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1 Abstract

Neural networks are an emerging topic in the data science industry due to their
high versatility and efficiency with large data sets. Past research has utilized
machine learning on experimental data in the material sciences and chemistry
field to predict properties of metal oxides. Neural networks can determine under-
lying optical properties in complex images of metal oxides and capture essential
features which are unrecognizable by observation. However, neural networks
are often referred to as a “black box algorithm” due to the underlying process
during the training of the model. This poses a concern on how robust and re-
liable the prediction model actually is. To solve this ensemble neural networks
were created. By utilizing multiple networks instead of one the robustness of
the model was increased and points of uncertainty were identified. Overall, en-
semble neural networks outperform singular networks and demonstrate areas of
uncertainty and robustness in the model.
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2 Introduction

As neural networks are a newly developed algorithm, there has been hesitation 
from industries and national laboratories to use this method. The key concept 
that these companies are seeking is understanding the rationale behind a sys-
tem’s decision-making or the interpretability of the model. It is necessary to 
define a  m ethod t o q uantify n eural n etwork u ncertainty i n o rder t o evaluate 
how the model is functioning and whether or not it can be trusted to generate 
reliable predictions.

In the Chemical Science Journal[2], it is investigated how neural networks 
operate by utilizing a diverse absorption spectroscopy data set [3]. This data 
set is made up of of 178,994 unique materials samples spanning 78 different 
composition spaces, which includes 45 components, and contains more than 
80,000 unique quinary oxide and 67,000 unique quaternary oxide compositions 
[3]. This data set is backed by years of extensive materials synthesis and optical 
characteristics.

The purpose of the research published in the journal article is to compare 
three different n eural n etworks p redictions o f t he s ame d ata s et t o e ach other 
and highlight the similarities and differences between t hem. To achieve this they 
used a variational autoencoder, deep neural network, and conditional variational 
autoencoder to predict absorption spectra from an image of a metal oxide. Our 
project is focused on improving their model 2, which is a hybrid dense and 
convolutional deep neural network model that was trained independently from 
other models [2]. In order to improve upon their deep neural network model our 
project involves introducing an ensemble neural network to decrease the overall 
uncertainty in the prediction algorithm.

The main results from the article are that the deep neural network produced 
results with an R2 value of approximately 0.6. The goal is to improve the 
R2 value of an ensemble neural network utilizing the same data set. After 
implementing an ensemble neural network, the overall R2 improved from 0.56252 
of a single network to 0.65422 with 10 networks working in parallel.

3 Background

Science and applied mathematics have been significantly impacted by artificial 
intelligence. Due to its deep and nonlinear structure, deep neural networks in 
particular exhibit a remarkable potential for grasping complicated scientific rela-
tionships. They have been effectively used for a variety of applications, including 
machine learning, computational imaging, and language processing. These net-
works work together to predict patterns from any data set that is translated 
into numerical values, and they operate by mimicking the neuron connections 
in a brain. In order to train neural networks, a collection of inputs and associ-
ated outputs are given to the model. The network then establishes appropriate 
weights and biases to connect the input to the output values. They predict an 
outcome with a specific probability after being given an input, but we are not
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aware of their underlying thought processes. The most significant drawbacks of
deep learning systems, however, are arguably their ”black-box” nature and the
accompanying lack of reliability. There are numerous instances where trained
networks behave in an irrational manner. For example, if a network is trained
on a certain amount of images and focuses on the left corner of each image, it
may be missing a lot of information that is in the entirety of the image.

In order to use these models, it is essential to provide error bars along-
side predictions to be clear on how trustworthy the predictions are. Therefore,
quantifying uncertainty is a crucial component in strengthening the reliability
of predictions generated by a trained network.

4 Data

Absorption Spectroscopy Data [3]

Figure 1: Materials images of metal oxides (a) with their corresponding frac-
tional optical absorbance spectra (b).

The Absorption Spectroscopy Data for Metal Oxides consists of 180902 dis-
tinct samples. 1830 of these are blank samples, meaning that no material was
placed on the substrate, leaving 179072 material samples. The images of the
dried metal oxides were made by inkjet printing a mixture of elemental pre-
cursors, followed by thermal processing in an atmosphere including oxygen, as
shown in Figure 1. The multiple samples of metal oxides include a range of
1-5 cation element combinations. Each sample image is 64 by 64 pixels with 3
red-green-blue channels with a corresponding absorption spectrum, consisting
of 220 points, each representing an energy between 1.31 and 3.1 electron volts.
Multiple compositions occur in the database as a result of duplication of compo-
sitions, sometimes with varied synthesis circumstances, to enable exploration of
various synthesis conditions, give internal standards, and assess reproducibility.

The data set includes samples with a range of 1-5 metals in various combi-
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Table of Metal Composition Comparison of 179,072 Samples

Figure 2: Encompassing table numerically describing how often there are a
specific number of elements in a combination in a given sample from the entire
data set.

nations in each sample. Figure 2 shows a full breakdown of the data set.

Distribution of Entire Data Set

Figure 3: Representation of number of instances each element appears over the 
entire data set.

Figure 3 represents the number of times each metal appears in the data set, 
regardless of what concentration it appears with. Bismuth and manganese ap-
pear the most in the data set at roughly 90,000 instances, followed by vanadium 
at approximately 70,000 instances. Most of the metals appear much less than 
20,000 times in the data set with the smallest at 1077.

The heat map in Figure 4 displays how often each metal appears in certain 
concentration amounts over the entire data set. Lighter colors represent a higher 
quantity of a metal appearing at a certain concentration, meanwhile darker 
colors represent a lower quantity of a metal appearing at a certain concentration. 
Typically when looking at the data sets’ columns there are lighter colors at the 
lower concentrations down to 0.05, and there are darker colors at the higher 
concentration values. The 0.0 block represents where the concentration is less 
than 0.05 and it is apparent that there is a mix of elements who do and do not 
appear at this level of concentration. This provides insight that most metals
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Concentration Heat Map

Figure 4: This heat map is completely symmetrical along the line y = x and
provides a visualization of how often specific metals are combined together.

are only represented in a sample at a very low concentration when they are in
combinations. It is also shown that the columns for bismuth and manganese are
much lighter overall than other columns in this heat map, showing they appear
more in the data set than other elements, no matter what concentration they
appear at.

Composition Heat Map

Figure 5: This heat map is completely symmetrical along the diagonal and
provides a visualization of how often specific metals are combined together.
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The heat map in Figure 5 is a visualization of how many times two metals
appear together in the same combination in a sample. Lighter colors represent
higher quantities of combinations, while darker colors represent a quantity closer
to zero. It is clear that black is the most dominant color on this heat map, which
demonstrates that there are a lot of metals that never appear in combination
with each other. However, if we look at bismuth and manganese specifically,
we see that this is the lightest square on the heat map and suggests these two
elements often appear in combination with each other. Thus the conclusions
from Figure 3 regarding bismuth and manganese are fortified by this graph.

4.1 Stratified Sampling

Due to limitations in available RAM and other computational limitations, our
research was not able to be conducted on the entire data set and therefore we
had to take a subset. This could lead to problems in training as our data is
very unevenly distributed. Since certain metals appear more in combination,
the training data set needs to be stratified or it will be skewed towards these
metals. A stratified random sample of the data must be taken instead of a
completely randomized sample to ensure the model is being trained well. When

Distribution of Metals in Testing/Training Subset

Figure 6: Representation of number of instances each element appears over the 
stratified data set of 7825 images.

training a neural network, it is important to have a balanced data set with 
outputs being represented equally. If a training data set is unbalanced, the 
model will be better at predicting outputs that have a larger representation in 
the data set because these outputs were seen more during training.

Therefore, we created an algorithm that ensured every element in the data 
set was represented at least 300 times. The algorithm also incentivized elements 
to not exceed 900 instances to keep representation similar. However, because of 
how often bismuth and manganese are in combination with other low occurring 
elements, their number of instances had to increase well above 900 in order to
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maintain the 300 minimum value of low occurring elements. As shown in Figure
6, this creates a stratified data set that can be used to train our neural network.

5 Method

Now, with a usable data set, a neural network was developed to translate a 2D
image into an absorption spectrum. To reduce computational complexity every
11th point of the 220 points was used for the absorption spectrum. Resulting
in a total of 20 points. As shown in Figure 7, the shape of the spectra graph is
maintained, thus the accuracy lost when using only 20 points is minimal.

Single Absorption Spectrum

Figure 7: A comparison of these graphs shows that even thought the amount 
of output points is drastically decreased in the right graph, the shape of the 
spectra graph is maintained when compared to the left graph.

5.1 Neural Network Architecture

After analyzing the data and choosing the ideal training/testing subset, we built 
a neural network with 8 layers [2].

Each layer in the model contributes to the overall training of the network. 
The layer applies a filter using a  kernel to a  portion of the image and uses that 
filter t o c alculate a  d ot p roduct w hich i s f ed t hrough t he o utput a rray. The 
filter s hifts b y s trides o f 1  b y 1  u sing a  3  b y 3  k ernel i n o rder t o r educe the 
image size. The dense layer computes a weighted average of the input and runs 
it through an activation function, known as a nonlinear function. The max 
pooling layer determines the highest value for each patch in each feature map 
and focuses attention on the patch’s key characteristic by pooling down into a 
smaller matrix. The dropout layer randomly sets neuron values to zero in deep 
layers to prevent overfitting. Finally, the flatten layer converts the data into a 
1D array for inputting into the next layer.
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Neural Network Architecture

Figure 8: Description of single neural network model architecture.

5.2 Training

For our implemented neural network, we incorporated early stopping into our 
model to prevent overfitting. This f unction s tops t raining t he n etwork a t the 
most optimal point where the difference b etween t raining l oss a nd validation 
loss begins to increase. The maximum number of epochs is capped at 50 as 
any more would generally result in severe overtraining. We used a batch size 
of 32, meaning 32 images were shown before the weights updated. The loss 
function used to optimize the training was mean squared error. As the model 
is trained, it is tested in parallel to evaluate if the network is training properly. 
The subset size used to train this model was 7,825 images, as shown in Figure 6 
of the stratified data s et. 80 percent of the images were used for training and 20 
percent were used for testing. Testing data is used to ensure that the network 
can predict values from images that it has not seen before. The images that 
are used to train the data should not be the same to test if the network is able 
to function as intended. The purpose of validation data is to introduce unseen 
inputs to the network and see how accurate the prediction is. In our model 
2,000 random validation images were used in making predictions.
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5.3 Ensemble Techniques

Ensemble neural networks are multiple individual networks training in parallel.
Each network trains slightly different due to the random initialized weights and
biases. Even if a network had the same architecture and same training data, it
would never train the model the same due to the initialization. Therefore, in
an ensemble network, each individual network produces slightly varying results.
In order to combine the results of the ensemble, various approaches can be
applied such as averaging the results or using another algorithm to combine the
predictions. These approaches will, in general, provide a better result. This
better result comes at the cost of a much longer training period. As shown in
figure 9, the separate networks think in parallel and combine in the end for a
final prediction.

Diagram of Ensemble Neural Network [1]

Figure 9: Diagram of the flow of an ensemble neural n etwork. Each individual 
network receives the same input but produces their own output which is later 
combined for a final prediction.

In addition to higher accuracy, ensemble networks are a technique to quantify 
the uncertainty in a network. They highlight regions of uncertainty by display-
ing the unique variations in each network’s predictions. The model is more 
certain if all the networks predictions agree on a value. When the separate 
model projections are drastically different from one another and do not exhibit 
agreement, there are areas of uncertainty present. This method evaluates the 
model’s dependability and robustness, allowing for a better understanding of 
how well the model is performing.

5.4 Ensemble Implementation

For our ensemble, ten individual networks with the same architecture were 
trained in parallel. The architecture can be referenced in Figure 8. The pre-
dictions of the 10 networks were combined using an average and the package
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shuffle split was used to split the data 80/20. This function randomizes the
spread of the training and testing data based on the number of splits needed.
For instance, in an ensemble, the training and testing will be from various parts
of the data and will have overlap. The individual networks train on similar data
with approximately an 85 percent overlap between any two individual networks.
The effect of this can be seen in Figure 10 below.

Learning Curves of Ensemble Network

Figure 10: Mean squared error of training (blue) and testing (yellow) data of 
ensemble. Visual representation of how each individual network is being trained 
differently.

Figure 10 demonstrates how the mean squared error changes for each of the 
10 networks in the ensemble. This loss function was used to optimize the model 
during the training. The yellow line represents the testing data, and the blue line 
represents the training data. Each network was trained using early stopping, 
altering the number of epochs used to train each model. As the number of 
epochs increases, the mean squared error decreases and this is because weights 
and biases are adjusted according to the value of mean squared error. The 
smaller the mean squared error, the better the overall network is performing. 
Figure 10 shows how much variance there is in training the individual networks, 
which will directly affect the predictions of the networks.

6 Results

6.1 Singular Neural Network

Figure 11 depicts a specific example of what our model is d oing. The image on 
the left gives an example of a spectra image, and the graph on the right compares 
the corresponding actual spectra graph and single neural network prediction. 
Looking at this graph it is clear there are some oscillations and jagged points 
in the prediction. Overall this would be considered a good prediction since it 
is so close to the actual prediction, follows the same general shape, and has a 
relatively low mean squared error value.
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Single Network Prediction Example

Figure 11: Singular example of one neural network prediction with comparison
to actual image spectra and actual spectra graph.

Error Histogram

Figure 12: Histogram distance error visualization for single neural network pre-
dictions with overall mean squared error value.

In order to get an encompassing picture of how the network is performing 
over 8000 samples, a histogram was created as shown in Figure 12. This graph 
provides a representation of the distance error between the actual spectra line 
graph and the actual line graph, and shows how often specific values o f error 
occur. Visually, it is clear that Figure 12 has a bell shaped distribution curve,

69



which is expected. This reinforces the idea that our single neural network model
is making good predictions. There are higher number of instances for smaller
error values. In fact, most of our predictions fall between ±0.2, which is an
acceptable level or accuracy for our model. Something else to notice is that
the mean squared error value for the entire single neural network is 0.003202.
Since the ideal value for this metric is zero, this also supports the claim that our
network is making mostly accurate predictions in terms of the distance between
actual and predicted spectra graphs.

Figure 12 helps us understand how well our model is predicting, but to
further verify our claim that our model is working well we created a scatter plot
of the actual versus predicted value of the network seen in Figure 13.

Single Network Scatter Plot Error

Figure 13: Scatter plot error visualization for single neural network predictions 
with R2 value.

Figure 13 depicts a scatter plot with every prediction from the single neural 
network. The predictions are plotted such that that the line y = x (plotted in 
black) represents the most optimal location for plotted points as the predicted 
spectra exactly matches the actual spectra value. It can be seen that most of 
our predictions are clustered around this line. The distance error is represented 
in the y direction, so points above y = x are overapproximations and vice versa. 

The purpose of this graph is to view the results in a different way. From this 
graph we can see that at the beginning of the line y = x in the lower left corner 
there are a lot of overapproximations, however, when looking at the upper right 
portion of the cluster we can see that there are more underapproximations at 
that point. Another benefit of this graph is that since we have a specific line
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that ideally the data would be clustered around, we can fit an R2 value to our
predictions. As shown in Figure 13 the R2 value for the single neural network is
0.56252. Since an ideal R2 is 1.00, this suggests that while our predictions are
generally good, there are definitely some consistent outliers in out data that if
improved upon would decrease the uncertainty in our network.

6.2 Ensemble Neural Network

Ensemble Network Prediction Example

Figure 14: Comparison of 10 individual network predictions, the averaged en-
semble prediction, and ground truth spectra for a singular spectra image.

Figure 14 shows a sample metal oxide from the data set on the left, the 
prediction of our singular network in the center for reference, and the ensemble 
predictions and finalized prediction on the r ight. There are 10 predictions from 
the individual neural networks, which are averaged in the ensemble to produce 
a single output. From Figure 14 alone we can see that the ensemble has already 
improved our model. First, the averaged predicted spectra is much smoother 
than any of the single network predictions. Second, it is clear that the mean 
squared error of the ensemble prediction model is even lower than the single 
network’s mean squared error, which was already low. This fortifies t hat our 
prediction model is giving accurate graphs.

Figure 15 represents the error of 2,000 predictions of the ensemble neural 
network. This graph provides a representation of the raw error between the 
actual spectra line graph and the actual line graph, and shows how often spe-
cific v alues o f e rror o ccur. I n c omparison t o F igure 1 2, t he e nsemble neural 
network predicts outcomes closer to the desired value. Most of the error occurs 
between ±0.1 The data ranges from 0-1, we can observe that most of the models 
predictions have less than 10 percent error.

A second graph was created to show the distribution of error in the ensem-
ble neural network and provide another method of measuring the error in the 
model’s predictions. The characteristics of how to read the graph are the same 
as in Figure 13. Figure 16 depicts a scatter plot with every prediction from an 
ensemble neural network whereas before, Figure 13 was just for a single network. 
In the bottom left of the graph, an overestimation is observed as the majority
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Error Histogram of Ensemble Network

Figure 15: Histogram distance error visualization for an ensemble neural net-
work predictions.

of the points fall above the desired output. The overall R2 value of the error 
of an ensemble network was 0.65422. Ideally 1.0 is a model with zero error, yet 
after implementing an ensemble neural network, the overall R2 improved from 
0.56252 of a single network to 0.65422 with 10 networks working in parallel.

Figure 17 depicts the differences in error of the single network and an ensem-
ble network. The mean squared error for the ensemble network is smaller than 
the neural network, which indicates that the ensemble overall performed better 
than the single network. The R2 value is closer to 1.0 for the ensemble network, 
therefore the model has less observed error. Overall, ensemble neural networks 
have a smaller mean squared error and larger R2 value over 2,000 predictions, 
demonstrating the advantages of using ensemble networks.

With the ensemble made, it is important to find a  way to evaluate how well 
the model performed. Since the output is regression and not categorical, this 
method is not immediately apparent. To start, we recreated the scatter plot 
error graph that we made for the single neural network in Figure 13 to include 
all of the individual predictions as well as the final e nsemble o utput. This is 
shown in Figure 18. The characteristics of how to read the graph are the exact 
same as in Figure 13.

In Figure 18 the yellow points represent every prediction of all 10 individual 
neural networks. For this reason the R2 value of the individual networks in-
creased to 0.65422, which is the average of all the yellow points. On this graph 
the averaged prediction from the ensemble is plotted in blue, and it is visually 
apparent that the blue cloud is more clustered around the line y = x than the 
yellow cloud. This is expected since the ensemble prediction is the average of
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Ensemble Neural Network Scatter Plot Error

Figure 16: Scatter plot error visualization for an ensemble neural network pre-
dictions with R2 value.

Comparison of Error

Figure 17: Individual mean squared error and R2 values for both the singular 
network and the ensemble network.

all 10 individual predictions. Also, the R2 value of the ensemble is 0.65422, 
which is higher than the individual networks’ R2. Based on how these numbers 
changed we are able to conclude that using an ensemble improve the accuracy 
of our overall predictions by lowering the amount of uncertainty in the model.

6.3 Implemented Uncertainty Quantification

Along with providing better predictions, ensemble networks themselves are a 
method of Uncertainty Quantification. Since multiple models have contributed 
to the final output it is important to investigate the distribution of the individual 
networks predictions. As mentioned earlier, the 10 individual networks in the 
ensemble will produce slightly different p redictions a nd t he variance i n these 
predictions demonstrate areas of uncertainty in a model. To accomplish this 
we made a 95 percent confidence i nterval a round t he 2 0 p oints p redicted for 
each spectra. This can be seen in Figure 19 and 20 below. Above we can see 
that the spread of the ensemble predictions in Figure 19 match the changing 
area of the confidence interval. By creating these confidence intervals we can
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Ensemble Neural Network vs Neural Network Scatter Plot Error

Figure 18: Scatter plot error visualization comparison of individual network
predictions and the averaged ensemble neural network’s final prediction with
associated R2 and mean squared error values.

Single Ensemble Prediction with 95 Percent Confidence Interval

Figure 19: Comparison of individual network predictions (left) with changing 
area of a confidence interval (right).

see that the later points of the spectra are closely distributed since the area 
is relatively small. Conversely, the earlier points are more widely distributed 
since the area is relatively large. Areas that are larger, demonstrate areas of 
less certainty, because the networks individual predictions are farther off from 
each other. The closer the predictions are to each other, the more certain the 
model is about that prediction. More certainty is observed closer to the 220th 

point in Figure 19. Now, let’s look at this idea across the entire data set.

74



In Figure 20 below we separate the data by each of the 20 points of the spec-
tra to see the relationship between error and uncertainty. Standard deviation
is measured in Figure 20 as it is the sole factor in determining the size of the
confidence interval.

Pointwise Error and Pointwise Standard Deviation of Ensemble
Neural Network

Figure 20: Comparison of point-wise error in each of the 20 points in each 2,000
predictions (left) to the point wise standard deviation of the 20 points in each
2,0000 predictions (right) in the ensemble network.

In Figure 20, the point wise error starts out widely distributed but be-
comes closer as we get closer to the 220th point. This type of behavior is also
demonstrated in the standard deviation graph. This shows that the error of
the network is seemingly in proportion with the uncertainty. This is important
as the error plot can only be made when the true value is known. However, if
the true value is known then we have no need for a neural network. The plot
of the standard deviations can be made even if the actual value is unknown as
it is made from the network outputs. This will help us determine a standard
deviation cutoff for which predictions to trust and which ones to remove. Over-
all, our model demonstrated more error and more uncertainty in predicting the
points on the left of the spectrum in comparison to the points on the right of
the spectrum.

7 Conclusions

The singular networks were able to make spectra graph predictions consistently
within 10 percent error to the actual spectra. Additionally, adding an ensemble
reduced the mean squared error of the model while increasing the R2 value of
the predictions with respect to the actual spectra.

In comparison to the previous research done by Chemical Science[2], our
data produced superior results. The deep neural network produced an R2 value
of 0.6 when trained on 100,000 samples, whereas our ensemble neural network
produced an R2 value of 0.65422 when trained on only 7,000 samples. This
shows that our model has a more accurate predictive process when trained on
less than 1

10 th of the amount of samples used in the original research.
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Finally, we were able to use uncertainty quantification techniques such as
confidence intervals and point wise error graphs to determine the robustness
of our model. Overall, our model demonstrated more certainty in predicting
points on the right side of spectrum than on the left side.

8 Further Research

For future research, we would be interested in the impacts of using the full data
set to train the network rather than a subset. Secondly, we could compare im-
pacts of using 220 points on the absorption spectrum versus only 20. One other
factor that could be altered and investigated is the neural network architecture
and how that may impact the error of the network. Finally we could investigate
model sensitivity towards changes in training data and introducing noise to the
model.
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