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Abstract

Modelling the random spread of a rumor has a long history. In this article we
consider a random process that is based on sampling without replacement leading
to the use of the discrete hypergeometric distribution. First considered is the model
with only spreaders and ignorants followed by more general models where there are
spreaders, ignorants, and stiflers. In this case a multivariate hypergeometric model is
applied. It is shown that, as in the traditional case, not all ignorants hear the rumor.

1 Introduction

The classical model for the spread of a rumor consists of n individuals one of whom, the
spreader, knows a rumor. Those individuals who do not know the rumor are called ignorants.
On day one the spreader chooses one individual at random, which could be the spreader
himself, to whom to tell the rumor. As noted it may not spread the first day. If an ignorant
is chosen, the spreader tells the rumor and on the next day there are two spreaders. Each
spreader chooses one person at random (which could be himself, the other spreader, or an
ignorant) to whom to tell the rumor. This continues until all persons have heard the rumor.
In [7] it is shown that if Sn is the minimum time for all ignorants to hear the rumor then

Sn = log2 n+ log n+O(1) in probability as n→∞. (1)

We show that a similar result holds, but is approximately twice as fast in the case of sampling
without replacement. When sampling without replacement care is taken to avoid choosing
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2 SPREADERS AND IGNORANTS

any element of the population more than once. In this way independence of the sample
values is lost.
The more general model has three classes of individuals:spreaders (S), ignorants (I), and
stiflers (R). Stiflers are individuals who have heard the rumor, but do not spread the
rumor. In the case where sampling without replacement is used, a multivarite hypergeometric
distribution is used. Two models are considered depending on the interaction of the three
groups. In one model all of the ignorants eventually hear the rumor and in the other model
a certain percentage of the ignorants fail to hear the rumor, depending on the initial number
of spreaders.

2 Spreaders and Ignorants

Assume the population is size n and suppose on a given day there are k spreaders and hence
n−k ignorants. We then take a sample of size k without replacement. Interpreting the n−k
ignorants as “successes” then if X is the random variable counting the number of individuals
to be told the rumor on the given day. This is the same as counting the number of successes
in a sample of size k. Therefore

P (X = x) =

(
n− k
x

)(
k

k − x

)
(
n

k

) , 0 ≤ x ≤ min(n− k, k).

This is the hypergeometric distribution with population size n, n− k successes, and sample
size k, which is denoted by HG(n, n− k, k). We have then

E(X) =
k(n− k)

n
= k − k2

n
.

Note that a doubling of the number that have heard the rumor takes place when E(X) > k
or k <

√
n
2
. For n large, when initially there is one spreader, we expect to have 2j spreaders

after j days when j is small. The following graphs depict simulations of this process of
sampling without replacement.
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2 SPREADERS AND IGNORANTS

Figure 1: Four Population Sizes

Typical data are shown in table 1. Different simulations produce nearly the same data, but
for length of time for all to hear the rumor.
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2 SPREADERS AND IGNORANTS

Table 1 Table 2
Simulation Difference Equation

n = 100 n = 500 n = 1000 n = 5000

Day k k k k

1 1 1 1 1
2 2 2 2 2
3 4 4 4 4
4 8 8 8 8
5 15 15 16 16
6 27 29 31 32
7 44 54 61 64
8 69 102 121 127
9 89 179 227 251
10 100 297 401 490
11 420 654 926
12 483 888 1676
13 499 990 2790
14 500 1000 4022
15 4809
16 4994
17 5000

n = 100 n = 500 n = 1000 n = 5000

Day rk rk rk rk

1 1.0 1.0 1.0 1.0
2 2.0 2.0 2.0 2.0
3 3.9 3.99 4.00 4.0
4 7.73 7.94 8.0 8.0
5 14.9 15.76 15.9 16.0
6 27.5 31.03 31.5 31.9
7 47.4 60.13 62.0 63.6
8 72.4 113.0 120.2 126.6
9 92.4 200.5 226.0 249.6
10 99.4 320.6 400.9 486.7
11 100.0 435.6 641.0 926.0
12 491.7 871.1 1681.0
13 499.9 983.4 2796.0
14 999.7 4029.0
15 4811.0
16 4993.0
17 5000.0

Note that, as expected the number of spreaders doubles early on in the sumulations. We
are now interested in finding an expression for how long it takes for the entire population to
know the rumor. Let rj be the expected number that know the rumor on day j. Then from
the expected value of the hypergeometric distribution we have

rj+1 = rj + rj −
r2j
n

= rj +
1

n
rj(n− rj), r1 = 1, k = 1, 2, . . . ,m.

Here m is the number of days for rj to reach n. This is a logistic difference equation and
produces similar data (Table 2) as in Table 1.
This logistic difference equation is an Euler’s method approximation to the differential equa-
tion

dy

dt
= y

(
1− y

n

)
, y(0) = 1.

with step size h = 1. Since this is a separable equation the exact solution is found to be

y(t) =
n

1 + (n− 1)e−t
, t ≥ 0.

We use this exact solution to estimate m. We want to find the time tn at which y(t) is closest
to have the integer value n. So we let 0 < ε < 1/2 and solve the equation y(tn) = n− ε for
tn, which yields the soltuion tn = log ((n− ε)(n− 1)/ε). Here and henceforth, log denotes
the natural logarithm. Using the Taylor series for log(1 − x) = −x + x2/2 + O(x3) where
x = ε/n or x = 1/n. Choose n large enough so that |x| < 1,
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2 SPREADERS AND IGNORANTS

tn = log ((n− ε)(n− 1)/ε) = log
[
n
(

1− ε

n

)]
+ log

[
n

(
1− 1

n

)]
+ log(1/ε)

= 2 log n+

[
− ε
n

+O

(
ε2

n2

)]
+

[
− 1

n
+O

(
1

n2

)]
+ log(1/ε)

= c log2 n+ log(1/ε)−
(

1 + ε

n

)
+O

(
1

n2

)

where c = 2 log 2 ≈ 1.386. For n large the dominant term above is c log2 n and so the time
estimate for all of the ignorants to hear the rumor is

tn ≈ 1.386 log2 n, for n large.

Combining the dominant terms in (1) from [7], gives the time estimate in the case of sampling
with replacement as approximately 2.443 log n. Thus, a rumor reaches the entire population
approximately 1.75 times faster when using sampling without replacement. The following
link gives an animation that demonstrates this increase in speed.

http://people.cst.cmich.edu/angel1jr/Rumor/RumorMovie.htm

The following graph compares simulation average time using 400 trials, average time, and
the above estimate.
In [7], p. 213 at the bottom, it is noted that the random process modeling rumor spread is
approximated by a difference equation. This difference equation is an Euler approximation
for the differential equation

dy

dt
= (n− y(t))

(
1− e−y(t)/n

)
, y(0) = 1

with step size one. This equation cannot be solved explicitly. However, replacing the expo-
nential term with its second degree Taylor approximation gives

dy

dt
= (n− y(t))

(
y(t)

n
− y(t)2

2n2

)
, y(0) = 1.

This is a separable equation and the solution is given by

y(t) = n− n√
anet + 1

, where an =
2n− 1

(n− 1)2
, n > 1.

Note that y(t)→ n as t→∞. As we did for the case without replacement, we let 0 < ε < 1/2
and solve y(sn) = n− ε. Using Taylor’s series, this produces
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2 SPREADERS AND IGNORANTS

Figure 2: Time Estimate for entire population to hear the rumor: Without Replacement

sn = log

(
(n2 − ε2)(n− 1)2

ε2(2n− 1)

)
= 2 log(n− 1)− log(2n− 1) + log(n2 − ε2) + log(1/ε2)

= 2 log n+ 2 log

(
1− 1

n

)
− log n− log

(
2− 1

n

)
+ 2 log n+ log

(
1− ε2

n2

)
+ log(1/ε2)

= 2 log n− 2

n
+O

(
1

n2

)
− log n− log 2 +

1

2n
+O

(
1

n2

)
+ 2 log n+O

(
1

n2

)
+ log(1/ε2)

= 3 log n− log 2 + log(1/ε2)− 3

2n
+O

(
1

n2

)
= log2 n+

(
2− 1

log 2

)
log n+ log

(
1

2ε2

)
+O

(
1

n

)
≈ log2 n+ 1.56 log n+ log

(
1

2ε2

)
+O

(
1

n

)

99



3 ADDING STIFLERS

This estimate is slightly larger than that given in [7]. Figure 3 compares simulation average
time using 400 trials, average time, the above estimate, and the bound, in green, according
to the theory in [7].

Figure 3: Time Estimate for entire population to hear the rumor: With Replacement

This result shouldn’t be surprising since a spreader is not wasting any time talking to another
spreader or two spreaders telling the same ignorant on a given day. When sampling without
replacement each spreader is forced to talk to a unique person.

3 Adding Stiflers

In a model posed in [3] the population has three distinct groups, spreaders (S), ignorants
(I), and stiflers (R). We pose that a person could become a stifler in three different
ways, spreader-spreader interactions, spreader-stifler interactions, or spreader-ignorant in-
teractions. We will consider each of these in order and in separate models.
The random vector (S, I, R) will be assumed to have a multivariate hypergeometric distri-
bution and in order to perform simulations, a standard stepwise methodology is employed
using inversion of the cumulative distribution functions FS(s) and FI|S(i).
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3 ADDING STIFLERS

Step 1: Let FS(s) be the marginal distribution function of S and let u1 be a value from a uni-
form distribution on [0, 1). Then set x1 = F−1S (u1). This is a sample from HG(n, s, s),

where s is the number of spreaders. Then E(X1) =
s2

n

Step 2: Let FI|S(i) be the conditional distribution function of I given S and let u2 be a value
from a uniform distribution of [0, 1). Then set x2 = F−1I|S(u2). This is a sample from

HG(n− s, i, n− x1). Then E(X2|X1) =
i(s− x1)
n− s

.

Step 3: The value of x3, the number of stiflers, is s− x1 − x2. This value is from HG(n− s−

i, r, s− x1 − x2) and so E(X3|X1, X2) =
r(s− x1 − x2)
n− s− i

.

3.1 Model 1

This model is characterized by the fact that stiflers are created by spreaders interacting with
spreaders and spreaders are created from spreaders interacting with ignorants. In this case,
when a spreader encounters another spreader they could assume that everyone has heard the
rumor and so they stop spreading the rumor. Using the above sample procedure we create
the following discrete dynamical system.

st+1 = st − x1 + x2, it+1 = it − x2, rt+1 = rt + x1.

Using the expected values E(X1) and E(X2|X1).

st+1 = st − E(X1) + E(X2|X1)

= st −
s2t
n

+

(
st − s2t

n

n− st

)
it

= st −
s2t
n

+

(
st(n− st)
n(n− st)

)
it

= st −
s2t
n

+
stit
n

= st +
st
n

(it − st).

Therefore

st+1 = st +
1

n
st(it − st).

This reflects that spreaders are created from s-i interactions and s-s interactions produce
stiflers. This is an Euler approximation with step size one for the differential equation

dS

dt
=
S

n
(I − S).
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3 ADDING STIFLERS

In a similar fashion we have

it+1 = it −
stit
n

which is an approximation of
dI

dt
= − 1

n
SI

and since dS
dt

+ dI
dt

+ dR
dt

= 0 we have

rt+1 = rt +
s2t
n

which is an approximation of
dR

dt
=
S2

n
.

Hence we will consider the following system of equations

dS

dt
=
S

n
(I − S),

dI

dt
= − 1

n
SI,

dR

dt
=
S2

n
. (2)

The initial values are usually given as S(0) = 1 spreader, I(0) = n − 2 ignorants, and
R(0) = 1 stifler.
We are interested in looking at the proportion each subpopulation represents. The is we
are interested in finding s = S/n, i = I/n, and r = R/n. This is reflected in the following
equations.

dS

dt

1

n
=
ds

dt
,

dI

dt

1

n
=
di

dt
,

dR

dt

1

n
=
dr

dt
,

which give
ds

dt
= s(i− s), di

dt
= −si, dr

dt
= s2. (3)

Here the initial values are i(0) = α, s(0) = β, and r(0) = γ, where 0 < α < 1, 0 < β <
1, 0 ≤ γ < 1, and α + β + γ = 1.
It will be shown that the number of ignorants and spreaders approach zero. This indicates
that eventually, since it is a closed population, the spreaders realize there is no one left to tell
and hence stop spreading the rumor. Figure 4 shows the differential equations (2) compared
with the simulations as described above. The simulations were stopped when the values of
s, i and r repeated at least 5 times. Similar graphs result if R(0) = 0, i.e., no stiflers.

3.1.1 Asymptotic Behavior

We know that 0 ≤ i < 1 by definition, and we see from (3) that di
dt
< 0 for all t. Hence the

i∞ = limt→∞ i(t) exists and 0 ≤ i∞ < 1.
Since dr

dt
> 0 and 0 ≤ r < 1, r is increasing and bounded. Therefore limt→∞ = r∞ exists.

This implies that s2 = dr
dt
→ 0 as t→∞. Thus s∞ = limt→∞ = 0.

We claim that i∞ = 0. Suppose that i∞ > 0. Since s(t) → 0 we have for t large enough,
ds
dt

= s(i − s) > 0. Hence, s is eventually increasing. We have then that if s is eventually
increasing, positive, and bounded, then s(t) 6→ 0. This contradicts s∞ = 0, and hence it
cannot be the case that i∞ > 0. This implies that limt→∞ r(t) = 1, i.e., the entire population
becomes stiflers.
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3 ADDING STIFLERS

Figure 4: Model 1: Discrete system compared with differential equations (solid lines)

Since di
dt
< 0, strictly decreasing, we can take i as an independent variable and we may

consider the equation

ds

di
=
s− i
i

, s(α) = β.

This equation is the first-order linear equation ds
di
− s

i
= −1 and has the solution

s(i) =
β

α
i+ i log

(α
i

)
. (4)

We note that s(t) reaches a maximum and its value can be found by noting from (3) that
ds
dt

= 0 when s = 0 or s = i. Taking s = i in (4) we have

s =
β

α
s+ s log

(α
s

)
, and solving for s gives s = αe(β−α)/α. (5)

In equation (5) take α = (n− 2)/n, β = 1/n, and replacing s with S/n, the maximum value
of S is
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3 ADDING STIFLERS

(n− 2) exp

(
3− n
n− 2

)
.

For n large this is approximately (n− 2)e−1 or about 37% of the population.

3.2 Model 2

For the second model the spreader-spreader interactions that create a stifler are removed and
replaced with spreader-stifler interactions to create a stifler. We assume here that when a
stifler meets a spreader, the spreader may be convinced that the truth of the rumor is brought
into question and so stop spreding it or simply convinced to stop. Using the same method
with the expected values for each interaction and removing the aforementioned interactions,
we obtain the following new set of equations.

st+1 = st − x3 + x2, it+1 = it − x2, rt+1 = rt + x3;

From which we obtain the system of difference equtions

st+1 = st −
st
n

(it − rt), it+1 = it −
stit
n
, rt+1 = rt +

strt
n
,

and the differential equations

dS

dt
=
S

n
(I −R) ,

dI

dt
= −SI

n
,

dR

dt
=
SR

n
,

and for the proportions

ds

dt
= s(i− r), di

dt
= −si, dr

dt
= sr. (6)

Comparing the differential equations with simulations is shown in Figure 5. Here the initial
values S(0) = 1, I(0) = 479, and R(0) = 20.

3.2.1 Asymptotic Behavior

A similar argument as in Model 1 shows that limt→∞ s(t) = 0. As before we onsider the
equation

ds

di
=

1− s− 2i

i
, s(α) = β.

This equation is a first-order linear equation, ds
di

+ s
i

= 1
i
− 2, and so the solution is

s(i) = 1− i+
α(α + β − 1)

i
. (7)
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Figure 5: Model 2: Discrete system compared with differential equations (solid lines)

Since s(t)→ 0 we have from (7) setting s = 0

0 = 1− i+
α(α + β − 1)

i
.

The solutions are

i =
1

2
± 1

2

√
1− 4α(1− α− β) =

1

2

(
1±

√
1− 4αγ

)
.

Let l = 1
2

(
1−
√

1− 4αγ
)

and u = 1
2

(
1 +
√

1− 4αγ
)
. We require that 1 − 4αγ ≥ 0 or

4αγ ≤ 1 or αγ ≤ 1
4
. Recall γ = 1 − α − β and α + γ ≤ 1 so αγ ≤ 1

4
with equality when

α = γ = 1
2
. However, this would imply that β = 0, i.e., no spreaders which would mean

that the rumor would never start so it is always assumed that α and β are positive. Hencd
α + γ < 1. This implies that the roots satisfy 0 < l ≤ α ≤ u < 1 and 0 < l ≤ γ ≤ u < 1.
We show that i(t)→ l and r(t)→ u as t→∞.
As it happens the system (6) can be solved explicitly. Using Maple[6] the following solutions
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4 MODEL 3

are obtained. Let A =
√
a+ b2 and B = e−Ac. Then

s(t) =
4A2Be−At

4A2 − (Be−At + 2b)2
(8)

i(t) =
s2s+ (s′)2 − ss′′

2s3
=

4a(Be−At − A)−B2e−2At(A+ b) + 4ab

2[4A2 − (Be−At + 2b)2]
(9)

r(t) =
−s2s+ (s′)2 − ss′′

2s3
=

4a(Be−At + A)−B2e−2At(A− b) + 4ab

2[4A2 − (Be−At + 2b)2]
(10)

The constants a, b, and c depend on the initial values α, β, and γ.

a = −4αγ, b = α + β + γ = 1, c =
1[

4
(
a(A+α+β−γ)
A−α+β+γ

)]1/A .
Since A > 0 and B > 0 then s(t)→ 0 as t→∞. Also

lim
t→∞

i(t) =
−4Aa+ 4ab

2 (4A2 − 4B2)
=

a(b− A)

2 (A2 − b2)
=

1

2

(
1−

√
1− 4αγ

)
= l

and

lim
t→∞

r(t) =
4aA+ 4ab

2 (4A2 − 4b2)
=

a(b− A)

2 (A2 − b2)
=

1

2

(
1 +

√
1 + 4αγ

)
= u.

This shows that for α > 0 and γ > 0, not all of the ignorants hear the rumor and not all of
the population becomes a stifler.
This is similar to the situation in [2], [3], and [5] with the exception that the final number
of ignorants depends on the initial values.

4 Model 3

This third model stiflers are created from a spreader-spreader interaction in which one of
the spreaders becomes a stifler. For a spreader-ignorant interaction, the ignorant becomes
a spreader. Finally, in a spreader-stifler interaction, the spreader becomes a stifler. When
a spreader meets a stifler, it could be the case that the stifler imparts a sense of guilt on
the spreader or relates that the veracity of the rumor is in serious question. In this way a
spreader changes their mind and decides to no longer tell the rumor. This gives the following
set of equations

st+1 = st − x1 − x3 + x2, it+1 = it − x2, rt+1 = rt + x1 + x3.

Using the expectated values as in the other models the following discrete system is produced.

st+1 = st +
st
n

(it − st − rt), it+1 = it −
stit
n
, rt+1 = rt +

st
n

(st + rt),
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and the two systems of differential equations

dS

dt
=
S

n
(I − S −R),

dI

dt
= −SI

n
,

dR

dt
=
S

n
(S +R),

ds

st
= s(i− s− r), di

dt
= −si, dr

dt
= s(s+ r).

Using s+ i+ r = 1 and eliminating r we have

ds

dt
= s(2i− 1),

di

dt
= −si, dr

dt
= s(1− i).

This is the classical model analyzed in [3], [5], and [2]. The following graph compares the
differential equations with simulations. Here the initial values are S(0) = 1, I(0) = 498, and
R(0) = 1. As is known, (e.g. [2] or [5]), approximately 20% of the ignorants do not hear the
rumor.

Figure 6: Model 3: Discrete system compared with differential equations (solid lines)
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5 Conclusion

Using sampling without replacement various models of the spread of a rumor are analyzed.
The analysis of these models require the use of both the single variable and multivariate
hypergeometric distributions. The spreader-ignorant model produces a system where all
the ignorants hear the rumor 1.75 times faster than the classical model. Adding stiflers
and changing the ways stiflers are produced gives three models one of which is the classical
model. In the first model the entire population becomes stiflers and in the second model not
all ignorants hear the rumor, but unlike the classical model, the number of ignorants not
hearing the rumor depends on the initial number of ignorants and stiflers.
Future work could entail including parameters that reflect imperfect information being
passed, somewhat more in line with reality since once started, a rumor takes on a life of
its own with different versions that evolve. This could also include adding terms that take
into account that new information is added as the rumor spreads. For example, in the case
that imperfect information is passed, model I takes the form

ds

dt
= µsi− νs2 − λsr, di

dt
= −µsi, dr

dt
= νs2 + λsr

where λ, µ, ν ∈ (0, 1]. One question that comes to mind is whether or not parameter values
of λ, µ, ν exist that produce chaotic behavior in any of the models.
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