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Abstract. The Lotka-Volterra model is a system of differential equations often used to predict changes in populations
of organisms in an ecosystem over time. The Lotka-Volterra model is dependent on parameters such as growth rate and
species-species interactions. These parameters in turn can determine certain population dynamics such as cyclical behavior
over time or even extinction of one or more species. This means that determining parameters from population measurements
can provide useful predictions on how populations will change in the future. In this work, we study models that exhibit (i)
stable equilibrium, (ii) limit cycles, (iii) extinction, (iv) chaos. Our goal is to understand how well the parameters in the
models can be determined from population data. The approach we take is to reduce the problem to that of linear regression
by estimating the time rate-of-change of the populations from data. Since the regression problem can be ill-conditioned, we
consider regularization strategies to ensure stability in the parameter estimation even when there is noise in the data. Numerical
experiments are conducted to gain further insights into the parameter estimation problem in the four types of behavior.

1. Introduction. The Lotka-Volterra (LV) model is often used to simulate and predict population
dynamics of organisms within an ecosystem [1][2]. For example, in the field of bacteriotherapy, predict-
ing population dynamics can help prevent extinction of beneficial microbiota [3][4]. On the other hand,
miscalculating the changes in a patient’s gut microbiota can lead to disease [5][6].

The LV model has several parameters that characterize population behaviors such as growth rate, car-
rying capacity, and competition among species [7][8]. These parameters allow the LV model to predict how
populations will change over time. For example, certain parameters can characterize population dynamics
of three or more species over time as either: stable equilibrium, where each species population reaches and
stays at a certain nonzero value; limit cycle, where the population of each species cycles over time; extinction
of one species, where one population is reduced to zero; extinction of two species, where two populations are
reduced to zero; or, chaotic dynamics, where the populations of at least four species fluctuate independently
in an unpredictable pattern.

The goal of this investigation is to examine how the parameters in the LV model can be determined
from measured population data over time. In particular, we wish to quantify how robustly one can recover
the model parameters in different behavioral regimes. We examine two methods of obtaining the parameters
necessary for the LV system to function properly: truncated singular value decomposition (tSVD) and
LASSO regression [9][10][11].

These two approaches have been examined in the literature, most notably by Varah [12], who describes a
spline least squares method for estimating parameters of ordinary differential equations (ODEs). While our
approach similarly handles noise in the population data and approximates the rate of change in population
data using cubic splines, we take advantage of technological advances since the date of that publication in
1982. Instead of relying on the human eye and basic interactive graphics to subjectively position the knots
of the cubic spline, we solve each cubic polynomial for its coefficients in MATLAB (version R2020a). Also,
instead of examining predator-prey interactions, we examine multiple species competing for the same limited
resource. Specifically, we simulate the interactions between three species to examine stable equilibrium, limit
cycle behavior, and extinction, and between four species to examine chaotic dynamics. We also study the
use of sparsity promoting regularization, i.e. incorporating an `1 penalty. Such an approach is known as
LASSO in the statistics literature [9][10].

This paper is organized as follows. In Section 2, we describe the LV system and examine the different
behaviors it exhibits depending on the parameters. In Section 3, we show how the inverse problem of param-
eter determination can be cast as a linear regression problem. We also describe an intriguing observation we
call noise insemination that affects the regression problem. In Section 4, we first perform numerical studies
to demonstrate how the inverse problem can become ill-conditioned. After characterizing the conditioning of
the regression problem, we then present the results of numerical experiments in parameter recovery with and
without the presence of noise using two different approaches. Lastly, in Section 5, we discuss our findings
and prospects for future research.
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2. The Lotka-Volterra system. The Lotka-Volterra model is expressed as

(2.1) dyi
dt

= αiyi +
L∑
j=1

βijyiyj

where L is the number of species competing for a common resource (L ≥ 3) and yi(t) is the population of
species i at time t. The parameter αi is the intrinsic growth rate of species i, while βii controls the carrying
capacity of the ecosystem if only species i exists. The cross terms, βij for i 6= j are negative and represent
the competition between species i and species j. Although not within the scope of this paper, nondiagonal
βij can also be positive to simulate cooperative or mutualistic relationships [13]. We can think of the model
parameter α as a column vector with L elements αi, and parameter β as an L-by-L matrix with L2 elements
βij .

In the inverse problem, we are given noisy measurements of the population at times tj , j = 1, · · · , N
(i.e., yi(tj)). The goal is to determine the unknown parameters αi and βij . For the case of L = 3 species,
we will have 3 α’s (α1, α2, α3) and 9 β’s (β11, β12, . . . , β33), resulting in a total of 12 unknowns. To ensure
that the LV system is not underdetermined, we will use at least 7 time points to construct the system, for a
total of at least 21 equations for 12 unknowns.

Specific α and β result in different LV model population behaviors or dynamics, and we describe them
in more detail below.

2.1. Stable equilibrium. Depending on α and β, each species population can reach a specific nonzero
value over time. When this happens for every species in the LV model, the model is said to reach stable
equilibrium. In this case, all species in the system coexist with one another despite competition for a common
resource. For example, if the parameters are

α =

[ 3
4

7.2

]
, β =

[ −2 −1 0
0 −1 −2

−2.6 −1.6 −3

]
,

then each population reaches stable equilibrium (Fig. 2.1).

Fig. 2.1: Stable Equilibrium Behavior. Simulated population data y1(t) (blue ), y2(t) (red ), y3(t)
(yellow ) is plotted against time t = [0 : 1 : 40]. The initial condition is y(0) =

[
0.1 0.8 0.3

]T . The
population is measured in nondimensional units, so the vertical axis can be multiples of 100, 1000, etc.

2.2. Limit cycle. After a certain amount of transient behavior, the population of each species can
become periodic over time. In this case, the LV model displays limit cycle behavior, where competition
between different species results in each population fluctuating cyclically over time. This behavior was once
thought to only be possible if the LV model contained at least three species (i.e. L ≥ 3) [14]. However,
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recent research has demonstrated that LV models with two species can also display limit cycle behavior [15].
As an example of a limit cycle, if the parameters are

α =

[ 3
4

7.2

]
, β =

[−0.5 −1 0
0 −1 −2

−2.6 −1.6 −3

]
,

then we get a limit cycle (Fig. 2.2).

Fig. 2.2: Limit Cycle Behavior. Simulated population data y1(t) (blue ), y2(t) (red ), y3(t) (yellow
) is plotted against time t = [0 : 0.3 : 30]. The initial condition is y(0) =

[
0.1 0.8 0.3

]T .

2.3. Extinction of one or more species. In this scenario, one or more species populations become(s)
zero, reflecting extinction of one or more species in the LV model. When

α =

[ 3
4

7.2

]
, β =

[ −2 −1 −1
−1 −1 −2

−2.6 −1.6 −3

]
,

we have extinction of species y2 (Fig. 2.3).

Fig. 2.3: Extinction of One Species. Simulated population data y1(t) (blue ), y2(t) (red ), y3(t)
(yellow ) is plotted against time t = [0 : 0.1 : 10]. The initial condition is y(0) =

[
0.1 0.8 0.3

]T .

On the other hand, when
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α =

[
3
1

7.2

]
, β =

[
−0.1 −1 −0.1
−1 −0.1 −2

−2.6 −0.6 −3

]
,

we have extinction of two species (y2 and y3) as shown in Fig. 2.4.

Fig. 2.4: Extinction of Two Species. Simulated population data y1(t) (blue ), y2(t) (red ), y3(t)
(yellow ) is plotted against time t = [0 : 0.05 : 5]. The initial condition is y(0) =

[
0.1 0.8 0.3

]T .

2.4. Chaotic dynamics. When each population in the system wildly fluctuates without any discernible
pattern, the LV model is said to display chaotic dynamics. This behavior is only possible if the LV model
contains at least four species (i.e. L ≥ 4). Parameters that result in this behavior have been investigated by
Vano et al [16], and we use

α =

 1
0.72
1.53
1.27

 , β =

 −1 −1.09 −1.52 0
0 −0.72 −0.3168 −0.9792

−3.5649 0 −1.53 −0.7191
−1.5367 −0.6477 −0.4445 −1.27

 .
This behavior is illustrated in Fig. 2.5.

Fig. 2.5: Chaotic Dynamics. Simulated population data y1(t) (blue ), y2(t) (red ), y3(t)
(yellow ), y4(t) (purple ) is plotted against time t = [0 : 1 : 500]. The initial condition is
y(0) =

[
0.1 0.8 0.3 0.5

]T .
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3. Inverting for model parameters. We now wish to solve the inverse problem posed by the LV
model and population measurements. Suppose we have L species and the population data set consists of

yi(tj) for i = 1, · · · , L, j = 1, · · · , N.

To turn the inverse problem into a regression problem, we use the data to define a matrix A of size (NL)-
by-(L+ L2), given by

(3.1) A =


diag(y(t0)) y1(t0) diag(y(t0)) y2(t0) diag(y(t0)) . . . yL(t0) diag(y(t0))
diag(y(t1)) y1(t1) diag(y(t1)) y2(t1) diag(y(t1)) . . . yL(t1) diag(y(t1))

...
...

...
. . .

...
diag(y(tN )) y1(tN ) diag(y(tN )) y2(tN ) diag(y(tN )) . . . yL(tN ) diag(y(tN ))

 ,
where

diag(y(tj)) =


y1(tj) 0 . . . 0

0 y2(tj) . . . 0
...

...
. . .

...
0 0 . . . yL(tj)


We let w represent the time rate-of-change of the population, i.e.

(3.2) w = d

dt

[
y1(t0) y2(t0) . . . yL(t0) · · · · · · y1(tN ) y2(tN ) . . . yL(tN )

]T
.

We now represent the unknown parameters as an L+ L2 vector x, where

x =
[
α1 α2 . . . αL β11 β21 . . . βLL

]T
.

The LV system implies that
Ax = w.

This is a linear system with L + L2 unknowns and NL equations. When NL > L + L2, the system is
overdetermined. The inverse problem now amounts to solving the linear system Ax = w. When w is in the
range of A, there is a solution to the equation.

Since the vector w is not observed and we do not have access to yi(tj) as a function of time, rather its
samples at specific time points, we need to estimate w from these samples. To this end, we use cubic spline
interpolation to estimate yi(tj) and differentiate the function to approximate w. However, measurements
of yi(tj) in practice often contain noise. This “seed of noise” then propagates through all variables derived
from yi(tj), in this case A and w. We call this phenomenon noise insemination.

The definitions for the elements of A and w are unchanged, but noise insemination has now polluted
them. To account for this, let us use Ag to denote the noise-inseminated A and wg to denote the noise-
inseminated w. Ag and wg, while still derived in the same way as A and w, will now be inseminated with
noise from yi(tj). In light of noise insemination, the inverse problem now becomes that of estimating x in

(3.3) Agx ≈ wg

We do not expect wg to be in the range of Ag. Therefore, we will approach the solution using least-
squares. This complicated issue and its effects on parameter recovery will be studied in numerical experiments
in Section 4.

3.1. Inversion methods. We solve the inverse-problem described above using two different meth-
ods. We use truncated singular value decomposition (tSVD) to solve (3.3) to give us control over the
ill-conditioning. We also examine a second method based on adding an `1-penalty. The `1-penalty term
involves only the β parameters, whose sparsity is promoted by this method.
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3.1.1. Truncated SVD. One method to solve (3.3) is to use a tSVD. We first write the SVD of the
matrix A

Ag = U DV T .

Here, U and V are NL-by-NL and (L+L2)-by-(L+L2) orthonormal matrices whose columns {ui} and {vi}
span the column and row spaces of matrix Ag, respectively. The diagonal matrix D is of size NL-by-(L+L2)
and its entries are the singular values of A in decreasing order. Let us denote the diagonal entries of D by
dj , j = 1, · · · , (L+ L2). Then the truncated SVD solution x† [17] is given by

x† =
p∑
j=1

uTj wg

dj
vj ,

where p is the index value used to truncate U , D, and V . The number p must be chosen such that d1/dp,
the condition number of the inverse of the tSVD, is not too large. Thus, p is the first j whose diagonal
entry dj/d1 is less than the threshold value 0.001, which was obtained by trial and error. Since we know
the ground truth value of the parameters, we can adjust the threshold to balance accuracy and sensitivity.
Indeed, one can view this value as a tuning parameter which in practice can be determined if the size of the
measurement errors is known.

3.1.2. `1 penalized least-squares. Another inversion method we employ is the LASSO regression
[10], which roughly amounts to regularizing the least-squares solution of (3.3) with an `1 penalty. That is,
we will solve for x in

min
x
‖Agx−wg‖2 + λ‖Px‖1, λ > 0,

where P is a diagonal matrix with entries 0 for elements of x corresponding to α, and 1 otherwise (i.e. we
only wish to promote sparsity for the β parameters).

We let J denote the cost function

J = ‖Agx−wg‖2 + λ‖Px‖1.

Since J is not differentiable everywhere, we approximate the gradient using the following formula

∇J = 2ATg (Ax−wg) + P

[
λxj
|xj + τ |

]
,

where [aj ] is a column vector of size (NL) with elements aj . The parameter τ will be chosen to be small as
it roughly represents the amount by which we ‘round’ the corners of the gradient at locations where it is not
differentiable.

We first find an initial guess x and then use the resulting cost and gradient to iteratively update x in
such a way that minimizes the cost function J . Since Ag and wg are known, we determine our initial x by
evaluating (ATg Ag)−1ATg wg.

We next use steepest descent to update x in such a way that decreases J [18][19]. We define p = −∇J
and an arbitrary initial step length f to iteratively calculate

xnew = xprev + fp.

We then use xnew to determine Jnew and ∇Jnew. Calculating Jnew and ∇Jnew allows us to use the
sufficient decrease condition (SDC) to determine if the change in x results in sufficient decrease in J . The
SDC is as follows:

Jnew ≤ Jprev − cfpT p, c ∈ (0, 1)
If this condition is satisfied, we then repeat the above steps using xnew, Jnew, and ∇Jnew. If the SDC is
not satisfied, then we begin backtracking. Backtracking is the iterative process inside the steepest descent
algorithm that slowly decreases the step length f by a scalar ρ as shown below:

f = f ρ, ρ ∈ (0, 1).

This new step length is then used to redefine xnew, Jnew, and ∇Jnew. This process is repeated until the
SDC is satisfied, at which point we continue steepest descent. The stopping criterion we adopted is to stop
when the gradient is sufficiently small or when an arbitrary large number of steepest descent steps K has
been taken.
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4. Numerical experiments.

4.1. Data generation. We first construct our simulated population data yi(tj) by solving the ODE
in (2.1) with a given α and β designed to exhibit one of the five previously mentioned population behaviors.
To facilitate solving for L species, we convert the LV model ODE into matrix format.

d

dt


y1
y2
...
yL

 =


α1 0 . . . 0
0 α2 . . . 0
...

...
. . .

...
0 0 . . . αL



y1
y2
...
yL

+


y1 0 . . . 0
0 y2 . . . 0
...

...
. . .

...
0 0 . . . yL



β11 β12 . . . β1L
β21 β22 . . . β2L

...
...

. . .
...

βL1 βL2 . . . βLL



y1
y2
...
yL


To solve the ODE, we use MATLAB’s ode45 function, sampling the solution at regular intervals ∆t and
choosing an initial condition based on the specific population dynamic being examined. Solving the ODE
above generates the simulated population data yi(tj), and we can now begin to use the previously described
algorithms to attempt to recover the parameters α and β.

4.2. Reconstruction results using tSVD. In this section, we first study the condition number of Ag
and the estimated time-derivative wg as a function of sampling rate when solving for x. Next, we implement
the tSVD approach and study its efficacy in parameter recovery from population data. We will consider
different dynamics with both noiseless and noisy data.

In these experiments, the “ground truth” variables associated with the population data yi(tj) are denoted
with ‘∗,’ and the variables recovered from the inversion are denoted with ‘g’ for “guess.” For example, the
true time-derivative w will now be w∗, while the estimated time-derivative using cubic spline interpolation
will be wg.

4.2.1. Condition number and estimated time-derivative. Using α∗ and β∗ (where “∗” represents
“ground truth” in Section 4.2) for stable equilibrium from Section 2.1, we generate data yi(tj) using MAT-
LAB’s ODE solver as described in Section 4.1. yi(tj) is generated over the time window [0, 7] with different
sampling rates. No noise is added to yi(tj). After forming matrix Ag from yi(tj) using (3.1), we evaluate
Ag’s condition number using MATLAB’s cond function. We use cubic spline interpolation to estimate w∗
from population data yi(tj) using (3.2). The estimated derivative vector is denoted by wg. We know that
the true time-derivative of yi(tj) at the time samples tj is w∗ = Ax∗. We measure the error by calculating

ew = ‖w∗ −wg‖/‖w∗‖

using the `2 norm.
We determine the condition number and ew at different sampling rates for stable equilibrium, limit cycle

behavior, extinction of one species, extinction of two species, and chaotic dynamics (Table 4.1).
The overall trend we observe for the well-conditioned population dynamics in Table 4.1(a) (stable equi-

librium, limit cycle, extinction of one species), is that as ∆t decreases, the accuracy of wg increases (i.e. ew
decreases), but the condition number worsens (increases). Exceptions to this trend occur at ∆t = 1 to 0.5 for
stable equilibrium, where ew increases, and at ∆t = 1 to 0.5 for extinction of one species, where ew increases
and condition number decreases. These exceptions are believed to be due to a quirk or accident in the cubic
spline interpolation, but the overall trend is maintained for the well-conditioned population dynamics.

Like the well-conditioned dynamics, the overall trend we observe for the ill-conditioned population
dynamics in Table 4.1(b) (extinction of two species, chaotic dynamics) is that as ∆t decreases, the accuracy of
wg increases. However, for the ill-conditioned dynamics, the condition number generally improves (decreases)
with decreasing ∆t. We note that the condition numbers for extinction of two species and chaotic dynamics
are at least two orders of magnitude greater than those of the well-conditioned population dynamics in Table
4.1(a). This ill-conditioning suggests that extinction of two species and chaotic dynamics will be much more
sensitive to noise than the well-conditioned behaviors. We anticipate this will make parameter recovery from
noisy population data slightly less accurate.
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Population ∆t
Dynamic 1 0.5 0.25 0.125

(a)

Stable CN 256.81 340.51 383.88 412.04
Equilibrium ew 0.36084 0.41734 0.15009 0.012521

Limit CN 494.30 657.68 729.68 775.93
Cycle ew 0.43317 0.31747 0.11172 0.0092114

Extinction of CN 476.09 412.13 478.69 517.30
One Species ew 0.34647 0.39287 0.14149 0.012599

(b)

Extinction of CN 3.4129× 1015 3.39710× 105 9.8022× 104 1.0904× 105

Two Species ew 0.41596 0.12800 0.018383 0.0042166
Chaotic CN 1.0116× 105 7.1572× 104 7.1400× 104 7.4593× 104

Dynamics ew 0.11170 0.029008 0.0052168 0.00071735

Table 4.1: Condition Number and ew for All Population Dynamics. Condition number (CN) and ew
using different ∆t for (a) stable equilibrium, limit cycle behavior, and extinction of one species, and for (b)
extinction of two species and chaotic dynamics. The time window is [0,7]. The condition numbers for the
last two population dynamics (b) are at least two orders of magnitude larger than the first three population
dynamics (a). As generally expected, the higher the sampling rate, the more accurate the estimate wg.

These observations for Table 4.1 suggest that we must choose ∆t with care in order to improve our chances
of accurate recovery of model parameters from data, especially when the data are noisy or ill-conditioned.

4.2.2. Parameter recovery with tSVD for noiseless and noisy data. Consulting Table 4.1, we
choose ∆t = 0.25 and a time window of [0,7] for all dynamics, which appears to balance conditioning
and derivative accuracy. This choice gives N = 29, which renders the problem of determining 12 model
parameters (20 for chaotic dynamics) over-determined. We will be examining both noiseless and noisy
generated population data yi(tj).

To simulate noise, we use MATLAB’s normrnd function to generate normally distributed random noise
with a given standard deviation. If yi(tj) are the outputs of the ODE solver, the noisy data are

hi(tj) = yi(tj) + ψni(tj),

where ni(tj) is N (0, 1) and ψ is a scalar. When ψ = 0, the data are noiseless. We define ψ for particular
noise levels ey ∈ [0, 1], where

ey = ||hi(tj)− yi(tj)||
||yi(tj)||

= ||ni(tj)||
||yi(tj)||

⇒ ψ = ey||yi(tj)||
||ni(tj)||

.

In Figure 4.1 we compare noisy population data hi(tj) using a noise level of ey = 5% with yi(tj).
Since we expect ill-conditioned functions to be much less tolerant to noise than well-conditioned ones,

we will when implementing the tSVD described in Section 3.1.1 select p so that it balances the accuracy and
stability of parameter recovery based on the conditioning of the population data. Specifically, dp/d1 < 0.001.
The results of our inversion for each population dynamic are summarized in Table 4.2.

To test the accuracy of αg and βg recovered from the inversion, we define gi(tj) to be a new population
function at times tj , which serves as a guess for yi(tj). We use MATLAB’s ODE solver to obtain gi(tj)
using the recovered parameters αg, βg, and the initial conditions for yi(tj). We then compare gi(tj) with the
noisy data hi(tj) for each population dynamic at different noise levels ey (figures in Table 4.2). The `2 norm
prediction error eg = ‖hi(tj) − gi(tj)||/||hi(tj)|| and the parameter recovery errors eα = ||α∗ − αg||/||α∗||,
eβ = ||β∗ − βg||/||β∗|| are also reported in Table 4.2.

344



DETERMINING PARAMETERS IN LV EQUATIONS

(a) Stable Equilibrium (b) Limit Cycle

(c) Extinction of One Species (d) Extinction of Two Species

(e) Chaotic Dynamics

Fig. 4.1: Noisy vs. Noiseless Population Data. yi(tj) with no noise (blue , red , yellow ) is
plotted against hi(tj) with ey = 5% noise (purple * , green * , cyan * ) over the time window [0,7]
with ∆t = 0.25. For chaotic dynamics, yi(tj) with no noise (blue , red , yellow , purple ) is
plotted against hi(tj) with ey = 5% noise (green * , cyan * , maroon * , and teal * ). Chaotic
dynamics data is taken over the same time interval as the other four, a much smaller interval than in Fig.
2.5. This smaller time interval makes the data seem less chaotic.
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Noisy Stable Equilibrium Results (tSVD)
ey = 0% ey = 5% ey = 10%

eα(%) 5.5405 6.0300 31.308
eβ(%) 5.1241 6.9955 25.356
eg(%) 0.99545 6.174 13.387
p 12 12 12

h vs. g

Noisy Limit Cycle Results (tSVD)
ey = 0% ey = 5% ey = 10%

eα(%) 5.8538 17.007 51.729
eβ(%) 5.9722 17.756 53.220
eg(%) 0.87591 8.5819 18.312
p 12 12 12

h vs. g

Noisy Extinction of One Species Results (tSVD)
ey = 0% ey = 5% ey = 10%

eα(%) 9.8259 46.778 35.980
eβ(%) 40.896 129.38 109.11
eg(%) 1.1351 10.918 24.078
p 12 12 12

h vs. g

Table 4.2: Parameter recovery with and without noise using tSVD. Parameter errors (%) eα, eβ ,
prediction error (%) eg, truncating index p, and plots of noisy hi(tj) vs. gi(tj) for different ey (% noise levels)
over the time window [0,7] with ∆t = 0.25. h1(t)(blue ), h2(t)(red ), h3(t)(yellow ), g1(t)(purple

* ), g2(t)(green * ), g3(t)(cyan * ) (continued)

We observe that yi(tj) (hi(tj) with 0% noise) always yields the best guess gi(tj) for all five population
dynamics, as expected. We expected parameter errors eα, eβ , and prediction error eg to increase with
increasing noise levels, and this was the case for eg across all population dynamics. This was also true for eα
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Noisy Extinction of Two Species Results (tSVD)
ey = 0% ey = 5% ey = 10%

eα(%) 93.138 92.254 92.778
eβ(%) 95.135 98.082 103.56
eg(%) 7.6601 12.255 87.961
p 4 5 6

h vs. g

Noisy Chaotic Dynamics Results (tSVD)
ey = 0% ey = 5% ey = 10%

eα(%) 50.566 152.04 355.75
eβ(%) 82.773 646.57 1025.3
eg(%) 0.083097 6.8172 13.688
p 15 19 19

h vs. g

Table 4.2: (continued) Parameter recovery with and without noise using tSVD. Parameter errors (%) eα, eβ , predic-
tion error (%) eg , truncating index p, and plots of noisy hi(tj) vs. gi(tj) for different ey (% noise levels) over the time window
[0,7] with ∆t = 0.25. h1(t)(blue ), h2(t)(red ), h3(t)(yellow ), g1(t)(purple * ), g2(t)(green * ), g3(t)(cyan

* ). For noisy chaotic dynamics results using tSVD, h1(t)(blue ), h2(t)(red ), h3(t)(yellow ), h4(t)(purple ),
g1(t)(green * ), g2(t)(cyan * ), g3(t)(maroon * ), g4(t)(teal * )

and eβ , with the exceptions of extinction of one species from 5% to 10% noise and extinction of two species
from 0% to 5% noise (Table 4.2). Parameter errors eα and eβ were similar to each other for limit cycle
and extinction of two species, but this is likely an anecdotal observation. Interestingly, while the parameter
errors eα and eβ were relatively insensitive to added noise in extinction of two species, the prediction error
eg rapidly rose, culminating at ey = 10% noise, where the resulting gi(tj) no longer contained the correct
surviving species. The parameter errors eα and eβ fluctuated wildly with noise in chaotic dynamics (Table
4.2), likely because the additional species increased the total number of possible guesses of αg and βg.

Another notable observation among the five dynamics in Table 4.2 is that eg is always smaller than
eα and eβ . This suggests that although the α and β recovered via tSVD typically generate valid alternate
models for the same population data, they are very different from their ground truth counterparts. This
would explain the small error in g and large errors in α and β.

We observe that the truncation variable p was relatively insensitive to added noise for well-conditioned
population dynamics but changed when adding noise to the ill-conditioned dynamics, i.e. extinction of two
species and chaotic dynamics (Table 4.2). The variability of p is likely because the noise added to the
population data yi(tj) “corrupted” the matrix Ag used in the tSVD as described in Section 3.1.1. This noise
in Ag in turn corrupted the matrix D of the tSVD, and for ill-conditioned population dynamics such as
extinction of two species and chaotic dynamics, this noise was enough to lead to different values of p for
different noise levels.
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4.3. Reconstruction results using LASSO regression. In this section, we study LASSO regression
as another parameter recovery technique. Similar to the tSVD experiment in Section 4.2.1, we study the
condition number of Ag and the estimated time-derivative wg as a function of sampling rate when solving
for x∗. In this experiment, we study the impact of sparsity-promoting `1-norm regularization of the cost
function J as described in Section 3.1.2 on the same five population dynamics from Section 2. Next, we
implement the LASSO regression approach on noisy versions of the five dynamics and study this approach’s
efficacy in parameter recovery.

4.3.1. Parameter recovery with LASSO regression for noiseless and noisy data. We now
examine the effects of noise on recovering parameters α∗ and β∗ through LASSO regression. For the steepest
descent step described in Section 3.1.2, we empirically define K = 500, λ = 0.1, τ = 0.001, c = 0.01,
f = 0.05, and ρ = 0.7 (because of the additional species, chaotic dynamics causes Matlab’s ode45 to crash
at λ = 0.1, so we use λ = 0.04). The error parameters eg, eα, and eβ are defined as in Section 4.2, with
αg and βg representing the α and β determined from LASSO regression rather than from tSVD. Because
we are only changing the solving algorithm, the previously determined relationships between the condition
number, time-derivative error, and sampling rate remain the same.

Noisy Stable Equilibrium Results (LASSO)
ey = 0% ey = 5% ey = 10%

eα(%) 4.9233 67.333 49.869
eβ(%) 4.5822 60.619 49.179
eg(%) 0.84953 10.626 30.269

βg

−1.98 −1.02 −0.01
−0.03 −1.09 −2.18
−2.57 −1.66 −3.12

 −0.54 0.35 2.38
−0.23 −0.72 −0.99
−2.68 −1.84 −3.28

 −2.44 −1.00 0.54
−0.09 −0.04 0.04
−2.80 −1.00 −1.95



h vs. g

Noisy Limit Cycle Results (LASSO)
ey = 0% ey = 5% ey = 10%

eα(%) 5.7068 55.196 48.817
eβ(%) 5.7807 54.699 49.162
eg(%) 0.98515 10.869 15.009

βg

−0.51 −1.00 −0.00
−0.05 −1.10 −2.20
−2.61 −1.68 −3.16

  0.22 0.12 2.20
−0.15 −0.86 −1.44
−2.53 −1.89 −3.69

 −0.51 −0.40 1.12
0.07 −0.96 −1.82
−2.29 −0.58 −1.22



h vs. g

Table 4.3: Parameter recovery with and without noise using LASSO. Parameter errors (%) eα, eβ , prediction error
(%) eg , βg , and plots of noisy hi(tj) vs. gi(tj) for different ey (% noise levels) over the time window [0,7] with ∆t = 0.25.
h1(t)(blue ), h2(t)(red ), h3(t)(yellow ), g1(t)(purple * ), g2(t)(green * ), g3(t)(cyan * ) (continued)
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Noisy Extinction of One Species Results (LASSO)
ey = 0% ey = 5% ey = 10%

eα(%) 8.9173 43.866 42.178
eβ(%) 39.036 234.09 82.546
eg(%) 1.6302 8.1967 19.418

βg

−2.06 −1.01 −1.10
−3.13 −1.20 −2.11
−2.68 −1.66 −3.09

  0.19 −0.13 −0.19
−13.67 −1.77 −1.73
−2.35 −1.00 −2.21

 −2.30 −0.78 −0.61
−5.50 −0.98 −1.76
−2.01 −0.57 −1.41



h vs. g

Noisy Extinction of Two Species Results (LASSO)
ey = 0% ey = 5% ey = 10%

eα(%) 38.864 136.80 138.40
eβ(%) 69.073 200.88 208.34
eg(%) 0.95900 27.831 94.325

βg

−0.10 −1.30 −0.05
−2.23 −2.97 −2.74
−2.42 −0.24 −2.73

 −0.09 −1.05 −0.81
−0.17 −1.65 −2.88
−0.04 7.43 1.00

 −0.02 −4.66 0.86
−0.03 1.47 −1.55
−0.02 7.30 0.98



h vs. g

Noisy Chaotic Dynamics Results (LASSO)
ey = 0% ey = 5% ey = 10%

eα(%) 57.869 124.55 110.01
eβ(%) 73.365 806.01 869.61
eg(%) 8.3064 21.533 19.481

βg

 1.30 −0.63 −0.45 −0.00
1.66 −0.57 0.00 −0.20

−2.38 0.03 −1.27 −0.29
−0.00 −0.33 −0.00 −0.58


−24.16 −0.00 −2.18 0.00

−17.48 −0.66 −3.53 −0.01
−32.65 3.21 −2.79 0.00
−1.79 0.67 0.41 0.00


 16.01 −4.51 −4.94 2.91

39.72 −5.51 0.00 0.88
−11.91 2.18 −0.92 0.00
−0.00 −1.28 −0.62 −4.04



h, g

Table 4.3: (continued) Parameter recovery with and without noise using LASSO. Parameter errors (%) eα, eβ ,
prediction error (%) eg , βg , and plots of noisy hi(tj) vs. gi(tj) for different ey (% noise levels) over the time window [0,7] with
∆t = 0.25. h1(t)(blue ), h2(t)(red ), h3(t)(yellow ), g1(t)(purple * ), g2(t)(green * ), g3(t)(cyan * ). For
noisy chaotic dynamics results using tSVD, h1(t)(blue ), h2(t)(red ), h3(t)(yellow ), h4(t)(purple ), g1(t)(green

* ), g2(t)(cyan * ), g3(t)(maroon * ), g4(t)(teal * )
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Similar to Section 4.2.2, we choose time window [0,7] and ∆t = 0.25. We will also use the same noise levels
(ey = 0%, 5%, 10%) from Section 4.2.2. With LASSO regression, there is no p that is used for truncation,
so we will examine βg for each population dynamic and noise level to assess the effects of sparsity-promoting
regularization. Lastly, we compare eα, eβ , and eg from tSVD with those from LASSO regression.

As with tSVD, hi(tj) with 0% noise using LASSO regression always yields the best guess gi(tj) for all
five population dynamics (Table 4.3). Unlike tSVD where the prediction error eg increased with increasing
noise for all population dynamics, this relationship was not always seen in LASSO regression. For example,
eg at 5% noise was worse than at 10% noise for chaotic dynamics (Table 4.3).

hi(tj) vs. gi(tj) for tSVD was visually comparable to that for LASSO regression. One notable mismatch
between hi(tj) and gi(tj) that was present in both tSVD and LASSO regression was at 10% noise for
extinction of two species (Table 4.3).

While eα and eβ nearly always increased with increasing noise as expected for tSVD, this was largely
not the case in LASSO regression. The only place where this does occur was in extinction of two species
(Table 4.3). For the other dynamics, both eα and eβ are larger with 5% noise than with 10% noise.

Inspection of βg shows that while sparsity-promoting regularization can make βg slightly parsimonious
in noiseless conditions, adding noise makes it harder to obtain a sparse βg. Additionally, for population
dynamics with non-sparse “ground truth” β such as extinction of one/two species (Table 4.3), sparsity-
promoting regularization had a difficult time finding parsimonious βg. For chaotic dynamics, although
the “ground truth” β from Section 2.4 did already contain zeros, sparsity-promoting regularization found
alternative parsimonious βg for not only noiseless but also noisy conditions.

Lastly, we observe from Table 4.4 that parameter recovery using LASSO regression is typically better (i.e
lower eα, eβ , eg) than tSVD in noiseless conditions. On the other hand, when noise levels are increased tSVD
is generally better, although LASSO regression can sometimes still be better, especially at high noise-levels
such as 10% noise.

ey = 0% ey = 5% ey = 10%
tSVD LASSO tSVD LASSO tSVD LASSO

Stable
Equilibrium

eα(%) 5.5405 4.9233 6.0300 67.333 31.308 49.869
eβ(%) 5.1241 4.5822 6.9955 60.619 25.356 49.179
eg(%) 0.99545 0.84953 6.174 10.626 13.387 30.269

Limit
Cycle

eα(%) 5.8538 5.7068 17.007 55.196 51.729 48.817
eβ(%) 5.9722 5.7807 17.756 54.699 53.220 49.162
eg(%) 0.87591 0.98515 8.5819 10.869 18.312 15.009

Extinction of
One Species

eα(%) 9.8259 8.9173 46.778 43.866 35.980 42.178
eβ(%) 40.896 39.036 129.38 234.09 109.11 82.546
eg(%) 1.1351 1.6302 10.918 8.1967 24.078 19.418

Extinction of
Two species

eα(%) 93.138 38.864 92.254 136.80 92.778 138.40
eβ(%) 95.135 69.073 98.082 200.88 103.56 208.34
eg(%) 7.6601 0.95900 12.255 27.831 87.961 94.325

Chaotic
Dynamics

eα(%) 50.566 57.869 152.04 124.55 355.75 110.01
eβ(%) 82.773 73.365 646.57 806.01 1025.3 869.61
eg(%) 0.083097 8.3064 6.8172 21.533 13.688 19.481

Table 4.4: tSVD vs. LASSO for Noisy Population Dynamics. Comparison of parameter errors eα,
eβ , and prediction error eg, for different noise levels ey and different algorithms (tSVD vs. LASSO) over
the time window [0,7] with ∆t = 0.25. For each tSVD vs LASSO comparison, the smaller error is bolded to
indicate which algorithm was more successful.

5. Discussion. The inverse problem of recovering parameters from population data constructed from
the Lotka-Volterra model is applicable in many fields such as bacteriotherapy, where predicting extinction
or growth of certain gut microbiota can help prevent disease. Investigating how to solve this inverse problem
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provides useful insight into how different types of population dynamics and other factors such as conditioning
and noise can affect parameter recovery. Two methods of parameter recovery were explored: truncated SVD
and LASSO regression.

5.1. tSVD. Truncated SVD for parameter recovery from population data was relatively quick and
straightforward. As anticipated for all five population dynamics, the best guess of the population data
occurred when no noise was added, and the prediction error increased with increasing noise. This could not
be said, however, for the parameter errors, which showed no definite pattern of behavior. The parameter
errors were generally larger than their corresponding prediction error; this suggests that using tSVD for
parameter recovery results in multiple alternate LV model parameters that could lead to the same population
data.

The idea of noise “inseminating” the components of a tSVD calculation was a particularly appealing
explanation of the challenges we faced when determining the truncation index and variables in the tSVD
that are typically considered as noiseless in classical regression. A more in-depth understanding of this could
be a topic of future work.

The condition numbers of extinction of two species and chaotic dynamics were appreciably higher than
the more well-conditioned population dynamics (stable equilibrium, limit cycle, and extinction of one species).
While the ill-conditioned population dynamics did generally have larger parameter and prediction errors than
the well-conditioned dynamics, there were a few exceptions. This may be in part related to the selection of
sampling rate which was determined empirically.

Our experiments using tSVD on different population dynamics revealed a relationship between the con-
dition number, time-derivative estimation, and sampling rate that may be useful to keep in mind when deter-
mining/predicting the accuracy of parameter recovery in future experiments. Namely, for well-conditioned
dynamics, as sampling rate increases, the condition number worsens and the time-derivative accuracy im-
proves. But, for ill-conditioned dynamics, as sampling rate increases, both the condition number and time-
derivative accuracy improve.

5.2. LASSO. LASSO regression is the other technique we studied for parameter recovery. Here, we
investigated the efficacy of sparsity-promoting regularization on β parameter recovery via LASSO regression.
While LASSO regression’s `1-norm regularization and backtracking with steepest descent algorithms were
slower and relatively more complex than tSVD, LASSO regression generally decreased parameter errors
for noiseless population data compared to tSVD across all population dynamics except chaotic dynamics.
However, neither tSVD nor LASSO regression was obviously better when examining prediction error.

While the sparsity-promoting regularization in LASSO regression did make βg slightly parsimonious in
noiseless conditions, a satisfactorily sparse βg was difficult to elucidate. Factors such as added noise and
non-sparse “ground truth” β tended to make sparsity-promoting regularization less effective.

5.3. Effects of Noise. When using tSVD, there is a direct relationship between noise levels and pa-
rameter/prediction errors across all five population dynamics. On the other hand, parameter recovery using
LASSO regression does not have this overarching trend. Rather, LASSO regression has overall smaller
parameter errors in noiseless conditions, with tSVD performing increasingly better (i.e. smaller parame-
ter/prediction errors) than LASSO regression as noise is added. At 10% noise, both tSVD and LASSO have
approximately equal chances of obtaining the smaller error values. Lastly, the parameters in α are generally
less affected by noise than the parameters in β, and this is clearer as the conditioning of the population
dynamic worsens.

5.4. tSVD vs. LASSO. Comparing the two parameter recovery methods, tSVD typically finds combi-
nations of LV model parameters that are vastly different from the ground truth parameters but still generate
the same population data, while LASSO regression uses sparsity-promoting regularization to generate slightly
more parsimonious LV model parameter guesses. From Table 4.4, it seems that LASSO regression is typ-
ically better than tSVD in noiseless conditions. On the other hand, when noise levels are increased tSVD
is generally better, although LASSO regression can sometimes still be better, especially at high noise-levels
such as 10% noise.

Lastly, despite sometimes not having as much accuracy as tSVD, LASSO regression has the greater
potential to more accurately recover parameters and predict population changes. During our experiments,
we arbitrarily set the maximum number of steepest descent iterations to 500. Given the iterative nature

351



BENJAMIN H. LEE

of the steepest descent with backtracking algorithm, LASSO regression with more iterations (e.g. 500,000)
could conceivably yield much more accurate results. The main drawback is that with the steepest descent
algorithm described, this would likely take much more time than tSVD. We are aware that there are efficient
LASSO algorithms in the public domain that could compete favorably with tSVD. An important part of
this research is the implementation of the regularized steepest descent with backtracking, which we opted
for solving the LASSO regression.

Future Predictions (tSVD)
Stable Equilibrium Limit Cycle

ey = 0% ey = 5% ey = 0% ey = 5%
eα = 5.5405 eα = 28.951 eα = 5.8538 eα = 49.176
eβ = 5.1241 eβ = 25.903 eβ = 5.9722 eβ = 48.931
eg = 0.41608 eg = 5.4564 eg = 1.2187 eg = 20.257

Table 5.1: Predicting populations using tSVD. Parameter errors (%) eα, eβ , prediction error (%) eg, and
plots of noisy hi(tj) vs. gi(tj) for different ey (% noise levels) over the time window [0,40] with ∆t = 0.25.
gi(tj) is given population measurements hi(tj) only from the time interval [0,7] and has to predict the
remaining time points using tSVD. gi(tj) is then compared with hi(tj) for t = [0, 40]. h1(t)(blue ),
h2(t)(red ), h3(t)(yellow ), g1(t)(purple * ), g2(t)(green * ), g3(t)(cyan * ).

Future Predictions (LASSO)
Stable Equilibrium Limit Cycle

ey = 0% ey = 5% ey = 0% ey = 5%
eα = 4.9233 eα = 19.161 eα = 5.7068 eα = 23.772
eβ = 4.5822 eβ = 17.824 eβ = 5.7807 eβ = 26.666
eg = 0.35350 eg = 5.3305 eg = 6.5940 eg = 23.883

Table 5.2: Predicting populations using LASSO. Parameter errors (%) eα, eβ , prediction error (%)
eg, and plots of noisy hi(tj) vs. gi(tj) for different ey (% noise levels) over the time window [0,40] with
∆t = 0.25. gi(tj) is given population measurements hi(tj) only from the time interval [0,7] and has to
predict the remaining time points using LASSO regression. gi(tj) is then compared with hi(tj) for t = [0, 40].
h1(t)(blue ), h2(t)(red ), h3(t)(yellow ), g1(t)(purple * ), g2(t)(green * ), g3(t)(cyan * ).

5.5. Predicting Future Populations. One question that might arise is how well one can predict
future population trajectories using one of the methods discussed above. For example, can these methods
predict the correct equilibria in stable equilibrium dynamics or the same oscillations in limit cycle behavior
when not given the entire time interval? To explore this, we extended the time interval for the population
data to t = [0, 40] but only gave the parameter recovery algorithm population data for t = [0, 7]. After the
parameter recovery algorithm (LASSO or tSVD) created its population function gi(tj), we compared it with
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the full population data over the entire [0,40] interval.
From Tables 5.1 and 5.2, it is immediately apparent that the predicted population function gi(tj) was

remarkably good at predicting the population equilibria for all species in stable equilibrium, regardless of
the parameter recovery method used (tSVD or LASSO). While the recovered LV model parameters were
different from the original ‘ground truth’ parameters, these alternate models were still able to very accurately
predict the population data.

In the limit cycle case, the oscillating trajectories did not cycle together entirely. This was particularly
the case using LASSO regression. Perhaps LASSO regression’s sparsity-promoting regularization caused one
of the β parameters to be smaller than it should be. However, as discussed before, LASSO regression has
great potential to improve, especially when allowed more steepest descent iterations, so this error may be
mitigated.

6. Conclusion. In this study, we examined the Lotka-Volterra model and how it can simulate different
types of population dynamics by using different sets of parameters. We showed how the inverse problem of
determining parameters from the population data of a specific population dynamic can be cast as a linear
regression problem. Additionally, we found a property we dubbed noise insemination, which describes the
effects of noise in the population data on the regression problem. Numerical studies were then performed to
demonstrate how the inverse problem can become ill-conditioned. Lastly, after characterizing the condition-
ing of this regression problem, we presented the results of the experiments on parameter recovery with and
without noise using both tSVD and LASSO regression.

The experiments on parameter recovery with tSVD vs. LASSO regression led to several key observations.
Truncated SVD generally recovered parameters faster than LASSO, but the parameters tSVD recovered,
while closely matching the given population data, were often significantly different from the original “ground-
truth” parameters. This was reflected by the calculated errors of the recovered parameters, which were
significantly greater than the error of the reconstructed population data, suggesting that there are multiple
different sets of parameters that can lead to very similar population behaviors.

On the other hand, while LASSO regression recovered parameters more slowly than tSVD, the resulting
parameters were more parsimonious and could therefore be more useful than parameters recovered via tSVD.
Additionally, although recreating the population data from parameters recovered from LASSO regression was
not quite as accurate as from those recovered from tSVD, LASSO regression with its iterative `1 penalized
least-squares algorithm has a lot of potential for improvement.

The addition of noise to the simulated population data led to a potentially useful relationship between
the condition number, time-derivative estimation, and sampling rate when recovering parameters from noisy
population data. Specifically, for well-conditioned dynamics, as sampling rate increases, the condition number
worsens, and the time-derivative accuracy improves. On the other hand, for ill-conditioned dynamics, as
sampling rate increases, both the condition number and time-derivative accuracy improve. Finally, noise
in the population data led to an unexpected observation we called noise insemination, where noise in the
population data corrupts variables in the regression problem, thus affecting the final recovered parameters.

Directions for future research could focus on a better understanding of noise insemination as well as
better optimization methods. Specifically, studies could investigate how noise in yi(tj) leads to error in
the variables Ag and wg in the regression problem, and how that, in turn, impacts parameter recovery.
Investigating the effects of changing λ and τ on parameter recovery via LASSO would also be a valuable
endeavor. Future work could also investigate how much parameter recovery is improved by using more
efficient LASSO algorithms. Another direction of research is getting some understanding of the impact of
different types of measurement errors. In this work, we looked only at amplitude errors. There could also
be errors in sampling time. Regarding optimization methods, investigation into other types of algorithms
such as subgradients [20], iterative thresholding [21], and projected gradient descent [22] are considerations
to explore. Knowing the particular dynamic of a set of population measurements may also help predict how
well the parameters for the data can be recovered. These advancements in turn will help better predict
how populations of organisms will change in the future, thus paving the way for increasingly fine-tuned
bacteriotherapies and other real-world uses of the Lotka-Volterra model.
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