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Abstract

This paper discusses how a variety of actuarial models can be implemented and
analyzed with a Bayesian approach using Gibbs sampling, a Markov chain Monte
Carlo method. This approach allows a practitioner to analyze complicated actuarial
models by reducing them to simpler, more manageable models. Furthermore, general
properties of Gibbs sampling are discussed through a simulation approach.
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1 Introduction

The use of predictive models in research is a common practice for actuaries. However, they
are still realizing the full potential of the many available techniques involving predictive
models. The recent developments in high speed computation have opened new avenues to
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actuaries who are involved in constructing models that can be used in predicting future uncertain
events. The practical development of techniques such as linear programming, dynamic program-
ming, Monte Carlo experiments and many others would not have been possible without the arrival
of high-speed computers. The actuarial profession needs to keep pace with these developments and
consider how these methods can be utilized more effectively in decision making.

Stochastic models play a wide role in actuarial science applications. Mathematical analysis (a
theoretical approach) is one way to extract characteristics of such models. A practitioner may also
use simulation to study these models. This approach is especially useful when the stochastic models
are complicated and impossible to tract theoretically. Because many actuarial models are like this,
simulation is an important tool.

This paper discusses usefulness and importance of combining Monte Carlo simulation techniques
with Bayesian analysis in order to study complicated stochastic models in actuarial sciences.
Bayesian analysis is quite useful as it allows one to learn about the whole distribution of a chosen
quantity, rather than just a single statistic. Additionally, the assignment of probability distributions
to unknown quantities allows for the reflection of uncertainty. This uncertainty is represented as the
prior distribution, which is then updated with data. This increases the reliability of the estimates.
Then, once suitable models for the parameters are obtained, one can study the distribution of the
variables of interest, which is the end goal of Bayesian analysis.

1.1 Bayesian Inference

In classical statistical techniques, model parameters are assumed to be fixed quantities; only the
data is random. Thus, probability distributions can only be used to represent the data. But in
Bayesian statistics, probability distributions are often applied to more than just the data. They
can represent prior uncertainty in model parameters. These then get updated with current data to
produce posterior probability distributions. In effect, the parameters now contain less uncertainty;
in other words, they are more informed. This thinking produces a general rule in Bayesian statistics:
any quantity which has uncertainty can be represented by a probability distribution. This can be
shown in Bayes’ theorem, which simply is a demonstration of conditional probability, expressed
using probability distributions as follows:

f(θ | data) = f(data | θ) f(θ)
f(data) .

In this scenario, f(θ | data) is the posterior distribution for the parameter θ. f(data | θ) is the
sampling density for the data. This distribution is proportional to the likelihood function; however,
it differs by a constant which serves to make it a proper density. f(θ) is the prior distribution
for the parameter. Finally, f(data) is the marginal probability of the data. When considering a
continuous sample space, this marginal probability is computed as

f(data) =
∫
f(data | θ) f(θ) dθ.

In words, this is the integral of the sampling density multiplied by the prior distribution over the 
sample space of θ. This quantity is often referred to as the "marginal likelihood" for the data. It 
makes the posterior density proper by functioning as a normalizing constant. In addition, it is
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proportional to the likelihood function. These two qualities lead Bayes’ theorem for probability
distributions to be frequently stated as

Posterior ≈ Likelihood × Prior.

Once the posterior distribution for a parameter is derived, Bayesian analysis attempts to summarize
the entire distribution. In addition to not having a reliance on asymptotic arguments about nor-
mality, this allows for numerous additional tests and summaries. Occasionally, these distributions
have closed-form solutions (or at least solutions that can be computed using numerical methods).
However, for many other distributions the integrals may be quite difficult or even impossible to
compute, especially multivariate ones. In this instance, Monte Carlo simulation plays a major role.
The general logic of sampling is to generate a sample of size n from the desired distribution and
then apply discrete formulas to these samples. This, in effect, approximates the integrals of interest.
For example, a mean is estimated by ∫

xf(x) dx ≈ 1
n

∑
x,

and a variance by ∫
(x− µ)2 f(x) dx ≈ 1

n

∑
(x− µ)2.

Additionally, any desired quantile can be found by noting the value of x that has Q% of the sampled
values below it.

To sum up, Bayesian inference commonly follows these steps:

1. Creating a model and obtaining posterior distributions for the parameters being studied.

2. Simulating samples from the posterior distributions.

3. Taking discrete formulas and applying them to the samples found in step 2 in order to
summarize knowledge of the parameters.

This whole process differs from the approach taken in Classical statistics, where point estimates are 
found for parameters and inferences are conducted using the standard error and the central limit 
theorem.

1.2 Markov Chain Monte Carlo Methods and Gibbs Sampling

One very useful class of simulation techniques is known as Markov chain Monte Carlo (MCMC) 
sampling methods. The purpose of using these methods is to study distributions that would be very 
difficult to study otherwise (these distributions will later be referred to as "target distributions"). 
With the use of MCMC methods, a researcher can simulate a series of dependent random draws 
from models that are often quite complex. MCMC methods prove to be very useful when sampling 
from multivariate distributions that would normally be difficult to sample from. This is done by 
breaking them down into more feasible multivariate distributions or even univariate distributions.

The first step of a MCMC method is to specify a Markov chain with a unique invariant distribution 
equal to the target distribution (we will discuss one way to do this in the following paragraph). The 
next step is to generate a new value from this Markov chain given the previous value (for further
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reading, refer to [1]). This forms an iterative process which produces a Markov chain of values.
Furthermore, after the burn-in iterations1 are complete, it has been shown that these generated
values nearly follow a random draw from the target distribution. These samples can then be used
for inference procedures in a variety of ways.

One popular MCMC method for constructing a Markov chain for a target density is Gibbs sampling.
It was first introduced to the field of image restoration by Geman and Geman [7], however its
use in the field of Bayesian analysis was first recognized by Gelfand and Smith [6]. Since then,
Gibbs sampling has only appeared a few times within actuarial literature. Carlin [3] used Gibbs
sampling to study state space modeling of non-standard actuarial time series and Carlin [4] also
used it to develop a Monte Carlo approach to Bayesian graduation. Klugman and Carlin [8] used
Gibbs sampling in a similar area, however they had a focus on Whittaker-Henderson graduation.
Additionally, Scollnik [10] performed a Bayesian analysis of a simultaneous equations model for
insurance rate-making.

On occasion, sampling from the multivariate posterior distribution is not feasible but sampling
from the conditional distributions of each parameter is possible (for further reading, refer to [2]). In
this situation, Gibbs sampling has been found to be quite applicable. To create the Markov chain,
Gibbs sampling uses a set of full conditional distributions associated with the target distribution.
These are then used to generate a Markov chain with a unique invariant distribution equal to the
target distribution. A basic Gibbs sampling algorithm is displayed below (j represents the iteration
count).

0. Assign a vector of starting values x(j) = (x(j)
1 , x

(j)
2 , . . . , x

(j)
k ), with j = 0.

1. Set j = j + 1.

2. Simulate x(j)
1 ∼ f(x1 | x(j−1)

2 , x
(j−1)
3 , . . . , x

(j−1)
k ).

3. Simulate x(j)
2 ∼ f(x2 | x(j−1)

1 , x
(j−1)
3 , . . . , x

(j−1)
k ).

...
...

k. Simulate x(j)
k ∼ f(xk | x(j−1)

1 , x
(j−1)
2 , . . . , x

(j−1)
k−1 ).

k+1. Form x(j) = (x(j)
1 , x

(j)
2 , . . . , x

(j)
k ).

k+2. Return to step 1.

In words, the Gibbs sampling algorithm defined above generates a random draw from each of the
full conditional distributions. However, as the algorithm progresses, the values of the conditioning
variables are sequentially updated. Thus, the next draw depends on the previous one. Moreover, a
key aspect of Gibbs sampling is that the full conditional distribution does not need to be known;
it only needs to be known up to a normalizing constant. In conjunction with a Bayesian approach,
Gibbs sampling allows us to use the joint densities that have all other parameters set at their current
values. In other words, with all other parameters treated as fixed, the result is often a known form
of the density. This greatly reduces the difficulty of many analyses.

1Burn-in iterations allow the analysis to not use the values from the first x iterations where the Markov
chains are attempting to converge. For our analyses, 500 iterations is considered sufficient.
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2 Applications

2.1 Demonstrating the Properties of Gibbs Sampling

Here we are going to study the properties of Gibbs sampling through simulation. We start by
assuming the size of a claim X is exponentially distributed with parameter λ. Further, we treat
the parameter λ as a random variable that follows a gamma distribution with parameters α and β.
α and β are constants. Stemming from our Bayesian approach, we can write this information as
follows: the conditional distribution of X given λ as

f(x | λ) = λe−λx, x > 0 (1)

and the mixing distribution of λ, with parameters α and β as

f(λ | α, β) = βα

Γ(α)λ
α−1e−βλ, λ > 0.

Now, the joint distribution of X and λ can be obtained.

f(x, λ) = f(x | λ)f(λ)

= 1
Γ(α)β

αλαe−λ(x+β).

By integrating the above joint density with respect to λ, we can obtain the marginal distribution
of X.

f(x) =
∫ ∞

0
f(x, λ) dλ

= αβα

(β + x)α+1 , x > 0

∼ Pareto (α, β).

Note that f(x) simplifies to a Pareto distribution with parameters α and β. This density is the
closed form solution that was mentioned in section 1.1; in most problems, this is not possible to
obtain. However, we chose distributions such that there would be a closed form solution in order
to compare our results to. Finally, we can solve for each conditional distribution. Having already
been given f(x | λ) in Equation 1, f(λ | x) is derived as follows:

f(λ | x) = f(x, λ)
f(x)

= (x+ β)α+1λαe−λ(x+β)

Γ(α+ 1)
∼ gamma (α+ 1, x+ β).

Notice here that the conditional distribution of f(λ | x) simplifies to a  gamma d istribution. This is 
because of the use of a conjugate prior distribution. This simply means that the mixing distribution 
is from the same family as the variable of interest (for further reading, refer to [5]).

The next step in Gibbs sampling is to run our two conditional distributions through the iterative 
algorithm defined below:
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1. Select arbitrary initial values x(0) and λ(0).

2. Set counter index i = 0.

3. Sample x(i+1) from f(x | λ(i)) ∼ exponential (λ).

4. Sample λ(i+1) f from f(λ | x(i+1)) ∼ gamma (α+ 1, x(i+1) + β).

5. Set i = i+ 1 and return to step 3.

For illustrative purposes, assume α = 5 and β = 100. This reduces the uncertainty to the random
variablesX and λ. Using the principles of Gibbs sampling as shown above, 100,000 random numbers
are generated for X and λ. Figure 1 shows the last 100 sampled values for X and Figure 2 shows
the last 100 sampled values for λ:

Figure 1: Scatterplot of generated sample values of X
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Figure 2: Scatterplot of generated sample values of λ
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As one can see from Figure 1 and Figure 2, there is no pattern among the generated random
numbers. Therefore, they can be considered as independent random samples.

Next, Figure 3 and Figure 4 show the histograms of the last 99,500 sampled values of X and λ,
respectively. These values are generated from dependent sampling schemes, which were based on
the full conditional distributions of f(x | λ) and f(λ | x). The first 500 values of each sequence are
discarded as these are considered to be the burn-in iterations. Additionally, the respective marginal
density curves of X and λ are overlaid on their corresponding histogram.

Figure 3: Histogram of generated sample values of X
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Figure 4: Histogram of generated sample values of λ
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The marginal densities appear to line up very well with the sampled values, which indicates the 
implemented dependent sampling schemes have generated random samples from their respective 
marginal distributions.
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This is a property of Gibbs sampling. In effect, by taking very large random samples from the
conditional posterior distributions, it appears as if the samples were taken from their respective
marginal distributions. Thus, the generated random variates can be used to study the properties
of the distribution of interest. With more complicated models, sampling from the marginal distri-
butions directly would have been impossible; but with Gibbs sampling, it can be simulated. With
these results in mind, we can formally state Gibbs sampling as:

The realization that as the number of iterations approaches infinity, the samples from the conditional
posterior distributions converge to what the actual target distribution is that could not be sampled
from directly.

Next, consider the following integral:

f(x) =
∫
f(x | λ)f(λ) dλ.

This states that the marginal distribution of X can now be interpreted as the average of the
conditional distribution of X given λ taken with respect to the marginal distribution of λ. This
fact suggests that an estimate for the actual value of f(x) at the point x may be obtained by taking
the simulated average of f(x | λ) over the sampled values of λ, as shown in equation 2.

f(x̂) = 1
99, 500

100,000∑
i=500

f(x | λi). (2)

A similar calculation can be done for λ.

f(λ̂) = 1
99, 500

100,000∑
i=500

f(λ | xi).

After solving for and plotting these estimated densities, direct models of their respective target
distribution are revealed. The next two figures show this relationship.

Figure 5: Estimated and actual density of X
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Figure 6: Estimated and actual density of λ
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Figure 5 shows the plotted points of f(x̂) with its known function f(x) overlaid. Figure 6 shows the 
same information except for λ. As one can see on both figures, the estimated densities happen to 
be excellent representations of the actual densities. If looking at a more complicated model where 
the target distribution cannot be solved for in closed form, there is now methods to solve for and 
study a random sample from an unknown distribution.
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2.2 Modeling Number of Claims

Actuaries often try to model the number of claims to be filed for a certain book of business. These
books contain many individual policies, each with similar risk characteristics. These characteristics
contribute to the probability that a claim is filed. Therefore, each book of business, which we will
refer to as a portfolio, contains many policies that have a similar probability of filing a claim. This is
done to allow for analyses to be completed on the group as a whole, rather than on each individual
policy.

In order to model the number of claims for a portfolio, let claim probability P (as a random variable)
follow a beta distribution with parameters α and β.

f(p) = Γ(α+ β)
Γ(α)Γ(β)p

α−1(1− p)β−1, 0 ≤ p ≤ 1.

It is a common practice to model claim probability P with a beta distribution, where the values
are bounded between zero and one. In practice, distributions for probabilities of filing a claim (P )
are skewed to the right allowing higher chances for smaller P ’s and increasingly lower chances for
higher P ’s. The skewness of the beta distribution can easily be controlled with correctly chosen
parameters α and β. Next, we have to model the number of policies within a certain portfolio. To
do this, the Poisson distribution is widely used. However, we are going to modify it slightly. By
truncating the random variable at zero (zero truncated Poisson distribution), we can ensure that
the portfolio has at least one policy. Now, the total number of policies within a portfolio N can be
written as

f(n) = P (N = n | N > 0)
1− P (N = 0)

= (e−λ − 1)λ
n

n! , n = 1, 2, 3, . . ..

Next, let’s focus on the number of policies that file a claim. Assuming that filing a claim for a policy
is independent and that the probability of filing a claim is constant throughout the lifetime of the
policy, the number of policies that file a claim X can be modeled using a binomial distribution with
parameters N and P . Thus, we have

f(x | p, n) = nCxp
x(1− p)n−x, x = 0, 1, 2, . . . , n. (3)

This is a well chosen distribution as it incorporates both of our previous random variates as param-
eters. It follows that the random variable X can now be interpreted as the number of policies that 
generate a claim in a portfolio of N identical and independent policies, each with a claim probability 
equal to P . Most often actuaries are less interested in the conditional distribution of the variable 
of interest, but rather the marginal distribution. This is because the marginal distribution of our 
random variate X describes the typical number of policies generating a claim within an arbitrary 
portfolio; this is much more informative for them. However, f(x) cannot be obtained in closed form 
in this particular model. Gibbs sampling is one possible solution for this problem.

As shown earlier, the first step of Gibbs sampling is to find the conditional distributions of each
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random variable. These are derived as follows:

f(x, p, n) = f(x | p, n)f(p)f(n)

= nCxp
x+α−1(1− p)n+β−x−1Γ(α+ β)λn

Γ(α)Γ(β)(eλ − 1)n!

f(x, n) =
∫ 1

0
f(x, p, n) dp

= Γ(α+ β)λnnCxΓ(x+ α)Γ(n+ β − x)
Γ(α)Γ(β)n!(eλ − 1)Γ(n+ α+ β)

f(p | x, n) = f(x, p, n)
f(x, n)

= Γ(n+ α+ β)
Γ(x+ α)Γ(n+ β − x)p

(x+α)−1(1− p)(n+β−x)−1 (4)

∼ beta (x+ α, n+ β − x)

f(x, p) =
∞∑
n=1

f(x, p, n)

= px+α−1Γ(α+ β)pβ−1λx(eλ − 1)Γ(α)Γ(β)x!eλ(1−p)

Γ(α)Γ(β)(eλ − 1)n!

f(n | x, p) = f(x, p, n)
f(x, p)

= e−λ(1−p)(λ(1− p))n−x

(n− x)! n = x, x+ 1, x+ 2, . . . (5)

∼ P oisson (λ(1 − p)).

Note that the distribution f(p | x, n) follows a beta distribution with parameters x+α and n+β−x, 
as shown in equation 4. Additionally, the conditional distribution of N follows a Poisson distribution 
with parameter λ(1 − p), which is shown in equation 5. In order to implement Gibbs sampling, we 
simply need to initialize the variables. For the purposes of illustration, we select α = 2 (weight on p) 
and β = 8 (weight on 1 − p). This makes the distribution in equation 4 right skewed. Furthermore, 
we assume the average number of policies within a portfolio is 12 (λ = 12). Next, we run a loop to 
generate 10, 000 random numbers from each of the full conditional distributions. We then discard 
the first 500 values of each sampling path in order to burn-in Gibbs sampling.

The output of this simulation is an approximately independent random sample from each of the 
conditional distributions f(n | x, p), f(p | x, n), and f(x | p, n). We are interested in studying the 
distribution of f(x), which as noted earlier could not be found in closed form. However, by averaging 
equation 3 over the simulated values P (i) and N (i), a density estimate for the random variable X
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can be obtained. In other words, the estimated value of the density of f(x) at the point x is given
by

f(x̂) = 1
9, 500

10,000∑
i=501

f(x | p(i), n(i)).

Figure 7: Estimated density of X
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A plot of this density estimate appears in Figure 7. From this,
actuaries can compute many statistics for a portfolio with param-
eters p and n. These can then be used to more accurately predict
the number of claims expected for the future. For example, the ex-
pected value of X can be found; in this case, E(X) = 0.05 claims.
Combined with a model of the size of a typical claim, this statistic
can tell an insurer the amount of loss they expect per policy (in
dollars). Another statistic that can be found is the variance of X.
This tells the average risk of each portfolio. If a group of policies
has a large variance, then there could potentially be a large number
of claims. This implies a higher risk, which means this particular
group of policies likely will have a higher premium. For this model,
V ar(X) = 0.0058.

2.3 Modeling Size of Claims

In contrast to the previous model, which dealt with the number
of claims, this one deals with the size of claims (i.e. loss amounts). Loss distributions have high
probabilities for lower values and a long tail to allow for large claims, however with an increas-
ingly smaller probability. A widely used distribution to model loss is the Pareto distribution. It
incorporates parameters λ and θ and has the following density function:

f(x | θ) = θλθ

(λ+ x)θ+1 , x > 0.

Note that this distribution is a variation of the Pareto distribution called a Lomax distribution. It is
essentially the same, however it has been shifted so that the support set begins at zero. To simplify
the presentation, we assume that the parameter λ is known to be 7,000 so that the only uncertainty
is with respect to the value of the parameter θ. Therefore, the prior distribution, represented as
θ, follows a gamma distribution with parameters α and β. In order to make further inference,
again Gibbs sampling can be implemented. However, here we are considering a somewhat different
situation: assume a total of 50 independent observations are available, but we only know the class
frequencies (Figure 8).

Figure 8: Grouped data

Class Frequency
0 – 1000 25

1000 – 2000 15
2000 – 3000 7
3000 – ∞ 3
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If the original observations (losses) were given, the likelihood function L(θ | observations) can be
written as

L(θ | observations) ∝ θ50λ50θ∏50
i=1(λ+ xi)θ+1

Combining this likelihood function with the conjugate gamma (α, β) prior density for θ results in
the following posterior density:

f(θ | observations) ∝ L(θ)f(θ)

∝ θ50λ50θ∏50
i=1(λ+ xi)θ+1

βα

Γ(α)θ
α−1e−βθ

∝ θ49+αe−θ(β−50 lnλ+
∑50

i=1
ln(λ+xi)) (6)

∼ gamma (50 + α, β − 50 ln(λ) +
50∑
i=1

ln(λ+ xi)).

Note that the conditional distribution of θ once again follows a gamma distribution, this time with
parameters 50 + α and β − 50 lnλ +

∑50
i=1 ln(λ + xi), as shown in equation 6; this is because of

the conjugate nature of the gamma/Pareto distributions. Now, assume α = 1 and β = 0.1. This
produces a large variance in the prior distribution. These values form a vague/uninformative prior
which reflects the relative ignorance of the prior distribution. While this approach is common, the
practitioner should adopt whatever form of the prior density that describes the prior information
actually available. Next, a procedure called data augmentation is utilized on the grouped data in
order to study individual losses. The augmented data values are all independently distributed given
the model parameters and each is distributed according to the Pareto density function. However,
they are restricted to the appropriate class interval. Thus, the conditional distribution of the
augmented data given the model parameters and the observed class frequencies is described by the
following set of truncated Pareto distributions:

xi ∼ truncated Pareto (θ, λ) on the interval (0, 1000] for i = 1, 2, . . . , 25 (7)
xi ∼ truncated Pareto (θ, λ) on the interval (1000, 2000] for i = 26, 27, . . . , 40 (8)
xi ∼ truncated Pareto (θ, λ) on the interval (2000, 3000] for i = 41, 42, . . . , 47 (9)
xi ∼ truncated Pareto (θ, λ) on the interval (3000, ∞) for i = 48, 49, 50. (10)

By applying Gibbs sampling to the 51 full conditional distributions defined by e quations 6  –  10, 
a Markov chain with an invariant distribution equal to P (θ, augmented data | observed data) can 
be simulated. In order to make the posterior inference with respect to θ, the parameter of interest, 
10,000 replications of this Markov chain are generated. Randomly selected starting values for θ and 
the augmented data are used each time. Additionally, let each replication run for ten iterations 
with only the values generated in the final iteration of each replication will be u sed. This technique 
is called thinning, which takes care of the auto-correlation effect of the generated sample. Further, 
by taking the last 9,500 values of the Markov chain, an approximately independent random sample 
from the posterior distribution P (θ | observed data) can be obtained. These values are used to 
construct the histogram of sample values for θ in Figure 9. The sample mean and standard deviation 
were 6.434 and 0.946, respectively.
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Figure 9: Sampled values of θ
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By monitoring the values taken on by the augmented data as the
simulation proceeds, posterior inferences can be made with respect
to the actual but unobserved losses. For example, by looking at the
values of the losses appearing in the upper-most class (x48, x49, and
x50), estimates of the posterior probability can be made that one or
more of these losses exceeds an upper limit, say 10,000. Knowing
a number like this can help in decision making. For this particular
model, there was 1,141 observations that exceeded 10,000, giving
P (X > 10, 000) ≈ 3.80%.

3 Conclusions

In this research project, we had a goal to study how the methods of
Bayesian analysis combined with the insights gained from MCMC
methods may be applied to areas of actuarial science. Additionally, our goal was to show how
Gibbs sampling is implemented within Bayesian analysis. In practice, simulations related to Gibbs
sampling are conducted through a special software WinBUGS, however our research was completed
using the statistical software R [9].

There are several areas that we could have further looked into, such as how many burn-in iterations
are sufficient for the conditional distributions to converge to their respective marginal distributions.
This would have simply included putting a confidence band around the generated random num-
bers, and once they were within a previously set amount, the assumption could be made that the
distributions have converged. In addition, the methods of Gibbs sampling and how the conditional
distributions need to be known only up to a normalizing constant could have been further investi-
gated. We could have also detailed more applications of the knowledge gained from Gibbs sampling.
However, our methods in this paper are general and simply prove methods that can be applied to
more complex problems.
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