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See Plug-and-Play on page 4

See Denoiser on page 2

A Denoiser Can Do Much 
More than Just Clean Noise 
Regularization by Denoising
By Yaniv Romano, Michael      
Elad, and Peyman Milanfar

Nearly all image processing tasks 
require access to some “approximate” 

notion of the images’ probability density 
function. This problem is generally intrac-
table, especially due to the high dimen-
sions that are involved. Rather than directly 
approximating this distribution, the image 
processing community has consequently 
built algorithms that—either explicitly or 
implicitly—incorporate key features of the 
unknown distribution of natural images. 
In particular, researchers have proposed 
very efficient denoising algorithms (i.e., 
algorithms that remove noise from images, 
which is the simplest inverse problem) and 
embedded valuable characteristics of natu-
ral images in them. The driving question is 
thus as follows: How can we systematically 
leverage these algorithms and deploy their 
implicit information about the distribution 
in more general tasks?

Consider a noisy image observa-
tion y x v= + ,  where x  is an unknown 

image that is corrupted by zero-mean white 
Gaussian noise v of a known standard 
deviation s.  We use f  to denote an image 
denoising function — a mapping from y 
to an image of the same size ˆ ( ),x y= f  
such that the resulting estimate will be 
as close as possible to the unknown x. 
This innocent-looking problem has attracted 
much attention over the past 50 years and 
sparked innovative ideas across different 
fields, including robust statistics, harmonic 
analysis, sparse representations, nonlo-
cal modeling, and deep learning. Indeed, 
denoising engines are now at the core 
of the image processing pipeline in any 
smartphone device, surveillance system, 
and medical imaging machine.

The recent development of sophisticated 
and well-performing denoising algorithms 
has led researchers to believe that cur-
rent methods have reached the ceiling 
in terms of noise reduction performance. 
This belief comes from the observation 
that substantially different algorithms lead 
to nearly the same denoising performance; 

Figure 1. Example of a simplified generative neural network (a network that gener-
ates such complex images actually has more layers). Image courtesy of Gabriel Peyré, 
code courtesy of [1].

Plug-and-Play: A General Approach for the 
Fusion of Sensor and Machine Learning Models
By Charles A. Bouman, Gregery   
T. Buzzard, and Brendt Wohlberg

Regularized or Bayesian inversion has 
revolutionized our ability to recon-

struct images from incomplete data. For 
example, suppose that we want to recon-
struct an image x  from a vector of sensor 
measurements y,  given by

y Ax w= + ,

where A  is a linear forward model and w 
is additive white Gaussian noise with vari-
ance s2. The regularized reconstruction 
then comes from
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where h x( ) is a term that encourages a 
“regular” solution.

But how should we choose the reg-
ularizing function h x( )? If we select  
h x p x( ) log ( ),=−  where p x( ) is an assum-
ed prior distribution, x̂  then becomes the 
Bayesian maximum a posteriori (MAP) 
reconstruction. Other reasonable choices for 

h x( ) include the total variation or Markov 

random field cost functions. However, the 
simplistic nature of these analytical priors—
which do not always accurately represent 
the true distribution of real image collec-
tions—often limits the quality of the result-
ing MAP reconstructions.

Over the last decade, image denoisers 
such as block-matching and 3D filtering—
and more recently, convolutional neural 
network denoisers—have demonstrated that 
dramatic improvements in denoising perfor-
mance are possible with the use of increas-
ingly complex image operations. These 
advanced denoising algorithms effectively 
model the distribution of real images but do 
not utilize any explicit cost function h x( ). 
This raises the following question: How can 
we fuse the traditional models of regular-
ized inversion with the implicit models of 
modern denoising algorithms?

Plug-and-play (PnP) methods answer this 
question by providing a framework for fus-
ing traditional sensor models with black-box 
models. These black-box models can range 
from advanced denoising algorithms that are 
used as priors to more general “agents” that 
are typically trained via machine learning 
methods, like deep neural networks.

Model Fusion with Plug-and-Play
We can express the MAP reconstruction 

in the simpler and more general form of

    ˆ { ( ) ( )},x f x h x
x

= +argmin 	  (1)

where f x y Ax( )= −
1

2 2

2

s
 

 is the sen-

sor
 
term and h x( ) is again the regularizing 

prior model term.
Figure 1 graphically illustrates this equa-

tion with a sensor manifold that corresponds 
to small values of f x( ) and a prior manifold 
that corresponds to small values of h x( ). 
The MAP reconstruction is thus at a loca-
tion that minimizes the distance to both 
manifolds, making it maximally consistent 
with the data and prior.

The important special case of image 
denoising occurs when A I= .  In this case, 
the observations y  consist of x  plus addi-
tive Gaussian white noise and the MAP 
reconstruction is given by ˆ ( ),x H y=  where

H y y x h x
x
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The key insight of PnP is that the denoiser 
H y( ) is also the proximal map of h y( ). 
That is, H  is an operator that takes a step 
to reduce h  while maintaining proximity 
to the input point.

Interestingly, we can use the well-known 
alternating direction method of multipli-
ers (ADMM) algorithm to solve our MAP 
optimization problem by alternately apply-
ing H  along with a second forward model 
proximal map that comes from

F v f x x v
x

( ) ( ) .= + −
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2
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The ADMM algorithm for solving (1) is 
then given by the following iteration:

Figure 1. The plug-and-play (PnP) solution balances the goals of fitting sensor data and 
finding a plausible answer to the problem. The alternating application of a forward model 
and “plug-in” denoiser result in a sequence that converges to a reconstruction equilibrium. 
Figure courtesy of the authors.

The deep learning revolution began with the resolution of supervised clas-
sification problems. It currently faces new challenges for the unsupervised 
generation of text, images, and videos. In an article on page 7, Gabriel Peyré 
explains how researchers can use the theory of optimal transport to formu-
late and solve this class of problems.



2 • March 2021 SIAM NEWS 

Volume 54/ Issue 2/ March 2021

4 	 Principles and Trends in 
Mathematical Imaging 

	 The field of imaging sci-
ence—which is situated at the 
interface of physics, electrical 
engineering, computer science, 
and mathematics—is rife with 
mathematical opportunities. 
Carola-Bibiane Schönlieb, 
Hongkai Zhao, Gabriele Steidl, 
and Michael Wakin explore 
the growth of mathematical 
imaging and overview the 
emerging models and methods 
that process imaging data in 
efficient, explainable ways.

8 	 A Western Sunrise
	 Mark Levi presents an unex-

pected situation for a lone planet 
whose axis is not tilted relative 
to the plane of its orbit. He 
introduces a scenario in which 
the sun—after setting in the 
west as normal—rises in the 
west once more, arcs across 
the sky, and sets in the east. To 
understand how this occurrence 
is possible, he considers a planet 
in an eccentric orbit where the 
sun can quickly travel more than 
180 degrees across the sky.

9 	 Transitioning from 
Academia to the 
Healthcare Industry

	 Anuj Mubayi details his career 
move from a traditional aca-
demic position to the health-
care industry. He is currently 
an associate director in the 
Advanced Modeling Group of 
PRECISIONheor, a leader in 
the field of medical sciences. 
Mubayi describes the daily 
life of a research scientist in 
healthcare and explains how he 
maintains contact with profes-
sional academic networks.

10 	 Jim Simons’ Road 
from Mathematics 
to Market Maven

	 Mathematician and hedge 
fund manager Jim Simons 
has enjoyed a long and varied 
career in pure mathematics, 
code breaking, and finance. 
James Case reviews Gregory 
Zuckerman’s book, The Man 
Who Solved the Market: How 
Jim Simons Launched the Quant 
Revolution, which examines 
Simons’ early life, career, and 
ultimate rise as founder of 
one of the world’s most suc-
cessful investment firms. 
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it has been corroborated by theoretical 
studies that aimed to derive denoising 
performance bounds. These insights led 
researchers to conclude that improving 
image denoising algorithms may be a task 
with diminishing returns, or to put it more 
bluntly: a dead end.

Surprisingly, a consequence of this real-
ization is the emergence of a new and 
exciting area of research: the leveraging of 
denoising engines to solve other, far more 
challenging inverse problems. Examples 
of such problems include image deblur-
ring, super-resolution imaging, inpainting, 
demosaicing, and tomographic reconstruc-
tion. The basis for achieving this goal 
resides in the formulation of an inverse 
problem as a general optimization task 
that seeks to solve

  				     (1)
    
ˆ l , R .x y x x

x
= +argmin ( ) ( )l

The term l( , )y x  is called the likelihood 
and represents x’s faithfulness to measure-
ment y. For example, l( , )y x x y= − 2

2 
in the case of image denoising and 
l H( , )y x x y= − 2

2  in the case of image 
deblurring, for which we assume that 
y x v= +H  with a linear blurring opera-
tor H . The term R( )x  represents the 
prior, or regularizer, that aims to drive the 
optimization task towards a unique or sta-
ble solution; one typically cannot achieve 
such a solution via the likelihood term 
alone. The hyperparameter l  controls the 
regularization strength.

For the denoising problem, the choice 
of l= 0 in (1) leads to a trivial solution 
for which ˆ .x y=  This solution reveals the 
crucial role of R( );x  loosely speaking, an 
ideal prior should penalize the appearance 
of noise in x̂  while preserving edges, tex-
tures, and other internal structures in the 
unknown x.  This intuition has motivated 
the formulation of important image denois-
ing priors, such as Laplacian smoothness, 
total variation, wavelet sparsity, enforce-
ment of nonlocal self-similarity, Gaussian 
mixture models, Field of Experts models, 
and sparse approximation.

How can we leverage a given powerful 
denoising machine f ( )x  to handle other 
image processing problems? The Plug-
and-Play priors (PPP) framework1 is an 
innovative, systematic approach for treat-
ing a wide class of inverse problems via 
denoising engines [2]. PPP’s key novelty is 
the observation that one can use denoising 
algorithms as “black box” solvers, which 
in turn define general image priors. The 
framework achieves this by introducing an 
auxiliary image z  to (1) that decouples the 
denoising task from the likelihood term:2

1  See page 1 for an article by Charles 
Bouman, Gregery Buzzard, and Brendt 
Wohlberg about Plug-and-Play.

2  Here we present a simplified version 
of the original PPP objective by replacing 
the hard constraint x z=  with a penalty; the 
original PPP relied on augmented Lagrange 
and the alternating direction method of 
multipliers.

           ˆ argmin ( , )
,

x y x
x z

= +l
(2)

          R u
( ) .z x z+ −

1
2 2

2� �

  
We can minimize the above objective with 
alternating optimization techniques. For 
example, consider a deblurring problem 
with l H( , ) .y x x y= − 2

2  When treating 
z as fixed, the minimization of (2) with 
respect to x  involves solving a simple 
linear system of equations — a sharpening 
step. When optimizing (2) with respect to 
z  while x  is fixed, we obtain a denoising 
problem that treats the sharpened image 
x  as the noisy input. We can interpret the 
hyperparameter u  as the noise level in the 
candidate estimate x.

Inspired by the PPP rationale, the frame-
work of Regularization by Denoising (RED) 
[1] takes a different route and defines an 
explicit regularizer R( )x  of the form

 R fT( ) ( ( )).x x x x= −
1
2

 
Put simply, the value of the above pen-
alty function is low if the cross-correlation 
between the candidate image x  and its 
denoising residual x x- f ( )  is small, or if 
the residual itself is small. RED brings a 
modern interpretation of the classic Laplacian

regularizer R WT( ) ( ),x x x x= −
1

2
 for 

which W  is a fixed and predefined smooth-
ing operator, like a Gaussian filter. In strik-
ing contrast to the classic Laplacian prior, 
RED replaces the naïve filter W  with a 
state-of-the-art image adaptive denoising fil-
ter that is defined by a black box function f .

What are the mathematical properties of 
the RED prior? Can we hope to compute 
its derivative? Recall that scientists often 
formulate state-of-the-art denoising func-
tions as optimization problems; therefore, 
computing the derivative of f  will likely 
be highly nontrivial. Surprisingly, research 
has shown that RED’s penalty term is 
differentiable and convex under testable 
conditions, and its gradient is simply the 
residual x x- f ( ) [1]. As a result, for a con-
vex likelihood l( , )y x —as in the deblurring 
example—the optimization problem

 
 
   
ˆ argmin ( , ) ( ( ))x y x x x x

x
= + −l fTl

is convex as well, thus guaranteeing global 
convergence to the optimum. One can flex-
ibly treat this task with a wide variety of 
first-order optimization procedures, as the 
gradient is simple to obtain and necessitates 
only a single activation of the denoiser. In 
its formal form, RED requires the chosen 
denoiser to meet some strict conditions, 
including local homogeneity, differentia-
bility, and Jacobian symmetry. From an 
empirical standpoint, however, RED-based 
recovery algorithms seem to be highly 
stable and capable of incorporating any 
denoising algorithm as a regularizer—from 
the simplest median filtering to state-of-the-
art deep learning methods—and treating 
general inverse problems very effectively.

The PPP and RED frameworks pose new 
and exciting research questions. The gap 

between theory and practice has inspired 
the development of a series of new varia-
tions for RED’s prior, as well as novel 
numerical algorithms. Provable conver-
gence guarantees further support these new 
methods, broadening the family of denois-
ing machines that one can use to solve 
general inverse problems. Another exciting 
line of research seeks a rigorous connection 
between RED and PPP, with the hope that 
such an understanding will lead to improved 
regularization schemes and optimizers. In 
terms of machine learning aspects, RED 
solvers formulate novel deep learning archi-
tectures by replacing the traditional non-
linear activation functions—like rectified 
linear units or sigmoid functions—with 
well-performing denoising algorithms. This 
approach offers new ways for researchers to 
train data-driven solvers for the RED func-
tional, with the hope of ultimately achieving 
superior recovery in fewer iterations than 
the analytic approach.

This article is based on Yaniv Romano’s 
SIAM Activity Group on Imaging Science 
Early Career Prize Lecture at the 2020 
SIAM Conference on Imaging Science,3 
which took place virtually last year. 
Romano’s presentation is available on 
SIAM’s YouTube Channel.4 
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By Howard Elman                      
and Avi Silberschatz

Stanley C. Eisenstat, an internationally 
renowned computational mathematician 

and computer scientist, passed away from a 
pulmonary embolism in New Haven, Conn., 
on December 17, 2020. He was 76 years old.

Stan was born in 1944 in New York City. 
He received his bachelor’s degree in mathe-
matics from the Case Institute of Technology 
(which later merged with Western Reserve 
University to form the present-day Case 
Western Reserve University). While at 
Case, Stan took his first graduate course in 
numerical analysis with his longtime col-
league and collaborator, Martin Schultz. He 
completed his master’s degree and Ph.D. at 
Stanford University under the direction of 
John Herriot and Cleve Moler.

In 1971, Stan joined the faculty of the 
Department of Computer Science at Yale 
University. He remained at Yale for nearly 
50 years. Stan’s employment had a some-
what auspicious start, as he began working 
at Yale before submitting his Ph.D. thesis 
and immediately found his new research 
activities more compelling than the mechan-
ics of turning in his dissertation. Fortunately, 
the Yale administration forced him to com-
plete his degree to remain on the faculty.

During his long and distinguished 
research career, Stan made fundamental 
contributions to algorithms in numerical 
analysis — with an emphasis on numer-
ical linear and nonlinear algorithms. In 
virtually every case, he was responsible 
for developing new ways of thinking to 
construct algorithms. For example, Stan 
was heavily involved in the development 
of inexact Newton methods for nonlinear 
algebraic systems, iterative methods and 
preconditioning methods for linear systems 

directed with Martin Schultz). People left 
meetings with Stan feeling that his com-
ments had shaped some of their most impor-
tant research contributions, and the major-
ity of his mentees enjoyed distinguished 
careers. Stan was thus uniformly respected 
for the clarity and insight of his advice.

Stan played a pivotal role in the growth 
of Yale’s Department of Computer Science. 

He was devoted to 
undergraduate edu-
cation in the depart-
ment and served as the 
director of undergradu-
ate studies for many 
years. Stan designed 
and taught fundamen-
tal courses entitled 
“Data Structures and 
Programming Tech-
niques” and “Intro-
duction to Systems 
Programming and
Computer Organiza-
tion,” and he was 
fiercely dedicated to 
both the program and 
its students.

Stan joined SIAM as a graduate student 
in 1967 and remained a lifelong member. 
He became a SIAM Fellow in 2018 and 
was cited “for development and analysis 
of fast computational algorithms for linear 
and nonlinear systems of equations.” In 
1997, he received the SIAM Activity Group 
on Linear Algebra Best Paper Prize. Stan 
also served on the editorial boards of three 
important journals for many years: the SIAM 
Journal on Scientific Computing, SIAM 
Journal on Matrix Analysis and Applications 
(SIMAX), and Journal of the Association for 
Computing Machinery. At the time of his 
passing, he was completing his fourth term 

as associate editor on the SIMAX Editorial 
Board. Daniel Szyld, the former editor-in-
chief of SIMAX, praised Stan’s work for the 
journal. “On several occasions he improved 
the proof of a theorem or reframed the results 
to make them more general or applicable to 
a larger class of problems,” Szyld said. “In 
more than one case, the authors insisted on 
listing Stan as a co-author in a revision that 
included his new results or insights.”

Stan is survived by his wife Dana 
Angluin, his son David, and his daughter 
Sarah. He will be deeply missed by every-
one who knew him.
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of equations, algorithms and mathematical 
software for sparse direct methods, and fast 
and robust algorithms for eigenvalue and 
singular value decompositions.

Stan was both a strong theoretician and 
a world-class software implementor. He 
served as a key contributor to the Yale 
Sparse Matrix Package, a widely used soft-
ware package for the solution of linear sparse 
systems of equations 
(MATLAB later adopted 
its sparse matrix technol-
ogy). Stan also developed 
the so-called “Eisenstat 
trick,” which enables 
the implementation of 
preconditioners based 
on incomplete factoriza-
tion with essentially no 
overhead cost. His work 
was known for its brev-
ity and pointedness — 
nearly all of his impor-
tant publications are less 
than 20 pages long. A 
few examples include 
a seminal paper with 
Ron Dembo and Trond 
Steihaug on inexact Newton methods (nine 
pages) [1], a study with Ming Gu on rank-
one updates of eigenvalue problems that 
led to the development of stable divide-and-
conquer algorithms for computing the singu-
lar value decomposition (11 pages) [4], and 
several influential papers on iterative meth-
ods that are only four pages in length [2, 3].

Throughout his career, Stan served as 
a mentor and éminence grise for multiple 
generations of young scientists—includ-
ing students, postdoctoral researchers, and 
junior faculty—who passed through Yale 
under the aegis of the Yale Research Center 
for Scientific Computing (which Stan co-

Obituary: Stanley C. Eisenstat

Stanley C. Eisenstat, 1944-2020. Photo 
courtesy of Dana Angluin.

By Vegard Antun, Nina 
M. Gottschling, Anders C.        
Hansen, and Ben Adcock

Deep learning (DL) is causing profound 
changes in society. It has inspired 

unprecedented advances in historically 
challenging problems, such as image clas-
sification and speech recognition. And 
now, perhaps inevitably, it is markedly 
affecting scientific computing.

Yet DL has an Achilles’ heel. Current 
implementations can be highly unstable, 
meaning that a certain small perturbation 
to the input of a trained neural network 
can cause substantial change in its output. 
This phenomenon is both a nuisance and 
a major concern for the safety and robust-
ness of DL-based systems in critical appli-
cations—like healthcare—where reliable 
computations are essential. It also raises 
several questions. Why does this instabil-
ity occur? Can it be prevented? And what 
does it mean for scientific computing, a 
field in which accuracy and stability are 
paramount? Here we consider these ques-
tions in the context of inverse problems, an 
area of scientific computing where DL has 
shown significant promise.

Deep Learning in Scientific Computing: 
Understanding the Instability Mystery

Instabilities in Image Classification
The story of instabilities begins with 

image classification. Researchers first 
observed these instabilities in 2013 upon 
the introduction of an algorithm that fooled 
a trained neural network classifier [10]. 
Given a fixed input image x  with label p, 
the algorithm computes a small perturba-
tion r,  such that the image x r+ —while 
indistinguishable from x  to the human 
eye—is misclassified with label q p¹ . 
Figure 1 depicts several examples of this 
effect. Though the perturbations are barely 
visible, each one prompts the classifier to 
fail in a dramatic way.

The study of adversarial perturbations 
(or adversarial attacks) on classification 
problems has since become an active sub-
field of machine learning research [11]. 
Scientists have constructed real-world 
adversarial perturbations in applications 
that range from image classification and 
speech recognition to surveillance, self-
driving vehicles, and automated diagnosis.

Deep Learning for Inverse Problems
Although quite different from classifica-

tion problems, inverse problems—specifi-
cally inverse problems in imaging—com-

prise an area in which DL methods have 
made particularly rapid progress. Numerous 
studies have reported superior DL perfor-
mance over current state-of-the-art tech-
niques in various image reconstruction 
tasks, including medical imaging modali-
ties like magnetic resonance imaging (MRI) 
and X-ray computed tomography [1, 5, 8, 
12]. Such optimism is perhaps best exem-
plified by the following quote from Nature 
Methods [9], which reports on recent work 
[12]: “AI transforms image reconstruction. 
A deep-learning-based approach improves 
the speed, accuracy, and robustness of bio-
medical image reconstruction.”

The simplest type of inverse problem—
but one that is often sufficient in practice—
is the discrete linear problem:

 Given measurements y Ax e m= + ∈   (1)
of x NÎ ,  recover x.  

Here, x NÎ  is the (vectorized) unknown 
image, A m N∈ ×

  represents the measure-
ment process, and e mÎ  is the noise. 
Because of physical constraints, this problem 
is often highly undersampled in practice—
the number of measurements m  is generally 
much smaller than the image size N—and 
therefore challenging. Typical DL approach-
es seek to overcome this issue by learning a 
neural network Ψ :  

m N→  that produces 
accurate reconstructions Ψ( )Ax e x+ ≈  for 
relevant image classes. This process is facili-
tated by a set of training data

 = = …{( , ) : , , },x y j Kj j 1

which consists of typical images x j  (e.g., 
MRI scans of different brains) and their 
measurements y Ax ej j j= + .

Researchers have proposed multiple 
different DL approaches to solve (1). 
However, growing evidence indicates that 
many of these approaches are also unsta-
ble. Figures 2 and 3 (on page 5) provide 
examples of this effect. In both cases, a 
small perturbation causes a significant 
degradation in the reconstruction’s quality. 
While Figure 2 is based on a worst-case 
perturbation (similar to the case of classi-
fication problems), Figure 3 indicates that 
purely random perturbations can some-
times elicit substantial effects. In contrast, 
state-of-the-art (untrained) sparse regular-
ization methods [1] are typically far less 
susceptible to perturbations.

The Universal Instability Theorem
While DL approaches perform very well 

on some image reconstruction tasks, many 
methods appear to do so at the price of 
instability. The universal instability the-
orem sheds light on this issue [4]. Let 
Ψ :  

m N→  be a continuous reconstruc-
tion map for (1), and suppose that there are 
two vectors x x N, ′∈   for which

  x x− ′ > 2h  
				    (2)

(x  and ¢x  are far apart),

  Ax Ax− ′ ≤ h  (the measurements 

            of x  and ¢x  are similar),	  
(3)

		
and 

 
   Ψ Ψ( ) ( )Ax x Ax x− + ′ − ′ < 2h

       
       (Y  recovers x  and ¢x  well)	  (4)

Figure 1. Adversarial perturbations in image classification. Perturbed images x r+  and the 
labels produced by the classifier are shown here. The network correctly classifies the unper-
turbed images. Figure reproduced from [7]. See Instability Mystery on page 5
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     Repeat{

	    
x F v u← −( )

		   
(2)

	    
v H x u← +( )

		   
(3) 

 
 	    

u u x v← + −
		   

(4)

	     
}.

We obtain the PnP algorithm by simply 
replacing the original proximal map H y( ) 
with a novel black-box operator and run-
ning the new algorithm. Therefore, “plug-
ging in” a black-box or learned denoiser 
H x( ) yields a new algorithm with the same 
outer loop but a fresh interpretation.

Again, Figure 1 (on page 1) illustrates 
the intuition behind PnP. Alternating appli-
cations of the plug-in operator H x( ) and 
the forward model proximal map F x( ) 
move the solution between the sensor and 
data manifolds in a zig-zag sequence that 
converges to a fixed point under appropri-
ate hypotheses. When H x( ) is a black-box 
denoiser, this fixed point no longer mini-
mizes a cost function; however, one can 
view it as reaching an equilibrium.

In this sense, PnP is a meta-algorithm 
— it takes existing algorithms for function 
minimization and converts them into new 
algorithms that use more general input-
output maps. The basic idea of PnP [3, 
4] has been applied to a wide variety of 
problems in several application domains 
with excellent results.

Multi-Agent Consensus Equilibrium
A shortcoming of PnP is that it is a solu-

tion without a problem. The original ADMM 
algorithm was designed to minimize the 
MAP cost function; but after replacing some 
components with black-box operators, there 
is no longer any cost function to minimize.

To address this issue, we introduce 
equilibrium methods that determine a sys-
tem of equations to solve rather than a 
function to minimize. The basic form of 
consensus equilibrium (CE) stems from 
the converged solutions of the updates in 
(2)-(4). When converged, it must be true 
that x v* *.=  This substitution yields CE 

equations that define the problem that the 
PnP algorithm solves [1]:

				     
	      x F x u* * *( )= −

	   			 
                

x H x u* * *( ).= +

Since H  is a denoiser and x  is the recon-
structed image, we can interpret u  in this 
context as noise that is removed in the 
operation x H x u* * *( ).= +

When H x( ) is a general black-box oper-
ator and not a proximal map, this system 
of equations no longer determines a cost 
function’s minimum. However, the CE 
equations do determine a well-defined 
equilibrium condition. So we see that 
the goal of PnP methods is not to solve 
the optimization problems of traditional 
regularized inversion. Instead, they aim 
to solve more general and flexible sets of 
equilibrium equations.

Multi-agent consensus equilibrium 
(MACE) generalizes PnP to the case of 
more than two agents. It defines a stacked 
operator of agents F,  along with a consen-
sus operator G  that computes the average 
of its inputs. These operators are given by

F w( ) ( ), , ( )= …



F w F w

K K

T

1 1

and

 G w( ) , , ,= …










∑ ∑1 1

K K
w w
k

k
k

k

T

where each agent F w
k k
( ) is intuitively 

designed to move the solution closer to 
some desired goal. The MACE equations 
then take the simple form of

	      F w G w( ) ( ).* *=              

Figure 2 presents an overview of 
MACE’s role by separating the ideas into 
four categories: criterion versus algorithm 
and cost functions versus agents. MACE 
completes the matrix by providing criteria 
for the formulation of problems that are 
based on agent equilibrium rather than sim-
ply on cost function minimization.

In summary, PnP is a framework that 
incorporates modern black-box operators 
into regularized inversion problems. And 
MACE delivers a problem criterion in the 

form of equilibrium equations that the PnP 
algorithm solves. The aforementioned PnP 
and MACE methods are just the first steps 
in a range of new techniques that fuse 
traditional models with emerging machine 
learning and algorithmic models. Code that 
illustrates these methods is available in [2].

This article is based on Charles A. 
Bouman’s SIAM Activity Group on Imaging 
Science Best Paper Prize Lecture at 
the 2020 SIAM Conference on Imaging 
Science,1 which took place virtually last 
year. Bouman’s presentation is available on 
SIAM’s YouTube Channel.2
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algorithm solves. Figure courtesy of the authors.
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Principles and Trends in Mathematical Imaging
By Carola-Bibiane Schönlieb, 
Hongkai Zhao, Gabriele Steidl,  
and Michael B. Wakin

The fascinating and emerging field 
of imaging science is situated at the 

interface of physics, electrical engineering, 
computer science, and mathematics. Its 
broad applications reach from photography 
to biomedical, seismic, and astronomical 
imaging. Mathematical imaging pertains 
to the development and analysis of math-
ematical models and methods that pro-
cess imaging data in efficient, explainable 
ways. Effectively coping with the applica-
tion at hand requires tools from diverse 
fields of mathematics that often interact 
in interesting manners, conversely influ-
encing the mathematical theory in these 
fields. Harmonic analysis, partial differ-

ential equations (PDEs) and related varia-
tional methods, stochastics, and differential 
geometry are just some of the fields that are 
relevant to imaging science.

In the early 19th century, mathematician 
Joseph Fourier realized that one can rep-
resent every periodic function as a super-
position of sines and cosines. This basic 
idea became a cornerstone of signal and 
image processing. As a result, the principle 
of analyzing and modifying functions by 
approximating them as linear combinations 
of appropriate elements from a dictionary 
was generalized in harmonic analysis and 
approximation theory. Scientists have thus 
begun widely utilizing wavelets and their 
sophisticated directional counterparts, such 
as curvelets and shearlets, in the multireso-
lution analysis of images. Indeed, the lan-
guage of wavelets originated from several 
dialects, including square integrable group 

representations, bandpass filters, and win-
dowed Fourier transforms. 

Quite recently, researchers have success-
fully implemented nonlinear eigenfunction 
systems—based on variational methods like 
total variation regularization—for imaging 
tasks. This process has revealed even more 
challenging questions in nonlinear opera-
tor theory and computation. Furthermore, 
appropriate sparsity assumptions on images 
have made sub-Nyquist imaging systems 
possible, ultimately resulting in the emer-
gence of compressive imaging systems, 
sparse dictionary learning techniques, and 
super-resolution algorithms.

Experts have long used PDEs in image 
restoration, particularly for edge- and 
coherence-enhancing nonlinear diffusion 
of grayscale values. The development 
of operator splitting methods in large-
scale optimization in the 1960s essentially 

advanced the evolution to related varia-
tional image reconstruction methods. In 
the 1980s, researchers applied operator 
splitting methods to solve monotone inclu-
sion equations in convex analysis; nearly 
20 years later, they successfully adopted 
these approaches in both imaging and 
machine learning.

Because real data is always noisy and 
often results from a random measurement 
process—as with photonic imaging—the 
field of statistics is another important area 
of mathematical imaging. Statistics helps 
formalize the solutions of many image 
processing and analysis tasks as estimation 
problems for which one can provide confi-
dence bounds and quantify uncertainty. The 
use of Bayesian models is therefore signifi-
cant in image restoration applications.

Researchers have also incorporated 
nonlocal image models, graph-based 
models, and mixture models into imaging 
techniques (see Figure 1). Optimal trans-
port-based techniques are highly interest-
ing for certain imaging tasks, including 
barycenter computation. These procedures 
again originated from an old mathematical 
problem—Gaspard Monge’s 18th-century 
effort to transport mass at minimal costs 
and Leonid Kantorovich’s relaxed for-
mulation in the 1930s—and now have an 
established measure-theoretic foundation 
upon which imaging scientists can build. 
Novel developments are related to multi-
marginal optimal transport and generalized 
Schrödinger bridges.Figure 1. Graph-based classification of chest X-rays into different pathologies. Based on only a very small number of labeled X-rays per class, 

researchers aim to classify the rest. To do so, they map the X-rays into a high-dimensional feature space where known labels are propagated 
to the unlabeled X-rays by the graph Laplacian. Figure courtesy of [1]. See Mathematical Imaging on page 6
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for some h>0.  The theorem then states 
the following:

(a) Instability. There is a closed, non-
empty ball 

y
mÌ  centered at y Ax= , 

such that the local e-Lipschitz constant at 
any y

y
Î   satisfies

  

L y
z y

z yz y

e

e
( , ) : sup

( ) ( )
Ψ

Φ Φ
�

� � �

� ��� ��
=

−

−
≥

< − ≤0

    

1 2
η

η ε η x x− ′ −( ) ∀ ≥, .

Because the Lipschitz constant measures 
the effect of perturbations, this result 
states that any map that overperforms—
i.e., accurately recovers two vectors x  and 
¢x  (4) even though their measurements 

are similar (3)—must also be unstable. 
This implies that a delicate tradeoff exists 
between accuracy and stability, with the 
quest for too much accuracy (i.e., attempt-
ing to extract more from the data than is 
reasonable) leading to poor stability.

The prior result helps explain why DL 
can become unstable. Simply put, DL 
approaches often have no mechanisms for 
protecting against overperformance. Recall 
that a typical training goal is to obtain 
a small training error, i.e., Ψ( )y xj j≈  
for j K= …1, , . However, if the train-
ing set contains two elements x x, ¢  with 
� ��x x− ′ 2h  and  Ax Ax− ′ ≤ h, 

successful training will necessarily cause 
instabilities. As the training set is often 
large and A  often has a large null space 
(e.g., when m N ), this situation can 
arise in many potential ways.

(b) False negatives. There is a z NÎ  
with    z x x≥ − ′ ;  an e mÎ  with 
 e £ h; and closed, non-empty balls 

x
, 

e
 

centered at x  and e  respectively, such that 

       � � � ��Ψ( ( ) ) ,A x z e x+ + − ≤ h
(5)

               ∀ ∈ ∈ x e
x e
 , .

False positives also arise in an analogous 
way. One can interpret this property by 
viewing x  as a “healthy” brain image and z  
as a “tumor.” It asserts that Y  may falsely 
reconstruct a healthy brain x  given mea-
surements of an unhealthy brain x z+ . It 
also implies that instabilities are not rare 
events. If e  is a random vector (with mild 
assumptions on its distribution), then the 
fact that (5) occurs in a ball means that

 ( ( ( ) ) ) Ψ A x z e x c+ + − ≤ ≥ >h 0

for some c>0.  Therefore, purely random 
perturbations can create false negatives 
(and positives) with nontrivial probability, 
as seen in Figure 3.

False Negatives and Threading  
the Accuracy-Stability Needle

What to do? It is of course elementary to 
create a stable network. The zero network 
would do the job but obviously produce 
many false negatives. The difficulty comes 

with simultaneously ensuring both stabil-
ity and performance; Figure 4 highlights 
this issue. The network was trained on 
images that are comprised of ellipses and 
is quite stable in practice. Yet if a small 
detail that was not in the training set is 
inserted, the network washes it out almost 
entirely. The 2019 FastMRI1 challenge 
has also reported similar effects on practi-
cal MRI datasets, with networks failing to 
reconstruct small but physically-relevant 
image abnormalities [3]. It is also worth 
noting that encouraging stability during 
training is not easy. Common methods like 
adversarial training, random sampling 
patterns, and enforcing consistency fail to 
protect against overperformance and thus 
remain susceptible to the universal insta-
bility theorem [4]. Overall, determining 
the best approach to walking the tightrope 
between accuracy and stability remains a 
significant open problem.

Limits of Deep Learning               
in Scientific Computing

The universal instability theorem is an 
example of a methodological boundary. 
Historically, scientific progress is often 
shaped by the presence or absence of such 
boundaries. Theoretical computer science, 
for example, developed with a thorough 
understanding of its limitations thanks to 
Gödel and Turing’s fundamental work 
on non-computability. Numerical analysis 
has boundaries such as the Dahlquist and 
Butcher barriers in numerical ordinary dif-

ferential equations, stability of Gaussian 
elimination, performance of the simplex 
method, and so forth.

Given the tradition for trial-and-error 
approaches in DL research—often accom-
panied by grand performance claims—such 
boundaries are more important now than 
ever. Neural networks are substantially 
more complex than the traditional tools of 
scientific computing. Critical assessment 
of new DL methods is needed, and further 
theoretical insights into accuracy-stability 
tradeoffs are essential for navigating the 
development of these new methods. To do 
so, we must ask a guiding question: What 
are the limits of DL in scientific computing?
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Figure 3. The deep MRI network [8] is unstable with respect to Gaussian noise and produces 
false image regions. 100 Gaussian noise vectors w

j
NÎ  were computed, then the eyeball 

metric was used to pick the one (subsequently labeled v1) for which Ψ( ( ))A x w
j

+  yields the 

largest artifact. This process was then repeated with 20 noise vectors, as well as one new 
noise vector, to give perturbations v2  and v3  respectively. The red arrows indicate that Y  intro-
duces a false dark area. Poor conditioning does not cause this instability since cond( )*AA =1 
as before. Conversely, the sparse regularization method F  accurately recovers the image 
without the false region. Figure courtesy of [4].

Figure 4. Trained neural networks with limited performance are often stable. The FBPConvNet 
is perfectly stable with respect to small, worst-case perturbations [6]. However, it creates false 
negatives when recovering other details because it is trained on images that consist only of 
ellipses. Conversely, the deep MRI network in Figure 3 can accurately recover such details but 
is unstable. A standard sparse regularization method recovers the details and remains stable 
to worst-case perturbations of the same magnitude. This perturbation is less visible since it 
affects the image’s dark regions. Figure courtesy of the authors.

Instability Mystery
Continued from page 3
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Many of the predominant mathematical 
problems in imaging are best formulated as 
inverse problems. Inverse problems involve 
the reconstruction of an unknown physical 
quantity from indirect measurements and 
may arise in tomographic imaging (like mag-
netic resonance imaging, computed tomog-
raphy and positron emission tomography 
scans, and optical tomography), wave imag-
ing (like ultrasound or seismic imaging), and 
hybrid imaging (like photoacoustic tomog-
raphy). Most of these types of inverse prob-
lems are ill-posed and thus require appro-
priate mathematical treatment to recover 
meaningful solutions. Mathematical con-
cepts from functional analysis, statistics, and 
numerical analysis play an important role.

New imaging techniques and hardware—
i.e., novel developments in photoacoustic 
tomography, optical tomography, and lens-
less imaging—have also shaped mathemati-
cal imaging. Recent advances in quantum 
imaging suggest the possibility of overcom-
ing “Rayleigh’s curse,” which is a statistical 
limit on resolution, via specially-designed 
quantum optical systems. Diffusion tensor 
imaging in medical scenarios and electron 
backscatter tomography in materials science 
provide “images” that are manifold-valued, 
thus rendering differential geometry tools 
essential. Dynamical imaging—the treat-
ment of videos and multimodal images—
pertains to questions in optical flow (see 
Figure 2), image metamorphosis, and regis-
tration. The concept of metamorphosis par-
ticularly endows the space of images with a 
nonlinear Riemannian structure, which one 
can use in applications like diffeomorphism 
estimation by minimizing the path energies 
of corresponding geodesics.

Finally, the emergence of machine learn-
ing and impressive performance of deep 
neural networks (DNNs) in many imag-
ing applications have fueled a significant 
amount of research in data-driven methods. 
Discovering the mathematical principles 
behind the seemingly simple concept of 
neural networks is a tremendous undertak-
ing. Understanding the design, training, and 
performance of DNNs will again draw from 
nearly every area of mathematics and surely 
lead to even more insights and theories that 
feed back into these fields. Many interesting 
questions remain, as it appears that standard 
DNNs are mostly insufficient for solving 
imaging problems — especially in areas 
like medical and scientific imaging where 
training data is scarce. Although these data 
are embedded in high dimensions, they 
actually stay near a low-dimensional mani-
fold; this fact calls for deep geometric 
learning of big data to explore and exploit 
the underlying geometry in many appli-
cations. Generalizing neural networks to 
arbitrary geometric domains like graphs 
and manifolds and improving the accuracy, 
efficiency, and interpretability of the learn-
ing process therefore remains a challenge.

New developments in machine learning 
have the potential to solve data analysis 
and processing tasks that were previously 
unthinkable. At the same time, research-
ers must confront the limitations of these 
techniques—such as data bias, instabili-
ties, and computational challenges—when 
applying them to practical imaging prob-
lems. This contrast between promise and 
practice calls for novel developments in 
mathematical imaging that could potential-
ly help combine mathematical modeling 
and analysis with data-driven components. 
The question of how to best do this, how-
ever, remains unanswered.

The broad and diverse range of math-
ematical topics in imaging science dem-
onstrates the true richness of this area for 
mathematical research and explains the sub-
ject’s lure for mathematicians from various 
fields within and beyond academia. New 
trends and developments in mathematical 
imaging are also inspiring newfound career 
perspectives for early-career researchers, as 
the emergence of data science within imag-
ing has created employment opportunities 
in many industrial sectors.

References
[1] Aviles-Rivero, A.I., Papadakis, N., 

Li., R., Sellars, P., Fan, Q., Tan, R.T., & 
Schönlieb, C.-B. (2019). GraphXNET – chest 
X-ray classification under extreme minimal 
supervision. In International conference on 
medical image computing and computer 
assisted intervention. Shenzen, China.

[2] Balle, F., Beck, T., Eifler, D.,  Fitschen, 
J.H., Schuff, S., & Steidl, G. (2019). Strain 
analysis by a total generalized variation reg-
ularized optical flow model. Inverse Prob. 
Sci. Engin., 27(4), 540-564.

Carola-Bibiane Schönlieb, Hongkai 
Zhao, Gabriele Steidl, and Michael B. Wakin 
respectively serve as chair, vice chair, pro-
gram director, and secretary of the SIAM 
Activity Group on Imaging Science. Carola-
Bibiane Schönlieb is a professor of applied 
mathematics in the Department of Applied 
Mathematics and Theoretical Physics at the 
University of Cambridge, where she leads 
the Cambridge Image Analysis Group. Her 
current research focuses on variational 
methods, partial differential equations and 
machine learning for image analysis, image 
processing, and inverse imaging problems. 
Hongkai Zhao is a professor of math-
ematics at Duke University. His research 
interests are in computational and applied 
mathematics, including numerical analysis 
and scientific computing, inverse problems, 
and image processing. Gabriele Steidl is 
a professor at the Technical University of 
Berlin. She has previously held positions 
as an associate professor at the Technical 
University of Darmstadt and a full profes-
sor at the University of Mannheim and 
the University of Kaiserslautern. Michael 
B. Wakin is a professor of electrical engi-
neering at the Colorado School of Mines. 
His research interests include signal and 
data processing via sparse, low-rank, and 
manifold-based models.

Figure 2. Crack detection in materials during tensile tests by optical flow variational meth-
ods. Even cracks that are not visible to the human eye (gray value images) can be detected. 
Figure courtesy of [2].
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Optimal Transport for Generative Neural Networks
By Gabriel Peyré

Since 2012, deep neural networks 
(DNNs) have been revolutionizing 

machine learning. Although the concept is 
far from new, DNNs have enabled spec-
tacular advances in the recognition of text, 
sounds, images, and videos in recent years. 
Perhaps even more surprising is that one 
can also use these neural networks in an 
unsupervised manner to automatically gen-
erate “virtual” text or images, which are 
often called “deep fakes.” Here I will draw 
a link between the learning of generative 
neural networks and the theory of optimal 
transport. This method, which was framed 
by Gaspard Monge in the 18th century and 
reformulated by Leonid Kantorovich in the 
20th century, is now a tool of choice for 
tackling important problems in data science.

Generative Neural Networks
Rather than use neural networks to ana-

lyze images, researchers can employ them 
“backwards” to generate images [3]. These 
generative neural networks find applica-
tions in special effects, video games, and 
artistic creation. For example, Figure 1 (on 
page 1) depicts the structure of a generative 
network g

w
 that depends on weights w. The 

layers play mirror roles when compared to 
the architecture of classical discriminating 
neural networks. Indeed, while networks for 
discriminating tasks take high-dimensional 
data (such as an image) and output a low-
dimensional representation that is useful for 
classification, the exact opposite occurs in 
generative networks. A user can generate an 
image x g y

w
= ( ) from a “latent” vector y  

that is composed of a small number of val-
ues, which are typically drawn randomly.

Training such networks is an unsuper-
vised problem. Consider a large collection 
of n  training images { , ,..., }.z z z

n1 2  The 
goal is to select the weights w  of the net-
work g

w
’s neurons so the generated “fakes” 

resemble the training set images as closely 
as possible. One produces these fake images 
( )x
i i

 by randomly drawing the input latent 
values y

i
 and applying the network to these 

inputs to obtain x g y
i w i
= ( ).  The training 

optimization problem is therefore

           min ({ ( ),...,
w w

g yDistance 1

               g y z z
w n n
( )},{ ,..., }).1

We thus wish to define a suitable notion of 
distance between two sets of points.

Monge’s Optimal Transport
Monge formulated the optimal trans-

port problem in 1781 for military applica-
tions [5]. He sought to determine the most 
economical method of transferring objects 
from a set of sources { ,..., }x x

n1  to a set 
of destinations { ,..., };z z

n1  for Monge, it 
was a matter of moving soil from cuttings 
to create embankments for the protection of 
soldiers. But this scenario finds a multitude 
of applications. When training generative 
networks, for example, the fake images that 
the network generates are the sources and 
the database’s images are the destinations.

Researchers thus seek a permutation s  of 
{ ,..., }1 n  so that each point x

i
 is linked to a 

single point zsi. Figure 2 displays a simple 
example of such a permutation with n = 6 
elements. Monge’s problem then involves 
finding the permutation that minimizes the 
sum of the transport costs. He decided 
that the cost of transportation between a 

source x  and a destination z  is equal to 
the Euclidean distance  x z-  between 
the two points. However, one can choose 
another cost — i.e., a traveling time or the 
price requirement for gasoline when driving 
a truck. We must then solve the problem

Distance
def

({ ,..., },{ ,..., })
.

x x z z
n n1 1 =

         minpermutation s
x zs� �1 1
− +

     � � � �x z x zs sn n2 2
− + + −... .  

This problem’s solution provides an opti-
mal assignment between the points but also 
defines the notion of distance between the 
sets of points in question.

The difficulty of calculating this distance 
is that the total number of permutations that 
must be tested is very large; indeed, there 
are n n n n! ( ) ( ) ...= × − × − × × ×1 2 2 1  
possibilities. For example, there are 
6 720!=  possible permutations in Figure 
2. We can test them all and select the best 

one, as depicted in Figure 2b. The difficulty 
is that there are more than 10100  possi-
bilities for n = 70  — compared to the 1079 
atoms in the universe. And when training 
neural networks, n  is even bigger.

Monge was unable to provide an effi-
cient method for solving this problem 
[5]. Instead, Kantorovich identified a new 
formulation for the optimal transport prob-
lem in 1942 [4]. His formulation allows 
scientists to divide each source into sev-
eral parts; for instance, one can split a 
source into two equal parts, each with a 
weight 1/2. This division of production 
that simplifies the optimization problem 
is also natural for Kantorovich’s prob-
lem, which attempted to model and plan 
production in economics. Kantorovich 
received the Nobel Prize for Economic 
Sciences for this idea in 1975. In 1947, 
George Dantzig introduced the simplex 
algorithm [2], which makes it possible for 

Figure 2. Sample permutation with n = 6 elements. 2a. Example of a non-optimal permutation 
s. 2b. The corresponding optimal permutation. Image courtesy of Gabriel Peyré.

See Optimal Transport on page 8
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In a distant galaxy, a lone planet orbits 
its sun; all other celestial bodies are far 

away. The planet’s axis is not tilted relative 
to the ecliptic (the plane of its orbit).

For many days, a creature living on the 
planet’s equator has been watching the sun 
rise in the east and set in the west. One eve-
ning, the sun sunk as usual below the west-
ern ocean and the light began to fade — but 
then it stopped fading, the sky brightened, 
and the sun rose back up from where it just 
set, from the west! The sun then described 
the arc overhead and set in the east. After 
a brief period of darkness, the sun reap-
peared in the east, made its overhead arc, 
and set in the west — just as in previous 
days. How did this happen?

A Solution
Let us first consider the planet with zero 

axial spin. To the creature on such a planet, 
the sun will travel east—as in Figure 1—
and make one revolution in the sky per 
year. For eccentric orbits, this eastward 
progression is very uneven: fast for a short 
time and slow most of the time. This spike 
occurs when the angular velocity w

orbital
 

of the planet’s position vector relative to 
the sun spikes during the close passage to 
the sun, near the perihelion. The key to the 
puzzle’s solution is that during the quick 
passage between points A  and B  in Figure 
1, the sun travels by more than 180°  in the 
sky — and does so rapidly.

Let us now spin our planet on its axis 
with angular velocity wspin  in the same 

this angle. It is thus possible for the sun to 
make a west-to-east trip in the sky by more 
than 180° once a year.

Back to Earth
For those of us on Earth, w w

spin orbital
>>  

so that wsun does not change sign — 
although it does vary. A 
very slight slowdown of the 
sun’s travel from east to west 
occurs as we get closer to the 
sun. This year we passed the 
perihelion on January 2; the 
sun advanced the slowest in 

our sky around that day, but of course not 
slow enough to move backwards.

Sliding Days
Another interesting consequence of 

the eccentricity of Earth’s orbit is the 
“sliding” of the daylight time for a few 
days around each solstice. For example, 
at 40° latitude—roughly the latitude of 
State College, Pa.—there is a period of 
about three weeks around December 21 
when both sunrise and sunset occur later 
and later with each passing day. The 
daylight interval slides from day to day 
and becomes the shortest on December 
21, after which it continues sliding while 
also elongating. Around January 4 or so, 
the sunrise times reverse and begin getting 
earlier with each passing day.

On Focus
It is interesting to note the close proxim-

ity of the foci of an elongated ellipse to 
the vertices of the ellipse, i.e., the close-

ness of the planet as it passes by the sun. 
Figure 1 illustrates this phenomenon with 
anatomical correctness: the semiaxes a =1 
and b= 0 25.  and  the  distance  in  ques-
tion is < 0 032.  (this distance is a c- , 

with c a b= −2 2  as the distance from 
the focus to origin). The focus is over 96 
percent of the way from the center of the 
ellipse to its vertex. For the 1 10:  aspect 
ratio, the foci seem to almost lie on the 
ellipse in the resolution of Figure 2.

As a flip side of this coin, consider 
a nearly round ellipse. The distance 
between the foci for such an ellipse is 

large relative to a b- :  it is 2 2 2a b− = 

2 ( )( )a b a b+ − >2 2b a b( ).-
  
Figure

2 illustrates the way in which a tiny 
deformation causes a relatively great split 
of the center into foci. A circular room 
serves as a good whispering gallery if the 
speaker and listener are symmetrically 
positioned relatively close to the center, as 
in Figure 2. This is so because the circle 
is almost indistinguishable from an ellipse 
with these foci.1

The figures in this article were provided 
by the author.

Mark Levi (levi@math.psu.edu) is a pro-
fessor of mathematics at the Pennsylvania 
State University.

1  The ellipse is in fact close to the circle 
in the C 2-norm, which is what matters for the 
focusing properties.

direction as travel around the sun, i.e., coun-
terclockwise in Figure 1, just like Earth. The 
sun—as seen in the sky—will thus acquire 
angular velocity w

spin
 east to west (the con-

ventional direction), in addition to the pre-
existing wannual  in the opposite direction. In 
the planet’s sky, the sun will therefore travel 
with angular velocity

    w w w
sun spin orbital
= − ,      (1)

			 
measured from east to west. 
With a sufficiently eccentric 
orbit (see Figure 1), w

orbital
 

experiences a spike that can dominate w
spin

 
and makes w

sun
 change sign. This occur-

rence manifests as the reversal of the sun’s 
motion in the sky. With sufficient eccen-
tricity, the sun’s backward travel by > °180  
for the spinless planet happens so quickly 
that the spin does not appreciably change 

A Western Sunrise

MATHEMATICAL 
CURIOSITIES
By Mark Levi

Figure 1. In the short time from A  to B,  the sun travels east by >p  in the sky of the observer 
for the planet with no axial spin. The arrows point east.

Figure 2. 2a. What looks like a circle is actually two barely distinguishable curves: an ellipse with semiaxes a =1  and b= .99  and a circle of 
radius ( )/ .a b+ 2  The ellipse’s foci are surprisingly far apart at the distance » . .282  2b. The foci for an ellipse with aspect ratio 1 10:  are 99.5 
percent of the way from the center to the vertex.

one to efficiently solve large-scale trans-
port problems. Its numerical complexity 
when solving an optimal transport problem 
between n  points is of the order of n3, 
which is much lower than n !.  The simplex 
algorithm is at the heart of a large number 
of industrial systems that must optimize 
the adequacy between means of production 
and consumption. Researchers can also 
use it to train generative neural networks. 
Further details on optimal transport theory, 
efficient algorithms, and their application 
to data science are available in [7].

Adversarial Networks
A difficult aspect of applying optimal 

transport to create generative networks is 
choosing the transport cost between two 
images. One could calculate the Euclidean 
distance between the images’ pixels, but 
this method does not work well because 
it fails to account for the geometry of the 
objects that are present in the images. In 
2014, Ian Goodfellow and his collabora-
tors introduced a more successful idea 
[3]. In this approach, a second network 
f —called an adversary network—plays 
a discriminative role. While generator g  
aims to create fake images that look real, 
f  plays the role of an opponent that must 
recognize true and fake images. The joint 
training of these two networks corresponds 
to what one may call a zero-sum game. 
John Nash studied this concept [6]; like 

Kantorovich, he too received the Nobel 
Prize in Economic Sciences in 1994.

These recent advances [3] have made it 
possible for researchers to obtain convinc-
ing results in image generation. Figure 
3 depicts results from the calculation of 
“paths” of images between dogs and cats 
[1]. This “animation” generates a con-
tinuous path x t g t y ty

w
( ) (( ) )= − +1 0 1  

for t Î [ , ],0 1  which is a linear interpola-
tion in latent space between two fixed 
vectors y0  and y1.

This article is based on Gabriel Peyré’s 
joint plenary address at the 2020 SIAM 
Annual Meeting1 and the 2020 SIAM 
Conference on Imaging Science,2 which 
were co-located and took place virtually 

1  https://www.siam.org/conferences/cm/
conference/an20

2  https://www.siam.org/conferences/cm/
conference/is20

last year. Peyré’s presentation is available 
on SIAM’s YouTube Channel.3
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Figure 3.	Two examples of “deep fakes” — virtual images that interpolate between cats and dogs. Image courtesy of Gabriel Peyré.
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Transitioning from Academia to the Healthcare Industry
Embracing a Career Change and Interdisciplinary Practical Thinking
By Anuj Mubayi

I              consider myself to be an experienced 
health decision analyst and mathemati-

cal modeler. Appropriate interdisciplin-
ary mathematical modeling techniques for 
complex systems can remove the mys-
tery, randomness, and powerlessness from 
various real-life scenarios, including dead-
ly and destructive infectious outbreaks. 
Because these methods are important for 
public health preparedness, they are in high 
demand in today’s workforce.

My interests and thinking closely align 
with a sentiment of renowned mathemati-
cian Carl Friedrich Gauss: “Surely it is 
not knowledge, but learning; not owning 
but earning; not being there, but getting 
there that gives us the greatest pleasure.” 
I obtained my Ph.D. in applied mathemat-
ics from Arizona State University (ASU), 
where I studied stochastic processes and 
dynamical systems. A strong foundation in 
these approaches deepened my understand-
ing of computational modeling and data 
analytical methods, which I routinely apply 
in my work in the public health and social 
science fields. My research applications 
focus on the ecology of infectious diseases, 
epidemiology, and health economics, and 
the questions that drive my interests lie at 
the intersection of public health, medicine, 
and the life and social sciences. These 
questions are shaped by the use of math-
ematical modeling to control infectious 
diseases and have helped advance society’s 
understanding of the complexities of new 
and emerging outbreaks. They have also 
led to a timely evaluation of interventions, 
drastically helping to mitigate mortality and 
morbidity rates. I am particularly interested 
in exploring infectious disease dynamics 
over multiple temporal and spatial scales 
and levels of organization, and conducting 
economic analyses for health interventions 
for diverse populations from a number of 
different perspectives.

After more than a decade of experi-
ence in academia, I recently transitioned 
to the healthcare industry and joined 
PRECISIONheor,1 which is a member of a 
family of companies of Precision Medicine 
Group2 — a leader in the field of medi-
cal sciences. I am an associate director 
in PRECISIONheor’s Advanced Modeling 
Group, where I lead a highly qualified 
team of applied mathematicians, data ana-
lysts, and health economists who provide 
key insights into the healthcare sector. I 
also hold visiting faculty positions in the 
Department of Mathematics at Illinois State 
University (ISU), ASU’s College of Health 
Sciences, and the Prevention Research 
Center in Berkeley, Calif.

During my time as an academician, I 
directly mentored over 105 students — 

1  https://www.precisionheor.com
2  https://www.precisionmedicinegrp.com

more than half of whom were underrepre-
sented minorities. I strongly believe that the 
pursuit of knowledge and understanding 
is enriched by an environment wherein 
people of diverse backgrounds learn from 
each other and participate in free and genu-
ine exchanges of ideas. As I continue my 
career in a new sector, I remain commit-
ted to teaching, mentoring, and advising 
in numerous local and national programs 
for minority students and colleges, includ-
ing ISU’s Intercollegiate Biomathematics 
Alliance3 and Purdue University’s National 
Alliance for Doctoral Studies in the 
Mathematical Sciences.4 I will also con-
tinue to conduct seminars at various scien-
tific events around the world and collabo-
rate directly with the leading governmen-
tal, educational, and healthcare sectors in 
Colombia, Ecuador, India, Peru, Portugal, 
and the U.S. to broadly and effectively put 
disease-related models into action.

In academia, individuals naturally gain 
valuable experience with critical thinking, 
the scientific method, technical writing, con-
ceptual modeling, and independent research. 
These skills are all beneficial 
in industry settings. However, 
anyone transitioning to 
industry must also be adept 
at leadership, entrepreneur-
ship, interpersonal relations, 
and project management on a 
short time frame. When making this move, 
it is important to become familiar with the 
necessary methods and tools for the position 
and organization in question, and know how 
to remain productive while simultaneously 
learning from peers.

Although I was initially skeptical, my 
transition from academia to industry was 
extremely smooth. The type of work I do 
remains somewhat similar — I am still 
conducting research, partaking in inter-
disciplinary collaborations, developing 
mathematical modeling methods, applying 
data analysis techniques, and mentoring. I 
was fortunate to find a perfect fit within a 
company that directly aligns with my inter-
ests. In my experience, PRECISIONheor 
is like a semi-academic institution in that 
it promotes research publications in sci-
entific journals, professional development 
through technical conferences, and hands-
on experience with rigorous mathematical 
modeling methods. Most of the industrial 
projects with which I have been involved 
incorporate mathematical modeling com-
ponents and have applications in the phar-
maceutical and healthcare industries. The 
key difference between my academic and 
industry life is teaching, though I can still 
teach part time through my adjunct affilia-
tions at ISU and ASU.

3  https://about.illinoisstate.edu/iba/about/
research-mentors

4  https://mathalliance.org/mentor/anuj-
mubayi

PRECISIONheor is a world leader in 
the generation of strategic, innovative, and 
credible evidence that supports the devel-
opment and commercialization of novel 
healthcare innovations. The company is 

renowned for its unparal-
leled expertise in evidence 
synthesis, economic mod-
eling, and real-world data 
analysis, as well as its abil-
ity to deliver timely aca-
demic insights that answer 

the demands of all stakeholders — from 
payers to policymakers. I chose to transi-
tion from academia to industry because I 
was looking for a new challenge and dif-
ferent responsibilities. I wanted to evolve 
my skill set from theoretical to practical, 
with direct implications for society, and 
have since realized that the change from 

academia to industry affects the style of 
work and thinking more than the actual 
tasks themselves. While working with 
cohorts and real data, I have found that 
industry positions generally seem to allow 
more flexibility to grow and evolve than 
academia. For example, I enjoy a high 
degree of freedom when selecting proj-
ects, planning research methodologies, and 
entertaining the possibility of publication.

A typical day in the life of a research 
scientist in the healthcare industry involves 
multiple components, including attending 
project meetings with team members, pre-
paring materials for client update meetings, 
and working on individual projects. During 
meetings, we discuss a project’s technical-
ity, generate presentation documents, and 

Anuj Mubayi delivers a hands-on lecture during the NSF-funded Partnerships for Enhanced 
Engagement in Research (PEER) Project Training Workshop at El Salvador’s Universidad 
Francisco Gavidia in January 2017. Photo courtesy of Anuj Mubayi.

CAREERS IN 
MATHEMATICAL 

SCIENCES   

Although he has now transitioned to an industry position, Anuj Mubayi remains active in aca-
demic networks, mentoring programs, and teaching projects. Photo courtesy of Anuj Mubayi.

See Healthcare Industry on page 12
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Jim Simons’ Road from Mathematics to Market Maven
The Man Who Solved the Market: 

How Jim Simons Launched the Quant 
Revolution. By Gregory Zuckerman. 
Portfolio/Penguin Random House, New York, 
NY, November 2019. 384 pages, $30.00.

Jim Simons has enjoyed a long and 
varied career in pure mathematics, 

code-breaking, and finance. He is per-
haps best known for founding the Simons 
Foundation, which supports research in 
mathematics and the basic sciences. As of 
June 2020, his net worth allegedly exceed-
ed $23 billion. In The Man Who Solved 
the Market: How Jim Simons Launched 
the Quant Revolution, Gregory Zuckerman 
describes the twists and turns along the 
road that ultimately led to Simons’ suc-
cess. Because Simons has long maintained 
a notoriously low profile—and those who 
have worked for him have been almost 
equally reticent—piecing together his story 
was a difficult task for Zuckerman.

Simons was born in 1938, near the end 
of the Great Depression, to middle-class 
parents in Brookline, Mass. The fam-
ily moved to nearby Newton in time for 
him to attend the highly regarded Newton 
North High School. After watching his 
father, who was trapped in a job he disliked 
and always a bit short on cash, Simons 
concluded that he wanted enough wealth 
to be the master of his own fate. He also 
decided to study math at the Massachusetts 
Institute of Technology (MIT).

Simons was an inconsistent student who 
did outstanding work in courses he liked 
while neglecting those he did not. However, 
he experienced an epiphany of sorts in 
the calculus class that introduced him to 
Stokes’ theorem. There he witnessed for 
the first time the way in which algebra, 
geometry, and analysis could combine sym-
biotically. Soon fellow students were asking 
Simons for help in the subject. “I just blos-
somed,” he later told a friend. Though he 
considered himself less talented than some 
of his classmates, Simons felt fully capable 
of making a substantial contribution.

After graduating with a B.A. in math-
ematics in 1958, Simons felt the need 
for a little adventure. He and two friends 
embarked on a motor scooter trip that they 
dubbed “Buenos Aires or bust.” Though 
the group never made it to Argentina, two 
of the three persevered long enough to 
reach Bogotá, Colombia, where an MIT 
classmate welcomed them into his family 
home. Simons and his friend luxuriated in 
creature comforts until it was time to return 
to MIT for graduate school.

Before long, Simons’ advisor at MIT 
suggested that he transfer to the University 
of California, Berkeley, where he could 
study geometry under Shiing-Shen Chern. 
But when Simons arrived at Berkeley, he 
found that Chern was on sabbatical else-
where. Simons was therefore obliged to 
work with others, including his eventual 
thesis advisor Bertram Kostant. He com-
pleted his dissertation about holonomy 
groups on Riemannian manifolds in 1961.

While in graduate school, Simons mar-
ried his 18-year-old girlfriend, became a 
father, and gained his first investing expe-
rience. After deciding that stock prices 
moved too slowly to hold his interest, 
Simons followed a broker’s advice and 
bought soybean futures (financial contracts 
that promise the delivery of a good or ser-
vice at a pre-determined price and date). 
These rose almost immediately from $2.50 
to $3.00 per bushel, leaving him with 
a paper profit of several thousand dol-
lars. When more experienced friends urged 
Simons to realize the profit by selling 
immediately, he ignored their advice and 
barely broke even when he finally did sell. 
Nevertheless, he was hooked.

Upon leaving Berkeley, Simons accept-
ed a three-year teaching fellowship at MIT. 
But he grew restless after a single year of 
teaching and decided to return to Bogotá 

and start a floor-covering business with 
a friend. With financial backing from the 
friend’s family—along with a paltry sum 
that Simons and his father scraped togeth-
er—the duo opened a factory 
that produced vinyl floor tile 
and PVC piping. Once the 
business was established, 
Simons took a teaching posi-
tion at Harvard. Though he was a popu-
lar teacher, he earned no more than any 
other postdoc. And because he borrowed 
money to invest in 
the flooring business, 
Simons had to moon-
light at a local junior 
college just to make 
ends meet. Not sur-
prisingly, his own 
research suffered.

To double his 
income and kickstart 
his research, Simons 
accepted a job with the 
Princeton, N.J., divi-
sion of the Institute 
for Defense Analyses 
(IDA). In an effort 
to attract the best 
talent, the Defense 
Department encour-
aged staff members to 
divide their time fairly 
evenly between code-
breaking activities for 
the government and 
their own personal 
research. The orga-
nization was a beehive of ideas. Simons 
proved to be an adept listener with a knack 
for recognizing his colleagues’ better ideas 
and devising algorithms to test them. In this 
setting, he soon became a star code breaker.

At the same time, Simons’ academic 
research began to prosper. His 1968 paper 
titled “Minimal Varieties in Riemannian 
Manifolds” extended the solution of 
Plateau’s problem through six dimensions 
and conjectured a counterexample in dimen-
sion seven, which has since been verified. 
The paper attracted a good deal of attention 
and was rich in applications; it is still cited 
on a regular basis. This single paper estab-
lished Simons as a leading geometer.

Meanwhile, Simons’ interest in invest-
ment had returned. He and three IDA 
colleagues published an internal classi-
fied paper entitled “Probabilistic Models 

for and Prediction of Stock 
Market Behavior,” which 
promised annual gains of 50 
percent. He also persuaded 
his IDA boss and the insti-

tute’s best programmer to join him in an 
investment company, which was to be 
called iStar. However, Simons was unable 

to assemble suffi-
cient funding to make 
the project a reality.

All of this was 
happening during 
the Vietnam War. 
Students everywhere 
were protesting and 
attempting to remove 
military installations 
of every descrip-
tion—including the 
IDA near Princeton 
U n i v e r s i t y — f r o m 
their campuses. After 
Simons contributed a 
mildly anti-war opin-
ion piece to a local 
newspaper, he was 
interviewed by a 
Newsweek reporter 
who coaxed even more 
subversive thoughts 
out of him. He was 
fired from his IDA 
position as a result.

Almost immediately, Simons was offered 
the chairmanship of the Mathematics 
Department at Stony Brook University. 
The school was only 11 years old and 
the state of New York wanted to turn it 
into a “Berkeley of the East.” The univer-

sity had already hired Nobel Prize-winning 
physicist Chen Ning Yang, and the presi-
dent was looking for an aggressive leader 
to build a world-class math department. 
Under Simons’ leadership, the Stony Brook 
Mathematics Department became a mecca 
for young mathematicians.

In 1976 at the age of 37, Simons received 
the American Mathematical Society’s 
Oswald Veblen Prize in Geometry for his 
work on minimal varieties and a paper 
he wrote with Chern that introduced a 
new class of geometric invariants. The 
award cemented his place among the first 
rank of active geometers. In fact, Chern-
Simons theory has since generated tens of 
thousands of citations in mathematics and 
mathematical physics literature.

Though he was comfortable with his 
acclaimed research and power as depart-
ment chairman, Simons grew restless 
again. When a larger firm acquired the 
flooring company in Colombia, Simons 
and his fellow shareholders enjoyed 
windfall profits. His dormant penchant 
for investing was reawakened. In 1978, 
Simons resigned from his position at Stony 
Brook to found an investment company 
called Monemetrics that would develop 
algorithms to identify unusually profitable 
short-term investment opportunities.

Monemetrics was not very successful 
and Simons was forced to shut it down after 
only a few years. However, this experience 
did nothing to shake his conviction that one 
could algorithmically tame the market. But 
it was not until he and Howard Morgan 
founded Renaissance Technologies (RT) 
in 1982 that real progress commenced. 
Simons’ role in the new firm was primarily 
that of a leader, and he assembled his work-
force much like the IDA had assembled 
its code-breaking crew. He hired bright 

BOOK REVIEW
By James Case

The Man Who Solved the Market: How Jim 
Simons Launched the Quant Revolution. By 
Gregory Zuckerman. Courtesy of Portfolio/
Penguin Random House.
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T he much-anticipated second edition 
of Symmetry in Chaos: A Search 

for Pattern in Mathematics, Art, and 
Nature, by Michael Field and Martin 
Golubitsky, was published by SIAM in 
2009. It features numerous new illus-
trations, addresses recent progress in 
the mathematics that underlies symmet-
ric chaos, and serves as a follow-up to 
the first edition, which was released by 
Oxford University Press in 1992. 

The book is written for a general audi-
ence and illustrates the ways in which 
classical symmetry and modern chaotic 
dynamical systems can interact to pro-
duce a set of striking images. It explains 
the relevant mathematical background, 
provides a detailed description of how 
the images are produced, and describes 
several implications of the mixture of 
symmetry and chaos. 

The following excerpt begins a discus-
sion of the production process for the 
many images of symmetric chaos. This 
text comes from chapter 1, “Introduction 
to Symmetry and Chaos,” and is modified 
slightly for clarity.

Pixel Rules 
If we intentionally confuse pixels on 

the screen with points (in the plane), 
then the rules that make our pictures are 
similar to the arithmetic rules we use. 
However, unlike the doubling rule, we do 
not want our rules on repeated application 
to grow without bound (otherwise, points 
would soon leave the computer screen). 
We think of a pixel rule as a rule that has 
pixels as input and pixels as output. The 
pixel rule may depend on some compli-
cated mathematical formula, but for the 
moment we wish to keep the arithmetic 
hidden. To make a black and white pic-
ture, we assume that the screen is black. 
We choose one pixel and turn it on — the 
corresponding point on the screen will 
then be white. Then we invoke our pixel 
rule, beginning with the first pixel as 
input, and obtain a new pixel that we turn 
on. Finally, we repeat this rule over and 
over again until we decide to stop. The 
whole process is called iteration. In this 
scheme, there is no reason why one pixel 
cannot be visited more than once.

As an example of a very simple pixel 
rule, choose one pixel from the screen, 

a large number of times, typi-
cally between 20,000,000 and 
100,000,000. Ignore the tran-
sient part of the pixel sequence 
that is produced (in practice, 
we only count pixel hits after 
the first 1,000 applications of 
the rule). Record the number 
of times each pixel is hit and 
color the pixel according to 
the value of that number. This 
process is no more than col-
oring by number. The actual 
colors are chosen according to 
which colors best bring out the 
underlying structure. Figure 3 
shows the result of coloring a 
figure with five-fold symmetry 
after 667,000,000 iterations on 

a 3 000 3 000, ,´  
pixel grid. Since there are 
9,000,000 pixels, it follows 
by the pigeonhole principle 
that some pixels must have 
been hit more than once. In 
practice, many pixels are hit 

more than once; the color band in Figure 3 
shows the colors assigned to pixels based 
on the number of times they have been 
hit. As we usually do, we leave the pixel 
black if it has not been hit. We color white 
shading to yellow if the pixel has been 
hit between one and 10 times, yellow if 
the pixel has been hit between 11 and 30 
times, yellow shading to red if the pixel 
has been hit between 31 and 270 times, 
and so on, ultimately ending up with navy 
blue if the pixel has been hit at least 2,370 
times (the maximum number of hits on an 
individual pixel was 42,534).

Thus far, we have confused pixels and 
points on the screen and regarded our 
mathematical formula as a pixel rule. 
However, when making a large number 
of applications of our rule, we really 
must distinguish the underlying arithmeti-
cal rule from a pixel rule. To see why this 
is so, recall that a pixel rule begins with 
a transient and then behaves periodically. 
A consequence is that the only sensible 

choice of coloring for pixels that are 
chosen using a pixel rule would be one 
color for the transient pixels (those vis-
ited only once) and another color for the 
pixels that are visited periodically. If we 
look at the colorings of Figure 3, we see 
that the picture represents a process that 
is far from periodic.

Enjoy this passage? Visit the SIAM 
bookstore1 to learn more about Symmetry 
in Chaos2 and browse other SIAM titles.

Michael Field is a professor in the 
Department of Mechanical Engineering 
at the University of California, Santa 
Barbara. He is currently working on 
theoretical problems in non-convex opti-
mization and machine learning using 
ideas that originate in dynamics and 
symmetry. Martin Golubitsky is a distin-
guished professor of mathematics at the 
Ohio State University. He is the founding 
editor-in-chief of the SIAM Journal on 
Applied Dynamical Systems and a past 
president of SIAM.

1  https://my.siam.org/Store
2  https://my.siam.org/Store/Product/

viewproduct/?ProductId=1011

say the top left. We define a pixel rule by 
requiring that we always select the top left 
pixel as output, regardless of the pixel we 
choose from the screen as input. However 
many times we apply the rule, we never see 
more than two pixels lit on the screen: the 
initial pixel and the top left pixel.

Next we look at a slightly more com-
plicated pixel rule. Following Figure 1, 
suppose that the monitor screen has 100 
pixels arranged in a 10 10´  grid. Choose a 
pixel  from the screen and the direction 
left. The pixel rule has two parts: if you 
can, move one pixel in the direction you are 
going; if you cannot, turn right one quarter 
of a turn. The picture that will result from 
this pixel rule is easy to describe. There 
is an initial segment moving left from the 
initial point   to the boundary of the grid, 
followed by a never-ending 
circumnavigation of the 
boundary in the clockwise 
direction (see Figure 2).

Even though the rules 
we describe here are rather 
simple, there are one or two 
interesting features that we want to single 

out for special mention.
First of all, note that the first 

part of the pixel sequence is dif-
ferent from its long-term behav-
ior. In particular, the pixels on the 
initial line segment—labelled L 
in Figure 2—are never revisited. 
We say that this part of the pixel 
sequence represents the initial 
behavior and often use the term 
transient to describe the initial 
behavior. The transient behavior 
is seen at the beginning but not 
in the long term. The part of the 
pixel sequence that begins at the 
boundary represents the long-
term behavior.

A second important observa-
tion about this example is that the 
long-term behavior repeats ad 

infinitum. We refer to this characteristic as 
periodicity. Since there are 36 pixels on the 
perimeter, this pixel rule repeats itself every 
36 iterates (ignoring the initial transient).

Indeed, if we apply any pixel rule enough 
times, at least one pixel will eventually be 
revisited. To see why this is so, suppose 
that there are 100 pixels on the screen (any 
large number will do equally well). After 
100 iterates we have “lit” 101 pixels, so at 
least one pixel must have been “lit” twice 
(this argument is an example of the pigeon-
hole principle: if 101 letters are to be put 
in 100 pigeonholes, at least one pigeonhole 
must contain at least two letters). It fol-
lows that if the rule we used to create our 
pictures was actually a pixel rule, then after 
an initial transient we would have to find 
periodic behavior. In general, our picture 
rules do not lead to this simple kind of 
periodic behavior, and color can be used to 
understand this point.

Coloring by Number
We now say more about how we color 

our figures. The basic idea is quite simple. 
Start with a mathematical formula that 
generates a picture, such as Figure 3. 
Choose an initial point and apply the rule 

Exploring Symmetry in Chaos 

FROM THE SIAM 
BOOKSHELF

Figure 1. Pixels on a 10 10´  grid.

Figure 2. Dynamics on the pixel grid.

Figure 3. Emperor’s cloak: pentagonal symmetry and a color bar.

young mathematicians, provided them with 
the best programming support that money 
could buy, and awaited results.

Robert Mercer and Peter Brown were 
two of RT’s most important hires. The pair 
was directly involved in IBM’s work to 
translate natural languages using artificial 
intelligence techniques, and Simons was 
eager to explore whether similar meth-
ods could identify exploitable patterns in 
market data. Mercer and Brown, perhaps 
enticed by the prospect of genuine wealth, 
agreed to leave IBM for RT.

Researchers at RT were not looking for 
fundamental principles of market behavior; 
instead, they searched for exploitable pat-
terns in data. For instance, they noticed that 
large asset price movements—both upward 
and downward—are frequently followed 
by substantial movements in the opposite 
direction. If an asset price goes down, one 
can purchase that asset before the price 
rebounds and sell it afterwards for an imme-
diate profit. If a price goes up, the asset can 
profitably be “sold short.”

But RT did not become a legendary cash 
cow on the strength of one such observation. 
Profitability required a steady flow of simi-

lar findings, each of which was tested with 
care before considered “investment grade.” 
The hedge fund required terabyte (and later 
petabyte) data storage capacity, along with 
immense computing power to analyze their 
treasure trove. Most of the patterns that 
RT employees discovered were more com-
plex and less enduring than the foregoing 
example; such windows of opportunity have 
a pronounced tendency to close quickly.

The book’s final chapters describe the 
condition of the leading figures at RT 
as they enter their later years. There is 
particular focus on the role that Mercer 
and his daughter Rebekah have come to 

play in politics; the outcry surrounding this 
involvement led Mercer to step down from 
his role as co-CEO at RT in 2017. Though 
none of the other major figures in RT have 
chosen to become so prominent, many have 
deployed their wealth in support of various 
causes, both political and otherwise.

Ultimately, The Man Who Solved the 
Market offers a fascinating glimpse into the 
life of elusive mathematician Jim Simons 
and his role as founder of one of the world’s 
most successful investment firms.

James Case writes from Baltimore, 
Maryland.
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By Stacey Levine and Michael Elad

Deep learning (DL) is a revolution. 
The performance of deep learning 

solutions in the arena of image processing 
and computational imaging has taken a 
clear lead, pushing aside a wealth of clas-
sical knowledge that has accumulated over 
many decades of extensive research. While 
theoreticians acknowledge this performance 
boost, many find the seeds of DL unsettling 
due to their purely empirical nature, which 
does not have a strong theoretical back-
bone. DL also lacks model predictability 
and explainability, the absence of which 
could complicate real-world applications 
in fields like medical imaging and autono-
mous vehicles. Yet despite these shortcom-
ings, increasingly more researchers from 
the mathematical imaging community are 
joining this new line of study.

But what about the classics in imaging 
science? Decades of powerful, theoretically 
sound, and successful methods have been 
built from different branches of mathematics, 
including variational approaches, partial dif-
ferential equations (PDEs), harmonic analy-
sis, sparsity-based models, and integral oper-
ators. Scientists have applied and intertwined 
these branches in various ways, resulting in 
powerful imaging techniques. Should we 
simply resign ourselves to the idea that these 
approaches might become obsolete?

Luckily, this DL fever has spread 
throughout the field of mathematical imag-
ing in a more controlled, thoughtful, and 
“deep” manner than originally anticipated. 
Recall that DL’s initial framework involves 
choosing an arbitrary network architecture 
and training it end-to-end to match inputs 
to outputs in a supervised fashion. This 
strategy employs black box solutions to 
increase performance by leveraging mas-
sive amounts of data and computational 
power while neglecting physical connec-
tions and data models. In contrast, while the 
imaging research community has embraced 
DL, many individuals have been inclined to 

Maarten V. de Hoop (Rice University) 
linked the Fourier integral operator and 
wave equation to DL architectures that 
researchers use for image reconstruction. He 
explained how these relationships give way 
to important generalizability guarantees — a 
critical challenge when one employs super-
vised data-driven DL models in practice.

Several plenaries demonstrated the power 
of fusing classical and DL approaches, uti-
lizing DL only where classical or physics-
based models are lacking. Laura Waller 
(University of California, Berkeley) pre-
sented both the state of the art and current 
challenges in physics-based computational 
microscopy. She also offered keen insight 
into specific parts of the problem that 
can benefit from data-driven DL models 
and spoke about how the fusion of these 
approaches is pushing boundaries. The effi-
cacy of using data priors to more cleverly 
train models via smaller datasets was cen-
tral to Michal Irani’s (Weizmann Institute of 
Science) talk, which described the ability of 
patch-based methods to improve a degraded 
image by learning intrinsically (without 
requiring training data that is external to the 
image). Irani’s presentation also illustrat-
ed how combining intrinsic learning with 
external data-driven DL models can supply 
users with the best of both worlds.

The invited presentations likewise pro-
vided key insights into foundational ques-
tions that lie at the intersection of learning-
based and classical approaches. William 
T. Freeman (Massachusetts Institute of 
Technology) identified the features of the 
human visual system that are most criti-
cal for replication in an artificial neural 
vision system; he connected these features 
with a range of examples and applica-
tions. On the computational side, Yuejie 
Chi (Carnegie Mellon University) bridged 
the gap between theory and practice in 
nonconvex approaches for the solution 
of low-rank matrix estimation problems, 
which are foundational in many machine 
learning and classical scenarios. Her talk 
addressed gradient descent-type algo-
rithms with guarantees for computational 
complexity, statistical performance, and 
robustness properties while also empha-
sizing the need for more unified theory.

A collection of minitutorials by Daniel 
Cremers (Technical University of Munich), 
Michael Moeller (University of Siegen), 
Jeffrey Fessler (University of Michigan), 
and Peyman Milanfar (Google Research) 
all continued to build the bridge between 
classical and data-driven approaches by 
tackling applications in image restoration, 
medical image reconstruction, and compu-
tational photography. Minisymposia talks 
reiterated these themes and intertwined the 
classics with this new DL paradigm. The 
aforementioned examples provide just a 

snapshot of DL’s well-represented influ-
ence within the field of imaging science.

While many theoreticians initially doubt-
ed DL, this new paradigm no longer seems 
offensive — so long as scientists handle 
it thoughtfully. Analogues and connec-
tions to the classical body of imaging 
literature—ranging from vision modeling 
to informed DL architectures—are rich and 
growing. Such relationships lead to prov-
able guarantees, as well as efficient and 
well-motivated optimization tools that are 
critical to network training. They are also 
unveiling connections that allow seemingly 
“black box solutions” to become more akin 
to “illuminating approaches.”

Our community’s perspective seems less 
like “build it deeper and see what happens” 
and more like “build it carefully and seek a 
balance between performance, mathematical 
foundations, and insight.” It is impossible to 
ignore DL’s potential, nor should we. But 
we are realizing that the classical knowl-
edge and know-how in image processing 
and computer vision will play a central role 
in paving the way towards next-generation 
practice and understanding of DL solutions.

In light of these realizations, one might 
wonder whether DL has to be involved 
in every imaging science advancement. 
We do not believe that this is the case. 
Indeed, our community is currently making 
important advancements in various direc-
tions with purely classical approaches. New 
theoretical results in optimization, optimal 
transport, wave equations, harmonic analy-
sis, variational methods, PDEs, patch-based 
methods, sparse representations, and other 
areas continue to impact the field in impor-
tant ways. In fact, the imaging science 
community’s commitment to the classics—
both within and outside the DL regime—is 
allowing DL to take its proper place in a 
productive and contextualized manner and 
is foundational to the field overall.

In summary, the imaging science research 
community is pursuing its own take on DL. 
It is a new playground, but we are utilizing 
our vast arsenal of classical skills so that we 
do not tackle each piece of equipment as if 
we have never seen it before. We are treating 
these new tools like playdough—molding 
architectures to complement our wealth of 
knowledge—while using DL to shape and 
evolve the classics, ultimately enabling the 
creation of things we never thought possible.

Stacey Levine and Michael Elad were 
the organizing committee co-chairs for 
the 2020 SIAM Conference on Imaging 
Science. Stacey Levine is a professor in the 
Department of Mathematics and Computer 
Science at Duquesne University. Michael 
Elad is a professor in the Computer Science 
Department at the Technion – Israel Institute 
of Technology. He is editor-in-chief of the 
SIAM Journal on Imaging Sciences. 

pursue work that also remains harmonious 
with the classics. Recent research in the 
field includes novel DL architectures that 
are based on well-posed traditional imag-
ing tools. In this way, DL provides new 
vantage points for understanding conven-
tional models while simultaneously pre-
senting fresh opportunities for constructing 
a comprehensive general theory for DL. 
The cooperation of these two worlds is 
inspiring the discovery of important con-
nections, questions, and complementary 
approaches (see Figure 1).

The 2020 SIAM Conference on Imaging 
Science1 repeatedly and extensively rein-
forced these themes. The plenary talks2 
offered snapshots of DL’s impact across 
imaging domains, as well as the thought-
fulness with which leading researchers are 
effectively merging DL with the “classics.”

DL architectures that are motivated by 
variational and PDE-based models are 
generating impressive results for image 
synthesis, restoration, and reconstruction. 
Gabriel Peyré’s (CNRS and École Normale 
Supérieure) address kicked off this recur-
ring theme.3 His talk connected the field 
of optimal transport with Ian Goodfellow’s 
generative adversarial networks, wherein 
fitting densities that are parametrized by 
deepnets become powerful frameworks 
for both image generation and discrimi-
nation. Thomas Pock’s (Graz University 
of Technology) lecture on variational net-
works, which was inspired by the success-
ful total variation functional, continued the 
same theme. Pock discussed image restora-
tion architectures based on energy function-
als that surpass their variational counterparts 
with respect to performance, while still 
remaining well-positioned to establish sta-
bility and generalization results and afford 
a much-desired Bayesian interpretation. 

1  https://www.siam.org/conferences/cm/
conference/is20

2  https://go.siam.org/kAl5sa
3  See page 7 for an article by Gabriel 

Peyré that is based on his invited talk.

A Deeper Way to Practice Deep Learning
Lessons from the 2020 SIAM Conference on Imaging Science

Figure 1. The careful combination of classical imaging and deep learning (DL) methods is 
inspiring important connections, questions, and complementary approaches. Image courtesy 
of Stacey Levine and Michael Elad.

write reports — all of which help us explain 
findings to our clients and incorporate feed-
back. Directors normally give the project 
teams full responsibility for developing 
recommendations and executing projects 
on a day-to-day basis, which makes my job 
both challenging and rewarding. Some of 
my responsibilities include preparing the 
necessary coding for a program to run an 
analysis and meeting with project leaders 
to review insights from the analysis and 
assess client suggestions. We then conduct 
a more detailed review once the analysis is 
complete and the final document is drafted.

It is common for someone with a back-
ground in academia to need some time to 
adjust to the particular demands of industry 
work, especially in terms of client com-
munication. It can be difficult to adapt to 

the comprehension level of clients; applied 
mathematicians tend to have a very strong 
analytical and theoretical knowledge base, 
whereas our clients have a much broader, 
practical background. When things go as 
planned, we clock 40 to 50 hours a week, 
but the occasional time crunch from a 
client can easily result in 12-hour days. 
PRECISIONheor is strongly committed 
to avoiding long hours for its employees, 
though compliance is largely the respon-
sibility of the employees themselves. This 
type of time management requires careful 
planning and occasionally standing our 
ground with clients to refrain from com-
mitting to unreasonable deliverables.

Although I have transitioned to indus-
try and greatly enjoy my work with 
PRECISIONheor, I continue to remain 
active in professional academic networks.5 

5  https://www.youtube.com/channel/
UCuhaV3SmDLMmWsGFJJHtXiA

I am widely involved in many commu-
nities, such as journal editorial boards, 
webinar committees,6 and research organi-
zations.7 Maintaining a connection to my 
academic networks has created a support 
system that allows me to continually grow 
and learn while simultaneously provid-
ing me with opportunities to teach, men-
tor, and help those who are just starting 
their careers. Retaining my excitement 
for learning new concepts and methods 
likely contributed to my smooth transition, 
which has been an absolute pleasure.

Anuj Mubayi8,9 is an associate director 
in PRECISIONheor’s Advanced Modeling 
Group. He is also an instructional assis-

6  https://sites.google.com/view/bereedms-
series/home

7   https://www.cs.fsu.edu/vipra
8   https://www.anujmubayi.com
9   https://www.linkedin.com/in/anujmubayi
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tant professor in the Department of 
Mathematics at Illinois State University 
(ISU), an adjunct faculty member in the 
College of Health Solutions at Arizona 
State University, and an associate research 
scientist at the Prevention Research 
Center in Berkeley, Calif. In addition, 
Mubayi serves as a research mentor at 
the Center for Collaborative Studies in 
Mathematical Biology, which is part of 
ISU’s Intercollegiate Biomathematics 
Alliance.10 He is an applied and compu-
tational mathematical scientist with more 
than 10 years of experience working on 
modeling problems that are of interest to 
public health communities, such as the 
design and evaluation of cost-effective 
intervention programs in the healthcare 
sector and the study of ecology and popu-
lation dynamics of disease transmission.

10   https://about.illinoisstate.edu/iba


