition—called 
a cardiac arrhythmia—prevents the heart 
from effectively pumping blood and can 
have deadly consequences. To identify the 
cause of arrhythmias, one must understand 
the basic physiology of heart cells and tis-
sue [4]. Heart cells regulate voltage across 
their membranes via the complex interplay 
of millions of nanometer-scale proteins 
called ion channels. Ion channels are sensi-
tive to the voltage gradient; their nonlinear 
response to this gradient endows the cells 
with the properties of an excitable system. 
Heart cells are excitable in the sense that 
injection of a small initial current can 
induce a much larger secondary current 
flow that generates a rapid increase in the 
voltage across the cell membrane.

Cells are connected to each other via ion 
channels, which means that an excitation of 
one cell can rapidly excite its nearest neigh-
bors. As with falling dominoes, this process 
can rapidly spread the signal outward across 
many cells to eventually excite all cardiac 
tissue. This rapid propagation of electrical 
excitation orchestrates the heart’s rhythmic 
beating. In an unhealthy heart, however, 
the typically organized electrical excitation 
can break down into a swirl of turbulent 
electrical activity that overruns the heart’s 
intrinsic rhythm and causes an arrhythmia.

In recent decades, biologists have worked 
closely with applied mathematicians and 
physicists to decipher the mechanisms 
that drive cardiac arrhythmias. The math-
ematical perspective has yielded impor-
tant insights about the structure of coher-
ent excitations in tissue—such as spiral 
and scroll waves—that practitioners have 
experimentally observed in the heart [2]. 

Additionally, molecular biologists have dis-
covered that arrhythmias can arise due to 
defects at the level of individual amino 
acids in proteins that regulate the volt-
age across cell membranes. However, the 
mechanism through which nanometer-scale 
molecular defects influence the spatiotem-
poral activity of an entire heart remains 
unknown. This is because sub-microsecond 
time scale fluctuations between stable con-
formational states—such as an ion chan-
nel’s open and closed state—dictate the 
function of proteins at the nanometer scale. 
Furthermore, an electrical activation in tis-
sue involves the excitation of millions of 
electrically coupled cells. Understanding 
the cause-and-effect relationships across 
these vast length and time scales is a daunt-
ing yet necessary challenge that will allow 
researchers to fully comprehend the mecha-
nisms of cardiac arrhythmias.

In order for a cardiac cell to function 
properly, a vast array of proteins and ions 

must work together like a finely tuned 
instrument. Cells contribute to this partner-
ship by utilizing signal transduction — a 
process that transports and delivers infor-
mation between different parts of the cell 
with precise timing. The most ubiquitous 
signaling messenger is the calcium (Ca) 
ion, which regulates a broad range of cel-
lular processes. Cardiac cells have subcel-
lular compartments that store Ca ions at 
concentration levels that are roughly four 
orders of magnitude higher than those in 
the cell. To induce a cellular response, a 
small initial increase in Ca ions triggers the 
release of a large amount of Ca from these 
compartments into the cell interior, which 
in turn diffuses and activates an array of 
Ca-sensitive proteins. This architecture also 
endows the cell interior with the properties 
of an excitable system, since a signal can 
spread in the interior much like electrical 
activity spreads between cells in tissue.

Figure 1. A paced cardiac cell can exhibit a sustained alternating pattern in which a quiescent 
beat (Q) follows a calcium (Ca) wave (W). A large amount of Ca is released into the cell during 
the wave, which generates an alternating Ca and voltage signal. Figure courtesy of the authors.

See Cardiac Arrhythmia on page 4

Figure 1. Sea ice off the coast of Greenland, which has been diminished by warm-
ing Arctic temperatures. The infusion of cold water into the ocean risks disrupting the 
Atlantic meridional overturning circulation. Public domain image courtesy of NASA.

Maintaining Biodiversity in 
an Increasingly Variable World

Special Issue on 
Dynamical Systems

This special issue highlights research from the 2021 SIAM 
Conference on Applications of Dynamical Systems, as well as other 

timely developments and trends in the field.

In an article on page 6, Matthew Francis overviews the research of Christopher 
Jones, who works with mathematical models that explore rate-induced tip-
ping in climate systems, the weakening Atlantic meridional overturning circu-
lation, and the effects of human-driven climate change.

By Sebastian J. Schreiber

All living organisms experience fluc-
tuations in environmental conditions 

like temperature, precipitation, nutrient 
availability, and predation risk. Because 
these conditions impact survival, growth, 
and reproduction, the environmental fluc-
tuations cause additional fluctuations in 
population densities. As a result, environ-
mental fluctuations can affect the viability 
of populations and the dynamics of interact-
ing species. The most recent report from 
the Intergovernmental Panel on Climate 
Change1 found that the frequency and inten-
sity of heavy precipitation events—as well as 
concurrent heatwaves and droughts—have 
increased since the 1950s. Understanding 
the ecological impacts of these growing 
environmental variabilities is critical for 
managing populations and conserving biodi-
versity. Recent mathematical developments 
in the analysis of stochastic models [2, 4, 
5] allow researchers to study these impacts.

Environmental fluctuations’ effect on 
populations is known as environmental 
stochasticity. “[It is] obviously true that 

1  https://www.ipcc.ch/report/sixth-
assessment-report-working-group-i

the numbers in most natural populations 
are sometimes increasing and sometimes 
decreasing, and that these fluctuations may 
be enormous,” Herbert Andrewartha wrote 
in the 1950s. “One is thus led to expect that 
the so-called stochastic models of popula-
tions might be more realistic and there-
fore more successful than the deterministic 
models” [1]. Richard Lewontin and Dan 
Cohen answered Andrewartha’s call [7] and 
studied the simplest possible model that 
accounts for environmental stochasticity:

           x t x t f t( ) ( ) ( ).+ =1 	  (1)

Here, x t( ) is the population density at 
time t  and f t( ) corresponds to the fitness 
of individuals at time t  (the average con-
tribution of an individual to the population 
size over a single time step). If f t( ) is a 
sequence of independent and identically 
distributed (i.i.d.) random variables, then 

lim
t t

x t f→∞ =
1

1ln ( ) [ln ( )]  with probabil-

ity 1 by the law of large numbers. The popu-
lation thus grows exponentially quickly if 
the per capita growth rate r r=[ln ] is posi-
tive; if r  is negative, the population decays 

See Biodiversity on page 3
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dynamical systems (DS) 
remains a central goal of the 
quantitative sciences. Recent 
innovations in machine learn-
ing (ML)—particularly deep 
learning—have yielded further 
insight into the field’s con-
nection with DS. Qianxiao Li 
and Weinan E introduce sev-
eral recent lines of work at the 
intersection of ML and DS.

7 	 Student-Centric Graduate 
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	 Last month, Yara Skaf and 
Reinhard Laubenbacher advo-
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Obituary: James Howard Case
James (Jim) Howard Case passed away 

unexpectedly on September 1, 2021, 
at the age of 80. A longtime member of 
SIAM, Jim was perhaps best known within 
the SIAM community for his thoughtful, 
eloquent book reviews in SIAM News. He 
was also an early and ardent supporter of 
the MathWorks Math Modeling Challenge 
(M3 Challenge),1 a program of SIAM. 

A man of diverse interests who was 
admired for his sense of humor, Jim was born 
in Rochester, NY, in 1940 to Charles Zopher 
Case and Mary Proctor Case. He grew up on 
a dairy farm in nearby Avon, NY, and gradu-
ated from Groton School in Massachusetts 
in 1958. Jim went on to earn a bachelor’s 
degree in mathematics at the University of 
Rochester. As an undergraduate, he was a 
three-sport varsity athlete in football, swim-
ming, and baseball; in 2013, he was inducted 
into Rochester’s Athletic Hall of Fame.

Jim’s overriding passion was to become a 
professional baseball pitcher, and he enthu-
siastically signed with the Los Angeles 
Dodgers organization. He was assigned to 
the Panama City Fliers (an affiliate of the 
Dodgers) and attended spring training in 
Vero Beach, Fla., but suffered a shoulder 
injury and was released in the spring of 
1962. After the sudden end to his baseball 
career, Jim took a tramp steamer to Cannes, 
France; bought a bicycle; and headed north 
to Paris. He stopped along the way to 
enjoy Michelin-starred restaurants and 
spoke enough French 
to successfully order 
a meal. Following 
this experience, his 
favorite vacation was 
always a trip through 
the French coun-
tryside in search of 
good food and wine, 
and he remained a 
devoted patron of La 
Pyramide in Vienne.

Jim completed 
his master’s and 
doctoral degrees at 
the University of 
Michigan in 1967 and 
wrote a dissertation 
on the equilibrium 
points of n-person 
differential games 
under the supervision 
of Robert McDowell Thrall. He was elected 
to Sigma Xi, The Scientific Research Honor 
Society, while at Michigan. After gradua-
tion, Jim conducted postdoctoral research at 
Princeton University and the University of 
Wisconsin’s Mathematics Research Center. 
In 1970, he moved to Baltimore, Md., 
and joined the Operations Research and 
Industrial Engineering Department (now 
the Department of Applied Mathematics 
and Statistics) at Johns Hopkins University 
as an assistant professor. He left the school 
in 1976, later becoming a lecturer at 
Towson University and working for the 

1  https://m3challenge.siam.org

Federal Trade Commission and American 
Petroleum Institute. 

Jim authored three books throughout his 
professional career, including Competition: 
The Birth of a New Science,2 as well as a 
number of book chapters and peer-reviewed 
journal papers on topics such as game the-
ory and finance. In fact, his first published 
peer-reviewed paper appeared in the SIAM 
Journal on Control in 1969 [1]. In addition, 
Jim wrote for Mathematical Reviews and 
served as an associate editor of Operations 

Research from 1974-
1979 and the American 
Mathematical Monthly 
from 1995-2001. He 
was also a member 
of the Mathematical 
Association of America 
and the International 
Society of BioPhysical 
Economics.

Jim was a frequent 
contributor to SIAM 
News and published 
both book reviews 
and freelance pieces 
based on SIAM con-
ference lectures or 
other noteworthy top-
ics. In the last 10 years 
alone, he wrote nearly 
50 articles for SIAM 
News that covered a 

wide variety of subjects, including base-
ball statistics, communication networks, 
probability, big data algorithms, artificial 
intelligence, and a number of mathemati-
cal biographies; a complete archive of his 
work from June 2012 onward is available 
online.3 Jim’s most recent submission—a 
book review of Bounded Gaps Between 
Primes by Kevin Broughan—appeared in 
the September 2021 issue.4 

2  https://www.amazon.com/Competition-
Birth-Science-James-Case/dp/0809035782

3  https://sinews.siam.org/About-the-
Author/james-case

4  https://sinews.siam.org/Details-Page/
prime-gap-breakthrough

Jim was also actively involved with 
the M3 Challenge, an annual mathemati-
cal modeling competition for high school 
students, and  served as both a triage and 
contention judge for over 10 years. In 2016, 
a participating M3 team that had received 
an honorable mention prize reached out 
to SIAM’s M3 Challenge staff and asked 
if anyone in the SIAM or M3 community 
would be willing to visit the school and pres-
ent the team certificates. Jim eagerly volun-
teered and drove 75 miles from Baltimore to 
Ashburn, Va., to attend the award ceremony 
at Stone Bridge High School — a reflection 
of his unwavering desire to inspire young 
people with a burgeoning interest in math.

Upon moving to Baltimore, Jim became 
an ardent fan of the Orioles, Colts, and 
eventually the Ravens. He was an avid 
downhill skier and instilled a passion for the 
sport in his children, their spouses, and his 
grandchildren, all of whom treasure memo-
ries of annual family ski vacations.

While teaching in British Columbia for 
a semester, Jim took a liking to hard cider. 
When he returned to Baltimore, he founded 
the Chesapeake Hard Cider Company in 
1983. Jim owned and operated the company 
until 1991. In his spare time, he enjoyed 
membership with the L’Hirondelle Club, 
the 14 West Hamilton Street Club, and the 
Wednesday Club.

During his undergraduate years, Jim’s 
Rochester swim coach, Roman “Speed” 
Speegle, introduced him to Patricia (Pat) 
deYoung, a member of the women’s swim 
team; they married in 1962. Jim is survived 
by his wife Pat; children Martha, Caroline, 
and Charles, as well as their spouses; five 
grandchildren; and his sister Elizabeth. 
He will be greatly missed by his family, 
friends, and colleagues; the SIAM News 
staff; and the entire SIAM community.

References
[1] Case, J.H. (1969). Toward a theory 

of many player differential games. SIAM J. 
Control, 7(2), 179-197.

SIAM News would like to thank the 
family of Jim Case for their contributions 
to this article.

Judges of the 2011 MathWorks Math Modeling Challenge (M3 Challenge), a program of SIAM, 
gather at SIAM headquarters in Philadelphia, Pa., to evaluate submitted papers from compet-
ing student teams. James Case (seventh from right, in the back) served as both a triage and 
contention judge for more than 10 years. Photo courtesy of SIAM.

James (Jim) Howard Case, 1940-2021. 
Photo courtesy of SIAM.
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exponentially quickly toward extinction. 
In contrast, the expected population size 
[ ( )]n t  grows exponentially like [ ( )] .f t1  
Lewontin and Cohen highlighted a sur-
prising prediction from this simple model, 
based on the fact that the geometric mean 
exp( [ln ( )]) f 1  is less than the arithmetic 
mean [ ( )]:f 1  They noted that “even though 
the expectation of population size may grow 
infinitely large with time, the probability of 
extinction may approach unity” [7].

Mathematical models of population 
growth often account for density depen-
dence in the fitness f  of the population:

x t x t f x t t( ) ( ) ( ( ), ( )),+ = +1 1x  	  (2)

where x( )t  is a sequence of i.i.d. random 
variables representing demographic impacts 
of environmental fluctuations. Under appro-
priate assumptions about the behavior near 
infinity, these models exhibit statistically 
bounded fluctuations. Furthermore, if the 
per capita growth rate when rare (GRWR) 
r f=[ln ( , ( ))]0 1x  is positive, then the pop-
ulation is stochastically persistent — it tends 
to spend little time near 0. Alternatively, the 
population tends toward extinction if r <0. 
This simple characterization of extinction 
versus persistence provides a mathematic 
proof that increased variability in precipita-
tion may have led to the local extinction of 
two populations of Bay checkerspot butter-
flies [8] (see Figure 1).

Species are not isolated from each other; 
they interact through a complex web of 
direct and indirect pathways. Moreover, 
individuals within a species may differ from 
one another in demographically important 
ways due to variations in behavior, mor-

phology, physiology, or spatial location. 
To account for diversity of species interac-
tion and individual differences, consider 
Markovian models in which x x x

n
=( ,..., )

1  
is the vector of species’ densities and 
y kÎ  are auxiliary variables [4]:

  x t x t f x t y t t
i i i
( ) ( ) ( ( ), ( ), ( ))+ = +1 1x

	
    	         i n=1,..., 		   (3)

  y t G x t y t t( ) ( ( ), ( ), ( )).+ = +1 1x

The auxiliary variables describe population 
structure (i.e., keep track of each species’ 
frequency in a patch, age class, or stage), 
capture feedback variables (e.g., trait evo-
lution and plant-soil feedbacks), or allow 
for structure in environmental fluctuations 
(e.g., autocorrelation).

Characterizing coexistence and extinc-
tion in these types of models is a much 
more delicate process than in the sin-
gle-species model. However, studies have 
extended an approach that is inspired by 
Josef Hofbauer’s work with deterministic 
models [6] to these stochastic models, 
as well as to stochastic differential equa-
tions and piecewise deterministic Markov 
processes (PDMPs) [2, 4, 5]. Like the 
single-species models, this approach relies 
on GRWRs. But unlike the single-spe-
cies models, there are multiple contexts in 

which a species may become rare. These 
contexts are given by ergodic measures 
u dxdy( ) of (3) that support a subset of 
species, i.e., u x y x

i i
({( , ):min }) . 0 1  

For such an ergodic measure, the GRWR 
of a missing species i  when introduced at 
infinitesimally small densities is

   r f x y dxdy
i i
( ) [ln ( , , ( ))] ( ).µ ξ µ=∫  1

This is the per capita growth rate ln f
i
 

averaged over the fluctuations in x, y, and 
x. The Hofbauer condition ensures coex-
istence (i.e., all species’ densities tend to 
stay away from low values) if fixed weights 
w
i
>0  exist, such that

    	 (4)
      with u x y x

i i
(( , ):min ) .= =0 1

The function V x y w x
i i i

( , ) ln=−Σ  then 
acts like a type of average Lyapunov func-
tion near the extinction set — i.e., V  tends 
to increase along trajectories when min

i i
x  

is sufficiently small. Related conditions 
help researchers identify when one or more 
species goes towards extinction exponen-
tially quickly. These results collectively 
allow one to determine whether all modeled 
species coexist, or whether one or multiple 
stochastic attractors are present wherein one 
or more species are excluded.

Application of these results to multispe-
cies models has yielded new, mathemati-
cally rigorous insights into environmental 
stochasticity’s impact on the dynamics of 
communities of interacting species. For 
example, one study examines the way 
in which autocorrelated fluctuations in 
fecundity or survival determine the fate 
of competing species [9]. For these mod-
els, f x y y x x s y

i i i i i i
( , ) ( )/( ) ( ),= + + +l 1

2  

where l
i
 and s

i
 are the maximal fecundity 

and survivorship of species i  and y y y=( , )
1 2

 
is a multivariate autoregressive process. In 
the absence of environmental fluctuations 
(i.e., when y  remains constant), the spe-
cies with the higher reproductive number 
l
i i

s/( )1-  excludes the other (see Figure 
2a). Accounting for environmental fluctua-
tions can shift the exclusionary dynamics to 
stochastic coexistence (see Figure 2b) or a 
stochastic priority effect (see Figure 2c and 
2d), whereby there is a positive probability 
that one species drives the other to extinc-
tion. These outcomes have a delicate depen-
dence on whether survival or fecundity 
fluctuates, and the sign of its temporal auto-
correlation. For example, positively auto-
correlated fluctuations in fecundity promote 
coexistence and positively autocorrelated 
fluctuations in survival promote stochastic 
bistabilities. Equally surprising is Michel 
Benaïm and Claude Lobry’s use of PDMP 
Lotka-Volterra models to show that random 
switching between two environments—both 
of which favor the species in question—can 
lead to that species’ extinction [3].

Indirect species interactions are more 
challenging to study but can yield additional 
unexpected results. For example, analyses of 
the dynamics of two prey species that share 
a common predator revealed that an increase 
in the density of one prey species leads to 
an increase in the predator’s density and a 

corresponding decrease in the other prey 
species [10, 11]. Although the prey are not 
actually competing, they appear to be due to 
the indirect effect of the predator. A simple 
rule of dominance emerges in the absence of 
autocorrelated environmental fluctuations: 
the prey species that supports the higher 
mean predator density excludes the other 
prey [11]. Autocorrelated fluctuations in 
predator attack rates can shift the exclusion-
ary dynamics to stochastic coexistence or 
a stochastic priority effect [10]. Yet unlike 
the competition models, the intermediary 
species (the predator) may exhibit varied 
responses to environmental perturbations 

on shorter and longer time scales. Highly 
autocorrelated environmental fluctuations 
can therefore generate different ecological 
outcomes (stochastic bistability) than those 
that result from weakly autocorrelated envi-
ronmental fluctuations (coexistence).

Despite this progress, many challenges 
remain. Significant gaps endure between 
the necessary and sufficient conditions 
for stochastic coexistence, and a deeper 
biological understanding of environmen-
tal stochasticity’s impact on the ecologi-
cal dynamics of more diverse communi-
ties remains elusive. However, a growing 
number of talented mathematicians are 

Figure 1. Increased environmental stochasticity promotes extinction. Simulations of a data-based model of form (2) for Bay checkerspot butter-
flies that are experiencing variability in precipitation. 1a. For precipitation variability before 1971, r>0 and stochastic persistence occurs. 1b. For 
precipitation variability after 1971, r<0 and asymptotic extinction occurs. These predictions are consistent with the hypothesis that increased 
precipitation variability caused the local extinction of two butterfly populations [8]. Figure courtesy of Sebastian Schreiber.

currently tackling these problems; further 
insight is sure to follow.
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Figure 2. Autocorrelated environmental fluctuations alter ecological outcomes. 2a. In a deter-
ministic model of two competing species, one species always excludes the other. 2b-2d. 
Autocorrelated fluctuations in demographic parameters can alter this outcome, allowing for sto-
chastic coexistence (2b) or a stochastic bistability (2c and 2d) for which there is a positive probabili-
ty of losing either species for the same initial conditions [9]. Figure courtesy of Sebastian Schreiber.

Register for COMAP’s 2022 International Math Modeling Contests
Registration is now open for the Consortium for Mathematics and Its Applications’ 

(COMAP) 2022 international math modeling contests! The Mathematical Contest in 
Modeling (MCM)® and the Interdisciplinary Contest in Modeling (ICM)® feature 
problems in continuous and discrete mathematics, data science, sustainability, operations 
research, network science, and policy. 

The MCM and ICM invite undergraduate and high school students of all disciplines to 
work in teams to develop solutions to a real-world problem over the extended weekend of 
February 17-21, 2022. Participating students will apply their modeling, problem-solving, 
and writing skills to successfully complete the proposed problem, earn prestigious desig-
nation, and possibly win one of the $10,000 scholarship awards!

Learn more online1 and register by February 17, 2022.2 
Follow @COMAPMath on Twitter for up-to-date contest information and visit 

www.comap.com for free modeling resources.

1  https://www.mcmcontest.org
2  https://www.comap.com/undergraduate/contests/mcm/register.php
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Cardiac Arrhythmia
Continued from page 1

As a result, waves of released Ca—
which occur randomly in cardiac cells—can 
propagate within a cell under appropriate 
conditions. These Ca waves are dangerous 
because Ca wave propagation is a highly 
nonlinear function of the Ca concentra-
tion in intracellular stores, and the waves 
disrupt the rhythmic responses of cardiac 
cells. Nucleation of these waves is also 
highly sensitive to local fluctuations, mean-
ing that their timing and extent is stochastic. 
Consequently, there is now a consensus in the 
cardiac community that Ca waves can cause 
a wide range of cardiac arrhythmias [8].

Although biologists have clearly demon-
strated that a disruption in Ca signaling can 
trigger cardiac arrhythmia, researchers still 
do not understand how a molecular-scale 
defect can prompt a breakdown of electrical 
activity for the whole heart. Our group has 
recently found that Ca waves can synchro-
nize across millions of cells in cardiac tissue. 
Ca waves fire in unison when this synchroni-
zation occurs, which dramatically amplifies 
their effect on the tissue scale. To discern 
the impetus behind such synchronization, 
we must apply concepts from the theory of 
phase transitions — an elaborate mathemati-
cal framework that explains sudden changes 
in material properties with temperature [1]. 

The concept of symmetry plays a funda-
mental role in phase transitions. This sym-
metry arises in the heart because periodically 
driven cells can acquire temporal patterns in 
which Ca waves occur in the cells on alternate 
beats (see Figure 1, on page 1). A sequence 
of Ca waves (W) followed by quiescence 
(Q) produces this alternating pattern, so that 
a given cell can alternate with a sequence

... ...QWQW

However, simply shifting the sequence by 
one beat yields

... ...,WQWQ

which is dynamically equivalent. Paced 
cardiac cells thus possess a subtle symme-
try—first described in a different context 
[6]—that has important consequences at 
the tissue scale. To explore these conse-
quences, we introduce an order parameter 
that measures the phase of the alternating 
sequence. On a two-dimensional (2D) lat-
tice, we can therefore describe the cell at 
site ij  with an order parameter

s
QWQW

WQWQij
=
+ →
− →















1

1

... ...

... ...
.

On a lattice of coupled cells, the probability 
of observing sequence { }sij  is the same 
as observing -{ }.s

ij
 This phenomenon—

known as Ising symmetry—is shared by the 
interacting spin-1 2/  systems that character-
ize ferromagnetic materials. The “spins” 
s
ij

 interact in a manner that is governed by 
the interplay between the voltage and Ca 
signals in cardiac tissue. By accounting for 
these interactions, we realize that we can 
map the organization of Ca waves in tissue 
to an equivalent statistical mechanics prob-
lem with a Hamiltonian, given by

H
N

s
ij

ij

=








∑
2

.

N  refers to the total number of cells and   is 
a parameter whose sign is determined by the 
way in which voltage couples to Ca according 
to the multitude of ion channels that regulate 
the cell membrane. This model is analogous 
to the classic Curie-Weiss model for ferro-
magnetism, which exhibits an order-disorder 
phase transition at a critical temperature T

C
 

[5]. In the context of the heart, the transition 
maps directly to a synchronization transi-
tion wherein Ca waves self-organize across 
millions of cells in cardiac tissue. Here, the 
role of thermal fluctuation corresponds to 
the stochasticity of Ca wave formation and 
a critical pacing rate replaces the critical 
temperature. Below the critical pacing rate, 
the voltage nudges the stochastic subcellular 
Ca signal to synchronize millions of cells so 

that they fire Ca waves in unison. Numerical 
simulations of simplified 2D systems reveal 
that when this transition commences, a large 
piece of cardiac tissue coarsens into regions 
of synchronized waves (see Figure 2a). These 
regions of synchronized waves can induce 
large voltage perturbations in that tissue, 
potentially leading to wave break and reentry 
(see Figure 2b). In systems with disrupted 
Ca signaling, we find that arrhythmias only 
occur at parameter regimes where the syn-
chronization transition has transpired.

Our results highlight new relationships 
between biological tissue and material sci-
ence systems. Under certain conditions, bio-
logical tissue can share symmetries that also 
exist in unrelated systems (like ferromagnetic 
materials). Furthermore, the phase transition 
that we identify here has direct physiological 
relevance — it provides a precise mechanism 
that relates subcellular defects in Ca cycling 
to a tissue-scale phenomenon that involves 
millions of cells. In the future, researchers 
might be able to utilize this novel perspective 
to develop new therapeutics that prevent the 
synchronization transition from occurring.

This article is based on Yohannes 
Shiferaw’s invited talk at the 2021 SIAM 
Conference on Applications of Dynamical 
Systems,1 which took place virtually this May.
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Figure 2. The dynamics of calcium (Ca) waves and voltage in cardiac tissue. 2a. At steady 
state, the order parameter s

ij
 that measures the phase of the alternating waves can synchro-

nize across large patches of cardiac tissue. Here, black regions denote cells with s
ij
=1  and 

white regions denote cells with s
ij
=−1.  Orange points denote cells wherein no Ca wave 

occurs. This pattern then drives spatial patterns of voltage that are quantified by the action 
potential amplitude Da

ij
,  which measures beat-to-beat differences in the voltage time course. 

2b. When the same tissue is paced from the bottom edge, planar waves undergo wave break 
that is caused by the spatial patterns that form due to the synchronization transition. Here we 
simulate a piece of cardiac tissue that consists of a 150 150´  cell grid. The wave break occurs 
after 30 beats when the spatial patterns have developed. Figure courtesy of [3].
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By Qianxiao Li and Weinan E

Mathematical modeling of dynami-
cal systems (DS) is a central goal 

of the quantitative sciences. Although 
machine learning (ML) technologies are 
modern inventions, the interaction of data 
and dynamics has a long history. One of 
data science’s first forays into modeling 
dynamics perhaps began with astronomy 
— particularly with Ptolemy’s archaic but 
instructive geocentric model of the cosmos, 
which culminated in Kepler’s laws of plan-
etary motion. These laws ultimately laid 
the empirical basis for Newton’s landmark 
contributions. Since then, the interactions 
of DS and data science have matured in 
both breadth and depth. Recent innova-
tions in ML—particularly deep learning 
(DL)—have yielded further insights into 
the connection between these fascinating 
fields. Here we introduce some recent lines 
of work at the intersection of ML and DS.

Three Types of Connections
To organize ideas, one can classify the 

types of interactions between ML and 

DS into three complementary directions: 
machine learning of dynamical systems, 
by (or via) dynamical systems, and for 
dynamical systems (see Figure 1 for some 
examples). The first direction is perhaps 
most familiar, as it concerns the ques-
tion of how one can obtain mathematical 
models from observations of dynamical 
processes (much like the works of Ptolemy 
and Kepler). A key issue involves learning 
such dynamics from data while still retain-
ing physical insights. The second direction 
pertains to the study of the theory and algo-
rithms for modern ML methods that one 
applies to data from dynamical problems. 
Examples include the well-known recurrent 
neural networks (RNNs) and their exten-
sions (such as long short-term memory net-
works (LSTMs) and gated recurrent units) 
as well as complex mechanisms (such as 
attention) whose theoretical understanding 
remains quite limited. Finally, recent work 
in the last direction shows that deep neural 
networks (DNNs) are themselves akin to 
DS; viewing them in this way allows one to 
employ dynamics-based mathematical ideas 
and tools to advance theory and algorithms 

for DL [3]. We now discuss selected works 
in each of these directions.

Machine Learning by        
Dynamical Systems

Despite widespread practical success, DL 
still requires further theoretical progress. 
For instance, researchers seek to develop a 
succinct mathematical setting with which 
to view DL that focuses on newly arising 
phenomena. As an example, one significant 
novel aspect of DL is the presence of com-
positional structures in the model; stacked 
layers achieve complexity through repeat-
ed composition. An important unresolved 
question explores the way in which this 
new compositional structure changes the 
model’s behavior in terms of approxima-
tion, optimization, and generalization.

DS theory offers a promising frame-
work for carrying out such an analysis. The 
connection between DS and these compo-
sitional structures was first publicized in 
2017 [3]; one can regard deep (residual) 
neural networks (NNs) as finite-difference 
discretizations of a continuous-time DS (see 
Figure 2, on page 7). This outlook—which 
is popularized in ML literature as neural 
ordinary differential equations [2]—pro-
vides a convenient language with which 
to capture the key features of DL. Studies 
have explored the immediate consequences 
of this viewpoint in terms of network stabil-
ity [4] and training methods [5, 6]. On the 
optimization side, these factors set forth the 
connection between DL and optimal control 
theory. In particular, researchers can regard 
the latter as a form of mean field optimal 
control; one can derive similar optimality 
conditions—such as Pontryagin’s maximum 
principle and the Hamilton-Jacobi-Bellman 
equations—in the mean field setting.

Another interesting angle is approxima-
tion theory, which focuses on how one can 
build a complex hypothesis space through 
composition or dynamics. Complexity in 
shallow NNs arises from the linear combi-
nation of a large number of adaptive basis 
functions (or neurons/nodes). DNNs seem to 
require another angle, and several relevant 
results appear in the continuous setting [7]. 
However, a comprehensive understanding 
of the approximation properties of compo-
sitional or dynamical hypothesis spaces is 
currently limited. In particular, a general 
characterization of the aspects that make a 
“nice” function for approximation through 
composition/dynamics remains an interest-
ing open question. The resolution of this 
question might explain why the performance 
of deep models is very problem-dependent.

Machine Learning for       
Dynamical Systems

A reverse scenario encourages research-
ers to comprehend the application of mod-
ern ML techniques to problems that entail 
dynamics, such as time series forecasting 
and sequence-to-sequence models for lan-
guage or engineering applications. In the 
specific context of DL, a key mathematical 
problem involves elucidating the interaction 
of compositional or dynamical structures in 
DNNs as well as the dynamical structures 
that are present in the data or data genera-
tion process. This method offers researchers 
the unique opportunity to couple data and 
model structure in the analysis.

Consider RNNs, which are among the 
simplest ways to model sequential relation-
ships. Yet many issues plague RNN appli-
cations in practice, especially their inabil-
ity to handle long sequences. Researchers 
have made various improvements from a 
practical angle, including the now-popular 
LSTM. However, a complete understand-
ing of the theory and limitations of recur-
rent architectures for time series modeling 
remains fragmented. This restraint is an 
obstacle for practitioners, who often must 
rely on trial and error to select the correct 
model architecture for the task at hand.

To address this issue, a functional 
approximation framework can serve as a 
general formulation on which one analyzes 
time series modeling via NNs [8]. Use of 
this framework proves that a “curse of 
memory” is associated with RNNs, even 
in linear settings. This finding parallels the 
investigation of the “curse of dimensional-
ity” and demonstrates that both approxima-
tion and optimization become exceedingly 
difficult when memory increases in the 

Machine Learning and Dynamical Systems

Figure 1. Examples of interactions between machine learning (ML) and dynamical systems (DS).

See Machine Learning on page 7
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It’s Not the Heat, It’s the Rate
Rate-Inducted Tipping’s Relation to Climate Change
By Matthew R. Francis

For many years, scientists have warned 
that the Atlantic meridional overturn-

ing circulation (AMOC)—the thermal 
cycle that drives currents in the Atlantic 
Ocean—is getting weaker [1]. Among 
other effects, the AMOC carries warm 
water to Ireland and the U.K. and returns 
cooler water from the north to southern 
regions. Instability in this circulation cycle 
could result in its complete collapse and 
cause widespread disruptions in tempera-
ture, changes in rain and snowfall patterns, 
and other natural disasters.

The potential loss of the AMOC repre-
sents a possible tipping point due to human-
driven climate change. Global increases in 
temperature lead to warmer ocean water and 
melting polar ice, both of which decrease 
water density (see Figure 1, on page 1). The 
subsequent lower-density water does not 
sink as much as it cools, thus disrupting the 
thermal cycle. When the AMOC collapsed 
in the prehistoric past, it jolted Earth’s cli-
mate and affected every ecosystem.

Many researchers, including Christopher 
K. Jones of the University of North Carolina 
at Chapel Hill, have searched for math-
ematical models to describe processes that 
resemble the AMOC collapse. Jones deliv-
ered an invited talk about this subject at the 
2021 SIAM Conference on Applications of 
Dynamical Systems (DS21),1 which took 
place virtually in May. “Climate change 
is all about the rate at which something 
is changing,” Jones said. “The impacts of 
climate change may be triggered not just 
because the state of the system you’re look-
ing at is reaching a certain threshold, but 
because the rate at which the state of the 
system is changing is triggering the event.”

In other words, the rapidity of climate 
change might be influencing the likeli-
hood of AMOC collapse, severe droughts, 
extreme hurricane seasons, and other phe-
nomena more than a static temperature 
or greenhouse-gas concentration threshold. 
For instance, some studies suggest that a 
fairly rapid infusion of cold freshwater into 
the ocean could have triggered a 1,000-year 
cold snap known as the Younger Dryas [2]. 
According to this theory, a slower introduc-
tion of the same amount of water would not 
have created such a large disruption; it was 
the rapidity of the cold water infusion that 
made the difference.

Jones and his graduate student Katherine 
Slyman are therefore examining a particu-
lar class of dynamical system models that 
involve rate-induced tipping (R-tipping), 
which differs from the better-known 
bifurcation-based tipping (B-tipping). In 
B-tipping, the dynamical system has dif-
ferent steady-state configurations; the one 
in which the system resides depends upon 
the value of state parameters, not the rate at 
which those parameters change. “There are 
identifiable different stable states that are 
quite distinct from each other,” Jones said. 
“The transition from one to the other can be 
abrupt.” It need not be a small perturbation 
either; the trigger for the transition could 
be large in some cases.

In her own minisymposium presentation 
at DS21, Slyman used the analogy of a 
well-known magic trick wherein a magician 
sets dishes on a tablecloth and quickly pulls 
the cloth away. If the magician is too slow 
in yanking the cloth, the dishes fall on the 
floor and break; with sufficient speed they 
remain on the table. The rate of change 
makes all the difference.

Time Is (Not) On Our Side
Sebastian Wieczorek of the University 

of Cork and his colleagues were the first 

1  https://www.siam.org/conferences/cm/
conference/ds21

researchers to work out much of the 
R-tipping formalism. They were examining 
the “compost bomb instability,” a phenom-
enon that causes peatlands to spontaneously 
catch fire. “They’re still below their ignition 
temperature,” Jones said. “But the rate at 
which they’ve been warmed causes them to 
catch fire. So, the rate has reached a certain 
threshold and not the state itself.”

One challenge of R-tipping compared to 
B-tipping is that the systems are non-auton-
omous, which means that the equations 
include explicit time dependence. A generic 
way to write a system of n  equations with 
a single time-dependent parameter L  is 
� �x f x t x n= ∈( , ( )) ,Λ  Λ∈. “When you 

introduce rate-induced tipping, you have 
this parameter that now changes in time,” 
Slyman said. “That makes this problem 
hairy to solve and kind of unpleasant.”

The particular behavior of some non-
autonomous R-tipping systems allows for 

simplifications that exploit the essential two-
state nature of tipping points. As is common 
with other non-autonomous systems, one 
must first define a new variable s rt=  with 
a constant rate parameter r >0:

x f x s= ( , ( ))Λ

s r= .

This formulation makes the system autono-
mous, albeit by increasing the model’s 
dimension from n  to n+1. However, the 
choice of the function L  also plays an 
important role in the model’s manage-
ability. “It’s important to understand that 
this is not an instantaneous thing and not 
a very long-term thing,” Jones said. “It’s 
kind of an intermediate time thing. The rate 
is changing rapidly but it’s not changing 
instantaneously. And it’s not not changing 
at all; it’s somewhere in the middle.”

Hyperbolic tangent is a simple function 
that behaves in this way. It has a finite range 
[ , ]-1 1  for its domain and is invertible, dif-
ferentiable, and ramp-like in shape: 

Λ( ) tan ( ).t h rt= +1

The rate r  controls the ramp function’s 
steepness and the limits as t  approaches 
±∞  define the system’s behavior before 
and after the transition. Researchers use 
a topological trick known as compactifi-
cation—which attaches points at infinity 
onto the phase space { , }x L —to extract 
this asymptotic behavior [3]. Since the 
derivative of the ramp function is zero at 
Λ( )±∞ = ±l  in the compactified space, the 
new task involves identifying places where 
x = 0  as well; these spots are asymptotic 

fixed points (see Figure 2, on page 8).

See Rate-Induced Tipping on page 8
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target relationship. The concept of memory 
can be made mathematically precise in this 
context; Figure 3 provides a heuristic illus-
tration. This framework’s ability goes well 
beyond recurrent NNs and can compare 
and contrast different architectures for time 
series modeling, such as the WaveNet.1

Machine Learning of          
Dynamical Systems

Arguably the most studied interaction 
between ML and DS is the notion of learn-
ing dynamics from data. With the rapid 
adoption of data-driven methods in both 
computational and experimental sciences, 
this subject is becoming an increasingly 
important area of ML application. We sub-
sequently focus on two dominant approaches 
that allow one to build dynamical models 
from data. The first is a statistical approach 
that uses generic model hypothesis spaces—
e.g., sparse regression with polynomial func-
tions—to regard recovery of a dynamical 
model as a regression problem [1]. One can 
further impart physical structure like sym-
metry and invariance to these models. The 
second technique is a modeling approach, 
which is more familiar in the fields of science 
and engineering. Here we derive a model 
space based on physical understanding of 
the dynamical process; data and learning 
are meant to fix unknown parameters and 

1  https://deepmind.com/research/case-
studies/wavenet

functions in the model parameterization. The 
key contribution of NNs is to approximate 
the unknown functions — e.g., free ener-
gy, Hamiltonian, or response coefficients. 
Examples of this approach include inverse 
problems with physics-informed NNs [9] and 
dissipative systems via the Onsager principle 
[10]. Although these methods differ in prin-
ciple, they all lead to interesting interactions 
between learning and physics. The theoretical 
and algorithmic intricacies of these approach-
es thus constitute an active area of research.

Outlook
Much is still unknown about the interface 

of dynamics and learning in each of the 
three aforementioned directions. A worth-
while overall question is as follows: Why 
might connecting dynamics and learning 
be fruitful to the research in each domain? 
Indeed, while the dynamical viewpoint of 
learning provides a familiar mathematical 
setting, it also captures certain key novel-
ties that pertain to modern ML. In fact, it 
may provide an avenue wherein research-
ers can concretely explore why and when 
deep is better than shallow when it comes 
to NNs, or why certain recurrent architec-
tures are better than others. Such progress 
will naturally inspire the design of better 
models that learn dynamics from data and 
balance approximation flexibility with the 
retention of physical insights. The system 
will in turn benefit one’s overall under-
standing of dynamical processes through 
data. Ultimately, this line of work can help 
facilitate the principled adoption of ML in 
science and engineering workflows.
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Figure 2. The continuous viewpoint of deep learning (DL). Similar to how researchers analyze 
solid and fluid mechanics in the continuum limit, one can take a continuum idealization of DL 
that regards the layer structure as a discretization of a continuous dynamical system (DS). 
Here, the fictitious “time” parameter represents a continuous analogue of layers and the 
dynamics model layer composition. Conversely, one can regard deep residual neural networks 
as discretizations of a continuous-time DS. Figure courtesy of Qianxiao Li.

Figure 3. Sequence relationships with long and short memory. In both cases, the input time 
series are identical: a smooth function of time that eventually stops varying. 3a. In the smooth 
and short memory case, the output time series is also smooth in time and stops varying shortly 
after the input does. This observance means that the output does not depend on the input’s val-
ues from the distant past. 3b. In the not smooth and long memory case, long memory occurs as 
the output time series continues to vary irregularly. One can concretely define the concepts of 
smoothness and memory according to this heuristic illustration. Figure courtesy of Qianxiao Li.

Student-Centric Graduate Training:       
Challenges and Opportunities
By Yara Skaf and                
Reinhard Laubenbacher

In part 1 of this article,1 which appeared 
in the October 2021 issue of SIAM News, the 
authors discussed prospective changes that 
would make mathematics Ph.D. programs 
more student-centric. Here they address 
some of the challenges and opportunities 
that coincide with customized course plans.

Individuals with Ph.D.s in the mathemat-
ical sciences have a variety of career 

opportunities available to them that range 
from the traditional tenure-track path to 
the private sector and academic research 
organizations. To best prepare students for 
this rapidly evolving job market, we advo-
cate for a student-centric graduate training 
approach that tailors program content and 
structure to each student’s unique needs. 
As an intermediate step, we proposed the 
introduction of four different tracks with 
distinct roles for coursework, teaching, and 
research that depend on student interest 
[4]. In this follow-up article, we discuss 
several challenges and opportunities that 
accompany such a structure.

1  https://sinews.siam.org/Details-Page/
toward-student-centric-graduate-training

How might a student-centric program 
look? When new students arrive, they will 
receive a tool kit of valuable resources and 
learn about different faculty research areas 
and possible career trajectories. An ini-
tial mentoring team will help each student 
develop a career and training plan during 
the first year of the program. The plan can 
introduce potential study topics through 
a mixture of formal coursework, directed 
reading, and online resources, as well as a 
collection of activities to guide students as 
they narrow down future career objectives. 
Students will engage in research as early as 
possible—much like the laboratory rotation 
practice in the life sciences—then transition 
to a thesis project and select a Ph.D. advisor 
during their second year.

The adoption of this structure will have 
a profound impact on participating depart-
ments. It will more effectively assess spe-
cific student needs and plans and allow 
students to truly take a proactive role in 
their education. A richer palette of train-
ing options will likely attract a broader 
and more diverse group of participants to 
ultimately grow and enrich the departments. 
Because students and faculty will presum-
ably engage with greater intensity than in a 
formal classroom setting, students become 
readily integrated into the intellectual and 

social life of the department. As a result, 
departmental faculty will obtain a more 
comprehensive view of the mathematical 
sciences and their applications and strength-
en their connections to other departments 
and programs within the university.

Funding
The vast majority of mathematics Ph.D. 

students currently receive financial support 
through teaching assistantships. Under our 
proposed structure, fewer students might 
choose this teaching component. Those 
who are interested in careers in the private 
sector will instead seek support from rel-
evant internships as well as research and 
other grants. How will we fund all of these 
needs? The new program structure will 
likely increase the graduate student popula-
tion, particularly among students who are 
looking for “nontraditional” careers. As a 
result, the portion of the student population 
that pursues funding from teaching assis-
tantships may only decrease marginally, 
thus allowing departments to still fulfill 
their teaching missions. Permitting select 
undergraduates to teach certain courses 
could also help mitigate this issue.

Nevertheless, finding financial support 
for students is still difficult. Resources 
include the National Science Foundation’s 

Machine Learning
Continued from page 5

Graduate Research Fellowship Program2  as 
well as internships in both the non-academic 
sector and the academic research enterprise 
outside of mathematics departments. Such 
opportunities are not uncommon, particu-
larly in the biomedical sector.

Equity, Diversity, and Inclusion
Despite widespread public awareness 

of and support for issues that pertain to 
equity, diversity, and inclusion (EDI), this 
area remains a major challenge for most 
U.S. graduate programs in science, technol-
ogy, engineering, and mathematics (STEM) 
fields in general — and mathematics pro-
grams in particular. An extensive body of 
literature aims to document the state of 
diversity in STEM Ph.D. tracks, explore 
historical events that contribute to this state, 
and offer suggestions on how to foster 
a more supportive and inclusive climate 
in academia [1-3]. Application rates for 
graduate mathematics programs compara-
tively tend to be much lower for histori-
cally underrepresented groups like women, 
people of color, and sexual orientation or 
gender minorities. The reasons behind this 
trend are multifactorial but likely related 

2  https://www.nsfgrfp.org

See Graduate Training on page 9
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Even with a ramp function, the sys-
tem is not guaranteed to tip. In order for 
R-tipping to occur, the system must have 
qualitatively different outcomes based on 
r’s value. The critical rate is the value of 
r  at which there are heteroclinic orbits — 
trajectories that connect two saddle points 
in the phase space of the dynamical vari-
able and the rate-dependent parameter. 
Above and below this critical value, the 
system variables x  follow different trajec-
tories that are unreachable from each other 
if r  does not vary. R-tipping does transpire 
for many model problems, including some 
that correspond to real-world applications.

Bring in the Noise,                  
Bring in the Tipping

In addition to B- and R-tipping, research-
ers have also investigated noise-induced 
tipping (N-tipping). As the name suggests, 
random fluctuations cause the dynamical 
system in these models to change state. 
Consider the standard Wiener process in 
the general case

dx f x dt dW= +( , ) .Λ s

Here, s  and W  quantify the noise. L may be 
fixed for N-tipping alone or time dependent 
for a system with both noise and R-tipping; 
the latter case is especially interesting.

“What we see in the model problem is 
that you don’t need to reach the r  critical 
value if you put this addition of noise in 
the system,” Slyman said. “The system can 
tip, and tip quite often—not even rarely—
when you lower that ramp parameter and 
add noise to it.” But if the ramp function 
is absent, noise alone cannot tip the model 
system in a reasonable amount of time. 
Noise and changing rates collectively pro-
duce qualitatively different behavior than 
either R- or N-tipping on their own.

The study of R-tipping is still a rela-
tively new field, with most results in low-
dimension systems. However, realistic 
climate change models—including those 
for AMOC—are very complex. Therefore, 
not all major climate-related changes are 
describable via R-tipping (with or with-
out noise). For instance, Jones spoke at 
DS21 about a model for which R-tipping 
can describe hurricane dissipation but not 
hurricane genesis. Because climate change 
involves so many factors, it seems likely that 
the paradigm will prove successful for cer-
tain phenomena — particularly those driven 
by changes that commence more quickly 
than anything Earth has ever experienced.
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Figure 2. A toy mathematical model that demonstrates compactification for rate-based tipping. 
Adjusting the rate at which the system changes leads to qualitatively different asymptotic 
behaviors with a critical value in between; compactification attaches those asymptotic fixed 
points to the phase space. Figure courtesy of [3].

Rate-Induced Tipping
Continued from page 6

In the early days of quantum mechan-
ics, physicists wondered why Planck’s 

constant is constant — why is the energy/
frequency ratio of photons fixed? After 
all, the atom that emits photons is buffeted 
by a surrounding electromagnetic field; it 
is surprising that this buffeting does not 
change the ratio.

At a Solvay Conference in 1911, Einstein 
showed that a slightly analogous phenome-
non occurs for the mathematical pendulum. 
If the string’s length is changed appreciably 
but slowly enough (taking a long time), 
then the ratio changes arbitrarily little. 
Quantities that behave in such a way are 
called adiabatic invariants.

Einstein derived the adiabatic invari-
ance of the pendulum from the conserva-
tion of energy; the work of pulling the 
string is spent on lifting the bob and on 
changing the bob’s energy of oscilla-
tions. With some massaging, this state-
ment yields the conclusion that E /w  is an 
adiabatic invariant.

In addition to Einstein’s physical expla-
nation (which I believe can be made rigor-
ous), another one exists that is based on 

the action-angle variables [1]; we can actu-
ally turn it into a geometrical proof that is 
almost free of formulas.

The coexistence of two seemingly unre-
lated explanations of the same effect sug-
gests the need to rise above the maze to 
see the whole picture at a glance; as far as 
I know, this remains to be done. Instead, I 
would like to illustrate Einstein’s idea on a 
simple toy model of Ulam’s ping-pong: a 
particle bouncing between two walls — a 
baby model of ideal gas (see Figure 1).

Unlike in Figure 1, the wall in Figure 2  
moves in slowly. The work spent on push-
ing the wall adds to the kinetic energy of 
the “molecule”:

E v= 2 2/  is the energy of unit mass and 
w= =1 1 2/ /( / ).T L v

4. The adiabatic invariance of vL  is the 
one-dimensional version of the adiabatic 
equation for ideal gas:

 
     pV g= const., 	  
			    (4)
 where g =

+f
f
2
,

Here, f  is the number of 
degrees of freedom; f =1  and g= 3  for 
our “gas.” To see this connection, we note 
that pressure, volume, and temperature 
( , , )p V T  in ideal gas correspond to our 
F,  L,  and mv2 2/  respectively. Since (4) 
involves pressure and volume, we also wish 
to express our adiabatic invariant vL  in 
terms of “pressure” F  and “volume” L. 
Substituting the v  from (2) into vL  yields

                   vL FL m= 3/ ,

so that FL3» const.  This is the exact 
counterpart of (4) for f =1.

5. pV g,  or rather its power, has a geomet-
rical interpretation as the volume enclosed 
by the energy surface in the phase space.

Proof of (2)
The momentum in each collision with the 

right wall in Figure 1 changes from mv  to 
-mv,  i.e., by 2mv  at each impact. These 
impacts are spaced at times T L v=2 /  
apart. The change of momentum per unit 
time (the force) is hence

                   
2 2mv
T

mv
L

= ,

as claimed. 
Interestingly, this is exactly the same 

force as the centripetal force upon a mass 
m  that moves in a circle of radius L  with 
speed v;  in fact, we can derive (2) by con-
sidering motion with speed v  on a circle, 
but one of radius L/ ;2  I omit this alterna-
tive derivation.

The figures in this article were provided 
by the author.
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               FdL d
mv

≈



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


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2

2
. 		  (1)

 

Here, F  is the averaged force of impacts on 
the wall in Figure 1 for the fixed wall; the 
“»” sign is due to the fact that I replaced 
the averaged force that the mover applied 
in Figure 2 with F  — associated with the 
fixed wall in Figure 1. I claim that

                      F
mv
L

=
2

; 		   (2)

this is proven at the end.
Substitution of (2) into (1) gives

 
   		                  	  (3)         
−









≈

mv
L
dL d mv

2
2 2( / ).

The minus sign is due to the 
fact that the mover in Figure 2 
pushes left, i.e., in the negative 
direction. Rearranging (3) yields

    dL
L

dv
v

d vL+ ≈ ≈0 0or
entropy

( )ln


so that vL» const.

Here are some remarks:
1. vL  is the area of the path in the phase 

plane when the walls are fixed (see Figure 3).
2. ln ,vL  the log of the phase area, is the 

entropy of our “gas.” It is additive because 
phase volumes multiply when we add more 
dimensions. Just like in this simple case, the 
entropy of ideal gas is the log of the volume 
that is enclosed by the energy hypersurface 
in the phase space. It is also an adiabatic 
invariant of the gas.

3. As with the pendulum, the energy/
frequency interpretation for Ulam’s 

ping-pong holds: vL
E

=
w

,  where 

Ulam’s Ping-pong, Adiabatic Invariants, and Entropy

MATHEMATICAL 
CURIOSITIES
By Mark Levi

Figure 1. Ulam’s ping-pong, wherein a particle collides with the walls without loss of energy. 
There is no gravity. The particle exerts average force F mv L= 2/  on each wall: the analog of 
pressure in this single-atom gas.

Figure 2. Moving the wall in slowly.

Figure 3. Phase plane of Ulam’s ping-pong. The wall moves only during time 0 1< <t /e  and 
is otherwise fixed. The area changes minimally: v L v L O

0 0 1 1
= + ( ).e
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to elements such as negative classroom 
environments, a lack of exposure to positive 
STEM experiences in early education, and 
blatant forms of discrimination. These scant 
application numbers give rise to low rates 
of matriculation and degree completion for 
members of underrepresented groups. For 
instance, women comprised only 24.4 per-
cent of all mathematics Ph.D.s for U.S. citi-
zens in the 2016-2017 academic year. Even 
more strikingly, African American students 
received just 2.1 percent of these Ph.D.s [1].

Our more customizable program struc-
ture could allow departments to facilitate 
the success of a much more heterogeneous 
cohort of graduate students by tailoring 
curricula to account for the unique needs 
and barriers that each individual faces. 
Furthermore, the process of restructuring 
longstanding elements of existing arrange-
ments provides an ideal opportunity for 
departments to analyze other aspects of 
graduate training that may intentionally or 
unintentionally impact the educational envi-
ronment for historically underrepresented or 
marginalized groups. Such efforts can help 
eventually produce a more inclusive edu-
cational environment that fosters a diverse 
mathematics workforce in the future.

Faculty and Mentoring
Faculty and peer mentoring contribute to 

a student-centric program’s success. Upon 
entering the program, every student will 
ideally be assigned a mentoring committee 
with at least three members, including an 
advanced graduate student. This commit-
tee’s composition may change over time as 
students progress. The committee members 
collectively assure that students’ best inter-
ests remain at the center of all aspects of their 
personalized agendas. At least some commit-
tee members will interact frequently with the 
students, preferably on a weekly basis.

Peer mentoring is also crucial and will 
require the establishment of several new 
structures, which present a significant bur-
den on the faculty. Faculty members who 
currently mentor Ph.D. students typically 
receive little to no credit for this activity, 
even though it is quite time consuming. 
Institutions should adopt different reward 
structures for faculty, perhaps by providing 
them with the equivalent of course credits or 
additional research funds from departmental 
grant overhead accounts or other sources. 
Some faculty may of course refrain from 
participating in this new structure; they can 
still serve as Ph.D. advisors to students who 
opt for the current training model.

Not all faculty are sufficiently familiar 
with the entire spectrum of career opportu-
nities that are available to students. In-depth 
faculty training programs that address men-
toring and career options beyond academia 
can mitigate this problem. Though such 
training would require a great deal of time, 
effort, and culture change within mathemat-
ics departments, active steps toward better 
student mentoring experiences will produce 
more qualified graduates whose future suc-
cesses feed back to the program.

Concluding Thoughts
The mathematical sciences are crucial 

to human endeavors in all realms of soci-
ety. They hold a unique place as both a 

universal language of science and technol-
ogy and a research field in their own right; 
these two roles fundamentally depend on 
each other and have profound implications 
for the mathematical sciences workforce. 
We must implement training programs that 
account for mathematics’ dual roles and do 
so in a unified and integrated environment. 
Our student-centric proposals are meant to 
address this need.

Ultimately, we have discussed several 
possible implementations for a student-
centric graduate program. A continuum of 
possible program structures clearly exists 
between the current prevalent model and 
a fully customized program. Each depart-
ment can develop its own resources, con-
straints, and strategic plans that dictate 
whether and what changes might be made. 
None of the aforementioned challenges 
have quick and easy solutions; the facili-
tation of more adaptable Ph.D. training 
requires substantial changes to many logis-
tical structures, cultural attitudes, and long-
standing departmental traditions. However, 
graduate programs must account for and 
adapt to evolving student interests and 
needs in order to remain competitive in 
today’s fast-moving academic and profes-
sional environment. Re-imagining the tra-
ditional architecture also presents an excit-
ing opportunity for departments to remove 
some of the deep-rooted impediments to 
EDI that Ph.D. programs in STEM fields—
particularly mathematics—should address. 
Doing so will help create an educational 
environment that allows a greater number 
and variety of students to thrive within the 
mathematical community.

If readers have thoughts, questions, or 
suggestions about the aforementioned pro-
posal, we encourage them to comment on the 
online version of this article or contact the 
authors directly at yara.skaf@ufl.edu and 
reinhard.laubenbacher@medicine.ufl.edu.
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Word cloud image of the article text. It reflects the centrality of students in the proposed train-
ing paradigm as well as the paradigm’s many connections within and outside of academics. 
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Leveraging Diversity and Building                
Capacity for Sustained Collaboration
Mutual Learning and Immersion Activities 
Between the U.S., Latin America, and South Asia
By Anuj Mubayi, Aditi Ghosh,       
and Madhav Marathe

In 2015, the United Nations established a 
set of 17 global Sustainable Development 

Goals (SDGs)1—to be met by the year 
2030—that will ultimately achieve a better 
and more sustainable future for everyone. 
However, the ongoing COVID-19 pandem-
ic has complicated many of the goals and 
highlighted increasing concerns that are 
related to supply chain disruption, product 
development, environmental degradation, 
and inequality, among other topics. It has 
also amplified the importance of inter-
national research and training collabora-
tions. Pandemics and other large systemic 
events—like financial contagions and the 
unfolding climate crisis—are universal 
problems that do not obey national bound-
aries. Solutions to such problems must 
therefore be global in nature and require 
cooperation from the global community.

Earlier this year, the U.S. Centers for 
Disease Control and Prevention (CDC) 
launched a national Center for Forecasting 
and Outbreak Analytics.2 This center will 
tackle future health and social problems and 
include a group of multidisciplinary scien-
tists from academia and the private sector. 
It will necessitate an influx of strong, well-
rounded professionals in science, technol-
ogy, engineering, and mathematics (STEM) 
who are trained in mathematics, computa-
tional science, and data science; this train-
ing will play an important role in the timely 
achievement of the global SDGs and inspire 
a workforce that addresses real situations 
in real time. To help future generations of 
STEM researchers recognize the usefulness 
of practical applied mathematics, we must 
instill cultural values, positive attitudes, and 
diversity acceptance among new trainees.

As the international community slowly 
adapts to a “new normal,” the pace of glob-
al problem discussions and collaborations 
should accelerate to deliver much-needed 
change. Successful networking opportuni-
ties and partnerships allow researchers to 
access additional expertise, gain new per-
spectives, and build relationships with other 
individuals in their fields; the latter is cru-
cial for early-stage career development. In 
short, collaborations across organizational, 
disciplinary, and cultural boundaries extend 
the possibilities of discovery [1]. Here we 

1  https://sdgs.un.org/goals
2  https://www.cdc.gov/media/releases/

2021/p0818-disease-forecasting-center.html

provide several examples of our interna-
tional research collaborations in the form 
of capacity building, STEM education, and 
epidemiological modeling. These endeavors 
provide different types of global experiences 
for participants and expose STEM scholars 
to a more comprehensive worldview.

Collaborative Initiatives                
in Latin America

We have engaged in multiple research 
and training efforts with our counterparts 
in Latin American countries like Colombia, 
Peru, Ecuador, and Chile. Such collabora-
tions involve students who are studying 
computational and mathematical methods 
and working on epidemic modeling. We 
also partnered with researchers at clini-
cal institutions like the Instituto Nacional 
de Investigación en Salud Pública-INSPI 
in Ecuador and the Centro Nacional de 
Epidemiología, Prevención y Control de 
Enfermedades del Ministerio de Salud in 
Peru, where practical experiments for our 
research projects took place. Our group 
has even partook in multiple training series 
as speakers for tutorials on mathematical 
epidemiology and at the 2021 Mathematical 
Congress of the Americas.3 

Moreover, we recently initiated a global 
consortium for the mathematical modeling 
community—the Consortium of Modeling 
and Computations in Biosocial, Healthcare, 
and Sustainability Systems (CMCBHS)—
along with the Universidad de Medellín, 
Universidad del Valle, Universidad 
Nacional de Colombia (all of which are in 
Colombia), and Illinois State University. 
CMCBHS activities include multidisci-
plinary student conferences, research proj-
ects of global importance, and mathematical 
modeling training modules.

Several years ago, we participated in 
a unique international collaboration and 
research training workshop through a 
Partnerships for Enhanced Engagement in 
Research (PEER) grant4 from the U.S. 
Agency for International Development to 
address crime and insecurity in El Salvador, 
which has one of the worst crime rates 
in the world. This fact, combined with 
the country’s under-resourced educational 
foundation, inspired us to establish a joint 
workshop to build science and technology 

3  https://www.mca2021.org/en/special-
sessions/item/36-new-methods-and-emerging-
applications-in-dynamics-networks-and-control

4  https://sites.nationalacademies.org/
PGA/PEER/PEERscience/PGA_174191

innovation capacity in El Salvador while 
exposing U.S. students to cultural values 
and resource limitations in a developing 
country. The workshop introduced partici-
pants—including university students, judi-
cial institutions, and STEM teachers from 
secondary schools in El Salvador and the 
U.S.—to data science, statistical computing, 
and the STEM research process (see photo). 
It also helped create a crime data sciences 
laboratory to collect, model, and analyze 
real-time crime and violence data.

Throughout the course of the aforemen-
tioned activities, we published a number 
of peer-reviewed articles with students and 
researchers from our partner institutes in 
Latin America. One study—which involved 
collaborators from the National Institute 
for Public Health Research of Ecuador, 
Universidad del Valle in Colombia, and 
Yachay Tech University in Ecuador—
focused on transmission dynamics of leish-
maniasis, a neglected tropical disease that 
poses a daily threat to millions of people 
around the world [2]. It utilized data from 
remote areas of Ecuador and ultimately 
estimated case underreporting in the coun-
try to be at least 38 percent. Unlike many 
mathematical studies, all coauthors were 
interdisciplinary and contributed to every 
aspect of the project: study design, data 
collection, lab experiments, mathematical 
modeling, and statistical inferences. This 
unique comprehensive experience improved 
participants’ cross-cultural awareness.

Collaborative Initiatives                  
in South Asia

We are presently working with the 
Royal University of Bhutan and Bhutan’s 
Mongar Regional Referral Hospital on a 
PEER program5 for research partnerships 
in the context of COVID-19 challenges. 
This project aims to positively impact 
Bhutan’s education and research efforts 
while also addressing and learning from 
problems of global importance to train 
the new generation of STEM scientists. 
The collaboration is building a first-of-
its-kind partnership between Bhutan and 
U.S. institutions, enhancing the investiga-
tive capacity of Bhutanese scientists, and 
familiarizing partners with global data-
bases. Modeling exercises often require 
data-driven research from across the globe, 
which is crucial in today’s world.

Some of our activities also involve 
institutions in India, such as the Indian 
Council of Medical Research’s Rajendra 
Memorial Research Institute of Medical 
Sciences (RMRI) and the Sri Satya Satya 
Institute of Higher Learning (SSSIHL). 
For example, we partnered with RMRI to 
conduct research and collect community-
level public health data that then informed 
state health policies [3]. This enterprise 
also introduced both U.S. and Indian par-
ticipants to challenges that pertain to the 

5  https://sites.nationalacademies.org/
PGA/PEER/PGA_365215

An international research and educational training workshop—funded by a Partnerships for 
Enhanced Engagement in Research (PEER) grant from the U.S. Agency for International 
Development—took place in El Salvador in January 2017. Anuj Mubayi (fourth from right), 
Oscar Picardo, and Victor Cuchillac organized the workshop activities, which addressed crime 
and insecurity in El Savador. The workshop provided professionals and student mentors with a 
variety of high-impact teaching strategies and activities that prepared them to meet the deliv-
erables of the PEER Project. Photo courtesy of Oscar Picardo.
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By J. Nathan Kutz, Steven L. 
Brunton, Bingni W. Brunton,      
and Joshua L. Proctor

D ynamic Mode Decomposition: 
Data-driven Modeling of Complex 

Systems1—by J. Nathan Kutz, Steven L. 
Brunton, Bingni W. Brunton, and Joshua L. 
Proctor—was published by SIAM in 2016. 
It addresses the burgeoning field of data-
driven dynamical systems and explores 
the dynamic mode decomposition (DMD).

DMD is a mathematical methodolo-
gy that aims to distill interpretable and 
actionable insights from measurements of 
high-dimensional, complex systems. The 
mathematical, engineering, and scientific 
research communities have demonstrated 
the method’s broad applicability to appli-
cations in areas such as control theory, 
computer science, and fluid dynamics. 
They have also identified a fundamen-
tal theoretical connection to the analysis 
of nonlinear dynamical systems. Perhaps 
the most exciting recent development, 
however, is the translation of this method 
from academic research to the lexicon of 
standard techniques for data scientists and 
machine learning practitioners in industry 
settings. DMD has proven to be a sur-
prisingly efficient and simple yet power-
ful computational method that fills an 
important technical gap in the analysis of 
high-dimensional measurement data from 
dynamically evolving systems. Our book 
describes the theoretical foundations of 
DMD and demonstrates the technique on 
a variety of application areas.

1  https://my.siam.org/Store/Product/
viewproduct/?ProductId=28216652

al fluids data. The growing success of 
DMD stems from the fact that it is an 
equation-free, data-driven method capable 
of providing an accurate decomposition 
of a complex system into spatiotemporal 
coherent structures, which one may use 
for short-time future-state prediction and 
control. More broadly, DMD has quickly 
gained popularity since several studies 
[2-5] showed that it is connected to the 
underlying nonlinear dynamics through 

Koopman operator theory 
[1] and is readily interpre-
table with standard dynami-
cal systems techniques.

The development of 
DMD is timely due to the 
concurrent rise of data sci-

ence, which encompasses a broad range 
of techniques from machine learning and 
statistical regression to computer vision and 
compressed sensing. Improved algorithms, 
abundant data, vastly expanded computa-
tional resources, and interconnectedness of 
data streams make this a fertile ground for 
rapid development.
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The following text comes from chap-
ter one of Dynamic Mode Decomposition, 
entitled “Dynamic Mode Decomposition: 
An Introduction,” and has been modified 
slightly for clarity.

The data-driven modeling and control 
of complex systems is a rapidly evolv-
ing field with great potential to transform 
the engineering, biological, and physical 
sciences. There is unprec-
edented availability of high-
fidelity measurements from 
historical records, numeri-
cal simulations, and experi-
mental data; but while data 
is abundant, models often 
remain elusive. Modern systems of inter-
est—such as turbulent fluids, epidemiologi-
cal systems, networks of neurons, financial 
markets, or the climate—may be char-
acterized as high-dimensional, nonlinear 
dynamical systems that exhibit rich multi-
scale phenomena in both space and time. 
However complex, many of these systems 
evolve on a low-dimensional attractor that 
one may characterize by spatiotemporal 
coherent structures. Here we introduce the 
topic of this book—dynamic mode decom-
position (DMD)—which is a powerful new 
technique for the discovery of dynamical 
systems from high-dimensional data.

The DMD method originated in the 
fluid dynamics community as a method to 
decompose complex flows into a simple 
representation based on spatiotemporal 
coherent structures. Peter Schmid and Jörn 
Sesterhenn [6, 7] first defined the DMD 
algorithm and demonstrated its ability to 
provide insights from high-dimension-
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Combinatorial algorithms are central to 
many complex problems that arise in 

the fields of applied and industrial math-
ematics. Researchers utilize them to model 
epidemics, optimize supply chains, under-
stand biological systems, enhance computer 
performance, and make sense of communi-
ties, among other applications. Professionals 
in all of these areas have long been part of 
SIAM, but until recently they did not have 
a common home in which to share insights 
and facilitate collaborations.

To meet this need, the inaugural SIAM 
Conference on Applied and Computational 
Discrete Algorithms1 (ACDA21) took place 
virtually in July, in conjunction with the 
2021 SIAM Annual Meeting.2 An outgrowth 
of the recently-founded SIAM Activity 
Group on ACDA,3 ACDA21 sought to cre-
ate a home for researchers who are engaged 
in the advancement of applied combinator-
ics across a diverse set of research commu-
nities. ACDA21 attendees and presenters 
showcased the breadth of related fields by 
exhibiting their research and expertise in 

1  https://www.siam.org/conferences/cm/
conference/acda21

2  https://www.siam.org/conferences/cm/
conference/an21

3 https://www.siam.org/membership/activity-
groups/detail/applied-and-computational-
discrete-algorithms

whose work spans the spectrum from foun-
dational algorithm design to advances that 
are driven by application-related consider-
ations. A particularly timely highlight was 
Madhav Marathe’s (University of Virgina) 
talk about challenges in computational epi-
demiology, including several that arose 
during the COVID-19 pandemic. Andrew 
Goldberg (Amazon) delivered a presenta-
tion that addressed shortest path algorithms 
for road navigation, and a complementary 
Industrial Problems Session featured four 
researchers from industry: Michael Frumkin 
(NVIDIA), Edward Rothberg (Gurobi 
Optimization), Rob Johnson (VMware 
Research), and Vahab Mirrokni (Google, 
Inc.). These speakers described combinatori-
al problems that arise in their respective lines 
of work. ACDA21 also hosted two minitu-
torials—“An Introduction to Combinatorial 
Scientific Computing” and “Combinatorial 
Frontiers in Computational Biology”—to 
provide entry points into active research 
areas and encourage new collaborations.

While building community in a vir-
tual setting is certainly challenging, several 
noteworthy design choices and elements 
improved attendee experience and overall 
engagement. For example, the organizers 
opted for a non-traditional presentation 
format that proved to effectively encourage 
discussion and interaction. The authors of 
each accepted paper or abstract recorded a 
20-minute technical talk prior to ACDA21 
that was available for asynchronous view-

ing before, during, or after the meeting. 
During the conference, presentations were 
grouped into thematically related sets of 
three or four short, live “lightning” talks; 
a collective discussion and question-and-
answer session followed these talks. We 
believe that this format led to richer conver-
sations and more dynamic experiences than 
traditional 15- or 20-minute talks with inde-
pendent question periods, especially in the 
virtual setting. An ACDA21 Engagement 
Committee facilitated several additional 
activities, such as ice-breaker questions at 
the beginning of each session to encour-
age casual conversation, regular use of the 
ACDA Gather.town platform (including 
the koi pond and virtual coffee), and an 
“Introduction Blitz” session with slides and 
brief remarks from over 50 participants.

With the first meeting successfully 
behind us, the ACDA community is already 
planning the conference’s next instantia-
tion, which will take place in 2023 and be 
chaired by Uwe Naumann (RWTH Aachen 
University) and Lenore Cowen (Tufts 
University). We look forward to gathering 
in person for ACDA23 and continuing to 
build and promote this vibrant new commu-
nity within the broader SIAM family.
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discrete mathematics, theoretical computer 
science, algorithm engineering, operations 
research, computational biology, combina-
torial scientific computing, and a variety 
of other modeling-based application areas. 
One of the Organizing Committee’s pri-
mary challenges—other than the ongoing 
COVID-19 pandemic and necessity of a 
virtual platform—was designing an event 
that successfully navigated the disparate 
norms and expectations for conferences and 
publications across these many disciplines.

To that end, ACDA21 invited submis-
sions in two formats: 10-page papers for 
competitive archival proceedings (similar 
to conferences in computer science and data 
mining) and two-page extended abstracts for 
presentation purposes only (which offered 
an easy way for journal-oriented researchers 
to participate). Both options were popu-
lar, and submissions comprised 56 proceed-
ings papers and 22 extended abstracts. The 
Program Committee—which was chaired 
by Michael Bender and John Gilbert and 
included senior researchers from a wide vari-
ety of ACDA-related fields—assembled a 
program that highlighted exceptional applied 
combinatorics across all relevant disciplines. 
The committee accepted 21 papers and 11 
abstracts, resulting in an acceptance rate of 
37.5 percent for the proceedings.

To showcase the rich set of mathematical 
ideas and broad applications that are associ-
ated with discrete algorithms, the Organizing 
Committee invited six plenary speakers 
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collection of community information in 
real time under resource-limited conditions 
and even resulted in a Ph.D. dissertation 
[4]. In regards to the SSSIHL, research and 
training activities that are sponsored by the 
National Science Foundation (NSF)6 are 
actively assembling a network of math-
ematicians that will benefit researchers and 
educators in both India and the U.S.

Global Initiatives in the U.S.
We are regularly carrying out multiple 

activities in the U.S. through Illinois State 
University’s Intercollegiate Biomathematics 
Alliance,7 a consortium that promotes 
research and education in biomathemat-
ics and unites global organizations. For 
example, we invited participants from our 
international collaborator institutions to 
partake in the annual Cross-Institutional 
Undergraduate Research Experience8 
program, International Symposium on 
Biomathematics and Ecology Education 
and Research,9 and various webinars.10 
These multicultural and multinational pro-
grams have truly cultivated a community 
of mathematicians whose skills range from 
data science to survey data collection.

We are also currently building a unique 
multidisciplinary and cutting-edge science 
community via the Pandemic Research for 
Preparedness and Resilience11 (PREPARE) 
initiative to help society address challenges 
that are related to global pandemics. Such 
challenges include virtual education, the 
spread of misinformation through social 
media, and efficient vaccination distribu-
tion. PREPARE aims to construct a roadmap 
of important research directions and break-
through solutions for pandemic preparedness 
and resilience that will eventually provide 
a blueprint for researchers, funding agen-
cies, and policymakers. NSF’s Expeditions 

6  https://www.nsf.gov/awardsearch/
showAward?AWD_ID=1840884

7  https://about.illinoisstate.edu/iba
8  https://about.illinoisstate.edu/iba/cure
9  https://about.illinoisstate.edu/beer
10  https://about.illinoisstate.edu/iba/

events/webinar
11  https://prepare-vo.org

in Computing program12 is creating another 
ambitious global initiative—Global Pervasive 
Computational Epidemiology13—to pursue 
fundamental research and training agendas 
that will define the future of computational 
epidemiology and infectious diseases. This 
program employs artificial intelligence and 
machine learning techniques to equip the next 
generation of public health champions with a 
variety of skills to tackle epidemics and fore-
cast future disease burden in real time.

Other mathematics-based international 
programs in the U.S. have addressed glob-
al aspects (see Figure 1 for some exam-
ples). Moreover, the National Institutes of 
Health’s Fogarty International Center, the 
Department of Defense, and the CDC have 
also undertaken a number of endeavors, 
though many of them focus primarily on 
clinical and public health fields. In contrast, 
most mathematics-based efforts have facili-
tated database sharing, distance education, 
and computer-mediated communication in 
order to access a large and diverse amount 
of data and conduct collaborative research.

Next, we plan to introduce carefully select-
ed integrated tools that allow researchers to 
develop, access, and use models and data. 
Communities of mathematicians and inter-
disciplinary scientists—as well as ongoing 
regular communication channels via online 
platforms and hands-on field training—will 
encourage these actions. We therefore hope 
to create a tailored program that will boost 
cultural competence and awareness, move 
students toward higher levels of achievement 
and self-confidence, and ultimately increase 
representation in STEM fields.

Given the rapidly changing nature of glob-
al health knowledge, we must bring together 
and train the next generation of data scien-
tists, expert disease modelers, public health 
emergency responders, and high-quality 
communicators to meet the needs of modern-
day decision-makers. The aforementioned 
activities and programs have accelerated 
access to and use of data for public health 
officials who require local-to-global infor-
mation to mitigate the social and economic 
effects of disease threats. Society will not be 
able to promptly and effectively face sub-

12  https://www.nsf.gov/news/special_
reports/announcements/032420.jsp

13  https://computational-epidemiology.org

sequent challenges until STEM researchers 
can proficiently model and forecast public 
health; address future ecological concerns; 
and share information in real time to acti-
vate governmental, private sector, and public 
actions in anticipation of both domestic and 
international threats. David Hilbert, one of 
the most influential mathematicians of the 
19th and 20th centuries, once aptly said that 
“Mathematics knows no races or geographic 
boundaries; for mathematics, the cultural 
world is one country.” With this sentiment in 
mind, we recognize that the learning process 
can be tremendously efficient if we make it 
more active, engaging, and globally diverse.
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Figure 1. Examples of several mathematics-based international programs in the U.S. that have 
different types of global compontents.
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