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Figure 1. The coupling of elastic cloth with seven million colored grains of sand dis-
plays dazzling flow patterns. Image courtesy of [1].

Special Issue on Computational 
Science and Engineering

Read about various applications related to computational science and 
engineering in this month’s special issue!

In an article titled “The Serious Mathematics of Digital Animation” on 
page 3, Matthew R. Francis recaps Joseph Teran’s invited presentation 
on the use of mathematical models for computer-generated imagery from 
the 2018 SIAM Annual Meeting. 

Designing Algorithms to Increase 
Fairness in Artificial Intelligence
By Anil Aswani and Matt Olfat

The increasing role of artificial intel-
ligence (AI) to automate decision-mak-

ing sparks concern about potential AI-based 
discrimination. Such bias is undesirable in 
the quest to minimize inequality, and legal 
regulations require that AI not discriminate 
against protected classes on the basis of gen-
der, race, age, and the like. Exclusion of data 
on protected classes when training AI is one 
strategy to minimize prejudice. However, 
this is not only a naive approach to fairness, 
but also insufficient because AI systems 
can learn to use information on protected 
classes via other data [2]; for example, race 
can often be inferred from a home address. 
Consequently, more sophisticated algorith-
mic and computational approaches are nec-
essary to ensure that AI behaves impartially.

Such concerns about AI fairness are 
not merely theoretical. Researchers have 

observed several instances of biased data 
and prejudiced AI. When discriminatory 
behavior influences the data that trains AI, 
the resulting AI output often perpetuates 
this bias. For instance, doctors frequently 
undertreat pain in women as compared to 
men [3]. AI systems for pain management 
trained using such biased data can algorith-
mically preserve this gender discrimina-
tion. Social media algorithms provide fur-
ther examples; in one situation, LinkedIn 
disproportionately advertised high-paying 
jobs to men. In another, Facebook’s algo-
rithms displayed considerable racial preju-
dice in censorship [1].

The first step towards developing fair AI 
is to quantify fairness, for which investiga-
tors have proposed several definitions for 
supervised learning to date. Put simply, 
these definitions require that an individu-
al’s membership in a protected class (e.g., 
gender) will not impact AI’s outcome (e.g., 

approval or disapproval of a loan applica-
tion). One can tailor this process for the 
purpose of classification, where the goal is 
to construct a function h p: { , } → − +1 1  
(known as a classifier) that uses a vec-
tor of descriptive features x pÎ  , char-
acterizing each individual to predict a 
binary outcome y ∈ − +{ , }1 1  for him/
herself. When an individual’s protected 
class z ∈ − +{ , }1 1  is binary, the notion 
of demographic parity [4] at level D 
requires that | [ ( ) | ] h x z= + = + −1 1  
[ ( ) | ]| .h x z=+ = − ≤1 1 ∆  Intuitively, 
the probability of receiving a positive 
outcome from the classifier is independent 
of the protected class’s value. Other defini-
tions of fairness—such as equal opportu-
nity—also exist [5].

While there are many approaches for con-
structing accurate classifiers from training 
data, researchers have only recently begun 

Figure 1. From left to right: comparison of a linear support vector machine (SVM), linear SVM of [9], and linear SVM of [7]. 1a. We separate 
red and green points while remaining fair between “x”s and “o”s. 1b. The distribution of the linear score s x( ) conditioned on the protected 
class z.  1c. The distribution of the linear score s x( )  conditioned on outcome y.  Fairness occurs when conditional distributions in 1b are 
similar, and accuracy occurs when conditional distributions in 1c are dissimilar. Figure courtesy of [7].

The Functions of Deep Learning
By Gilbert Strang

Suppose we draw one of the digits
0 1 9, , , .¼  How does a human rec-

ognize which digit it is? That neuroscience 
question is not answered here. How can 
a computer recognize which digit it is? 
This is a machine learning question. Both 
answers probably begin with the same idea: 
learn from examples.

So we start with M  different images (the 
training set). An image is a set of p  small 
pixels — or a vector v= …( , , ).v v

p1
 The 

component v
i
 tells us the “grayscale” of the 

ith  pixel in the image: how dark or light it 
is. We now have M  images, each with p 
features: M  vectors v  in p-dimensional 
space. For every v  in that training set, we 
know the digit it represents.

In a way, we know a function. We have 
M  inputs in Rp,  each with an output from 
0 to 9. But we don’t have a “rule.” We are 
helpless with a new input. Machine learn-
ing proposes to create a rule that succeeds 
on (most of) the training images. But “suc-
ceed” means much more than that: the rule 
should give the correct digit for a much 
wider set of test images taken from the 
same population. This essential require-
ment is called generalization.

What form shall the rule take? Here 
we meet the fundamental question. Our 

first answer might be: F( )v  could be a 
linear function from Rp, to R10  (a 10 by 
p matrix). The 10 outputs would be prob-
abilities of the numbers 0 to 9. We would 
have 10p  entries and M  training samples 
to get mostly right.

The difficulty is that linearity is far too 
limited. Artistically, two 0s could make 
an 8. 1 and 0 could combine into a hand-
written 9 or possibly a 6. Images don’t 
add. Recognizing faces instead of numbers 
requires a great many pixels — and the 
input-output rule is nowhere near linear.

Artificial intelligence languished for a 
generation, waiting for new ideas. There is 
no claim that the absolute best class of func-
tions has now been found. That class needs 
to allow a great many parameters (called 
weights). And it must remain feasible to 
compute all those weights (in a reasonable 
time) from knowledge of the training set.

The choice that has succeeded beyond 
expectation—and transformed shallow 
learning into deep learning—is continu-
ous piecewise linear (CPL) functions. 
Linear for simplicity, continuous to 
model an unknown but reasonable rule, 
and piecewise to achieve the nonlinearity 
that is an absolute requirement for real 
images and data.

See Deep Learning on page 4

See Artificial Intelligence on page 3
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4	 A Near-perfect              
Heat Exchange

	 Thermal contact between two 
objects results in convergence 
of their temperatures, which are 
incapable of overshooting or 
reversing because temperature 
lacks inertia. In this month’s 
column, Mark Levi describes 
how nature circumvents this 
limitation engendered by the 
second law of thermodynamics, 
thus allowing two objects to 
nearly exchange temperatures. 
Through discrete approximation 
and a setup with two liquids 
flowing in opposite directions 
separated by a heat-conducting 
membrane, Levi draws paral-
lels with arteries in our arms 
that run along deep veins.

6	 Randomized Projection 
Methods in Linear Algebra 
and Data Analysis

	 Large complex datasets require 
analysis and processing that 
give rise to mathematical and 
algorithmic challenges. Finding 
ways to depict such datasets 
using fewer parameters allows 
for their efficient storage, trans-
mission, and interpretation. Per-
Gunnar Martinsson describes 
two randomized algorithms that 
can handle large datasets in 
high-dimensional spaces. These 
algorithms are typically more 
accurate and less stringent—in 
terms of random number genera-
tion—than their traditional coun-
terparts in scientific computing.

7	 Progress by Accident: 
Some Reflections on       
My Career

	 On the occasion of his 90th 
birthday last year, Walter 
Gautschi—a leading mathemati-
cian in the areas of approxima-
tion theory, orthogonal poly-
nomials, special functions, and 
numerical analysis—reflects on 
his research and career trajecto-
ry. From requests for his insight 
on new company projects to 
invitations to give lectures at 
conferences, Gautschi recog-
nizes the role of chance and 
opportunity in piquing his inter-
est in various research areas.

7	 Professional Opportunities 
and Announcements
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Rhapsodizing About Bohemian Matrices
In the November 1987 issue of SIAM 

News, Eric Grosse and Cleve Moler 
reported a 9 9´  symmetric matrix of 1s 
and -1s for which EISPACK failed to 
accurately compute one of the eigenvalues 
on a particular machine [5]. In my January/
February 2018 column, I described how sur-
prising results can occur when computing 
the determinant of a matrix of small inte-
gers in floating-point arithmetic [6]. And 
as is well known, a matrix of 0s,  1s,  and 
-1s  devised by Wilkinson is a matrix that 
achieves the worst-case growth factor for 
Gaussian elimination with partial pivoting.

Matrices of small integers—innocuous 
as they may seem—can clearly provoke 
interesting behavior. In fact, such matri-
ces have long been a subject of study, not 
least because analytical formulas can be 
obtained for the eigenvalues, inverse, deter-
minant, etc. in many cases. For this reason, 
and the fact that they are stored exactly in 
floating-point arithmetic, they make good 
test matrices. A matrix that was popular in 
the early days of digital computing is
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,

whose inverse has moderately large integer 
entries. John Todd described it as “the notori-
ous matrix W  of T. S. Wilson” 
[9], and Moler recently 
investigated its properties 
and history [7]. A favorite 
of mine is the Pascal matrix, 

with ( , )i j  entry i j

j

+ −
−













2

1
.
 A

great deal is known about this
positive definite, totally positive matrix. A 
scaled and rotated version of the Cholesky 
factor of the matrix (pascal n 2( , ) in 
MATLAB) has the intriguing property 
that it is a cube root of the identity, shown 
here for n = 4:
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3 2 1 0

3 1 0 0

1 0 0 0

3

I .

Deep connections exist between inte-
ger matrices—particularly positive defi-
nite ones—and number theory, as Olga 
Taussky-Todd demonstrated in her work; 
see [8] and an appen-
dix to Harvey Cohn’s 
1978 book on alge-
braic number theory 
[3]. In a 1991 letter, 
Taussky-Todd told 
me that “we [she and 
her husband, John 
Todd] have been real-
ly interested in batter-
ies of test matrices.” 
Indeed, the Hilbert 
matrix was a favorite 
of theirs.

In scientific com-
puting, researchers 
often employ increas-
es in computing 
power to solve larger 
problems (rather 
than a greater number of small problems), 
but a systematic search of small problems 
can offer new insights. Recent work on 
Bohemian matrices combines the latter 

approach with theoretical 
analysis. Rob Corless and 
Steven Thornton (both of 
the University of Western 
Ontario) coined the term 
“Bohemian matrices”—a 
contraction of BOunded 

HEight Matrix of Integers—to denote fami-
lies of matrices with entries drawn from a 
fixed discrete set of small integers (or some 
other discrete set) [4].

Thornton has been investigating the dis-
tribution of eigenvalues and characteris-
tic polynomials of Bohemian matrices of 

dimensions up to about 10, with elements 
in sets such as { , , },-1 0 1  using a mix of 
numerical and symbolic computation. The 
number of matrices grows rapidly with 
the dimension, and Thornton uses random 
sampling when exhaustive computation is 
not possible. His plots show remarkable 
structures and make wonderful pieces of 
art (see Figure 1). A collection of images is 
available on his website.1

Various open questions have been iden-
tified concerning eigenvalue distributions, 
ranks, and the number of distinct charac-
teristic polynomials in particular classes 
of Bohemian matrices. Some of these are 
listed in Thornton’s characteristic poly-
nomial database,2 which contains more 
than 109  polynomials from a variety of 
Bohemian matrix families.

Last June, Corless and I organized a 
workshop entitled Bohemian Matrices and 
Applications that brought together research-
ers with expertise in matrix theory, numeri-
cal linear algebra, computer algebra, algebra-
ic geometry, and number theory. Some open 
problems were solved and many others for-
mulated. Videos of the introductory talks (by 
Corless, Thornton, and myself) and slides 
from the other talks are available online.3,4

This is my last column as SIAM president. 
I wish Lisa Fauci all the best as she takes 
over the presidency in January 2019.
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Cartoon created by mathematician John de Pillis.

FROM  THE  SIAM 
PRESIDENT

By Nicholas Higham

Figure 1. 1a. A density plot in the complex plane of the eigenvalues 
of a sample of 73 million 5 5´  matrices with entries sampled from the 
set { 20, 1, 0, 1, 20}.- -  Color represents the eigenvalue density. 1b. 
A density plot in the complex plane of the eigenvalues of all 19 19´  
(Frobenius) companion matrices with entries in { 1, 1}.-  Color again 
represents the eigenvalue density. See [1-2] and the references 
therein for discussions of the equivalent polynomial root problem for 
Littlewood polynomials. Figure courtesy of Steven Thornton.
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Artificial Intelligence
Continued from page 1

developing methods that also ensure fairness. 
Linear classifiers h x x t( ) ( )= −sign Tb  
compare a linear score s x x( )= Tb  (depen-
dent upon a vector of parameters b Î p)) 
to a threshold t Î .  One can classically 
compute the b parameters from training 
data by solving a convex optimization prob-
lem corresponding to either logistic regres-
sion or a support vector machine (SVM). 
In contrast, designing a fair linear classi-
fier requires choosing the b  parameters to 
satisfy the fairness definition for a small 
value of D while still maintaining high 
accuracy in predicting outcome y.  This can 
be accomplished by adding appropriate con-
straints to the original convex optimization 
problem and developing algorithms to solve 
the resulting optimization problem. Here we 
describe these steps in more detail for the 
special case ( ) ,x = 0  where we assume 
the features have a 0 mean.

One approach augments the optimi-
zation problems that underlie logistic 
regression or SVM with an additional 
constraint − ≤ = + −δ β[ | ]x zT 1
[ | ] ,x zTβ δ= − ≤1  which ensures that 
the means of the score function—when 
conditioned on the protected class—are 
approximately equal [9]. Adding another 
constraint, − ≤ = + −δ β β[ | ]T Txx z 1  
[ | ] ,β β δT T Txx z = − ≤1  to the optimi-
zation problem can further improve fairness 
of the linear classifier. This substantiates 
that the variances of the score function—
when conditioned on the protected class—

are approximately equal. However, training 
occurs with data ( , , )x y z

i i i
 for i n= …1, , . 

Therefore, the actual constraints in the 
optimization problem correspond to their 
sample average approximations

     
− ≤ − ≤

=+ =−
∑ ∑δ β δ( )
: :

x x
i

i z
i

i zi i1 1

T

 

− ≤ − ≤
=+ =−
∑ ∑δ β β δT T T( )
: :

.x x x x
i

i z
i i

i z
i

i i1 1

Adding only the first (linear) fairness 
constraint results in a convex optimiza-
tion problem, while including the second 
(indefinite quadratic) fairness constraint 
yields a nonconvex optimization problem. 
Consequently, attaining good numerical 
solutions that satisfy the second fairness 
constraint necessitates careful algorith-
mic design [7]. Because this second con-
straint is an indefinite quadratic, a spectral 
decomposition can separate it into a dif-
ference of two convex quadratic functions. 
Once decomposed in this manner, the 
problem is solvable via algorithms from 
difference-of-convex programming [8]. 
Figure 1 (on page 1) depicts the improved 
fairness with high accuracy of a linear 
classifier trained by this method.

The application of dimensionality reduc-
tion algorithms, like the classic principal 
component analysis (PCA), also raises 
the question of fairness. This issue is less 
well-studied because the lack of outcome 
data makes past fairness definitions inap-
plicable. Recent work has moved toward 
developing a fair version of PCA [6]. Let 

x pÎ   be a vector of features describing 
an individual, and suppose that the pro-
tected class z ∈ − +{ , }1 1  of an individual 
is binary. In this case, a dimensionality-
reducing map Π : 

p d→  with d p<  is 
D-fair with respect to a family   of clas-
sifiers if | [ ( ( )) | ] h x zΠ = + = + −1 1
[ ( ( )) | ] |h x zΠ ∆= + = − ≤1 1  for all 
classifiers h Î  .  The intuition behind this 
definition is that a dimensionality reduction 
is fair if one cannot accurately predict the 
protected class of any single point using 
the lower-dimensional data computed after 
applying map P.  The classic PCA frame-
work can be extended using semidefinite pro-
gramming to construct an algorithm for fair 
PCA performance [6]. Figure 2 shows that 
fair PCA yields an intuitively fairer outcome.

Most research on impartial AI has 
focused on the learning problem, and much 
work remains in the development of algo-
rithms for unbiased decision-making. The 
fundamental difficulty is that fairness is 
inherently nonconvex. One can solve typi-
cal learning and decision-making problems 
by minimizing a convex loss function; how-
ever, fairness essentially asks the opposite 
— maximizing the independence of predic-
tions and decisions from protected classes. 
Thus, the development of effective and fair 
AI techniques will require direct confronta-
tion of the underlying nonconvexity in vari-
ous instances of the problem.

References
[1] Angwin, J., & Grassegger, H. (2017). 

Facebook’s secret censorship rules pro-
tect white men from hate speech but not 

Figure 2. Motivation for fairness in unsupervised learning. Dimensionality reduction via fair principal component analysis (PCA) diminishes 
opportunities for discrimination. The thick red line in 2b and 2c is the optimal linear support vector machine (SVM) that separates by color, and 
the dotted line is the optimal Gaussian kernel SVM. Figure courtesy of [6].

The Serious Mathematics of Digital Animation
By Matthew R. Francis

While computer simulations have a 
wide range of uses, their goals are 

generally similar: find the simplest model 
that recreates the properties of the system 
under investigation. For scientific systems, 
this involves matching observed or experi-
mental phenomena as precisely as necessary.

But what about movie simulations? 
Should they match the processes they 
replicate so closely? Computer-generated 
imagery (CGI) is a common feature in both 
animated and live-action films. For these 
CGI systems, creating visuals that look 
right is an important task. However, Joseph 
Teran of the University of California, Los 
Angeles believes that starting from physi-
cal models is still a good idea.

During his invited address at the 2018 
SIAM Annual Meeting, held in Portland, 
Ore., this July, Teran pointed out that begin-
ning with a mathematical system is often 
easier than drawing from real life. Many 
movies model a system’s various forces and 
internal structures with partial differential 
equations (PDEs) for this reason. While 
solving these equations to produce CGI is 
computationally expensive, such methods 
have become powerful tools for creating 
realistic visual cinematic effects.

Teran and his collaborators utilized a 
general physical model for a wide range of 
movie phenomena, such as smoke, sand, 

snow, water and other fluids, and even 
clothing (see Figure 1, on page 1). Teran 
noted that modeling everyday occurrenc-
es—such as pouring coffee or the behavior 
of clothes on a human body—in a con-
vincing manner is much more difficult 
than simulating exotic things like exploding 
spaceships. The very familiarity of ordinary 
systems frequently exposes inconsistencies; 
this is in contrast to esoteric things, akin 
to the “uncanny valley effect”1 wherein 
attempts at realistic human faces fall short. 

From Jell-O to Snow
During his presentation, Teran focused 

on a particular model known as “elasto-
plasticity,” which allows animators to treat 
a wide range of visual phenomena with a 
few equations, governed by a reasonable 
number of parameters that can be adjusted 
until things look right. Elastoplastic theory 
describes materials that both spring back 
when deformed (hence, elastic) and retain 
some of their altered shape (plastic).

For example, snow is granular on one 
level because it comprises small crystals 
that are visible to the human eye. However, 
a large-scale view shows that it is an elas-
toplastic material, as anyone who has ever 

1  The uncanny valley effect is the unset-
tling feeling that people experience upon 
encountering faces on robots or in digital art 
that are very nearly human in appearance but 
not quite convincingly realistic.

made a snowball knows. How well a snow-
ball holds together depends on its texture and 
“wetness,” among other things. And how 
well the initial handful packs together partly 
depends on snow’s plasticity. The crumbli-
ness of “dry” snow—which renders it unsuit-
able for snowballs—also means that it blows 
more readily in the wind, making for easier 
cleanup. The varying elastoplastic properties 
of snow dictate whether or not it flows, thus 
determining the manner in which it drifts and 
the dangers of possible avalanches.

Based on this theoretical framework, 
Teran and his colleagues consulted with 
Walt Disney Animation Studios to generate 
realistic-looking snow for the computer-
animated film Frozen. Animators must cre-
ate movie special effects without having to 
produce simulations of various phenomena 
from scratch. This is when PDEs become 
useful, as does reduction of the physical 
model’s parameters, which can be adjusted 
based on a film’s visual needs.

Figure 2. A sphere pushes three pieces of cloth—with approximately 1.4 million triangles—
back and forth. This yields complex folds and contact. Image courtesy of [1].

See Digital Animation on page 6
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A Near-perfect Heat Exchange
When two objects are brought into ther-

mal contact, their temperatures con-
verge. And because temperatures have no 
inertia, they cannot “overshoot” and reverse. 
But nature found a remarkable way to over-
come this constraint of the second law of 
thermodynamics and (nearly) exchange the 
two substances’ temperatures (see Figure 1).

The Construction
The two liquids flowing in opposite direc-

tions are separated by a heat-conducting 
membrane. I claim that the temperatures of 
the two fluids will nearly reverse: 0°  water 
will heat to 100°−e,  while 100° water will 
cool to e  degrees, with an arbitrarily-small 
e  (e= °1  in Figure 1).

How it Works
Figure 1 depicts a discrete approxima-

tion: we imagine each fluid split into n  
cells and replace the continuous motion 
with a jerky one. We first allow tem-
peratures in adjacent cells across the mem-
brane to settle to the common one (these 
will be slightly different in practice, con-
tributing to e  in the preceding paragraph), 
and then we let each fluid quickly advance 
by one cell. This brings T

k-1
 and T

k+1
 into 

contact with one another. They settle to 
the common new temperature

        
T T T
k k k
+

− += +
1

2 1 1
( )

	  
(1)

	
(the top will actually be slightly colder but 
we ignore this; we also ignore heat exchange 
between cells in the same pipe). In short, (1) 
is a discretization (in space and time) of the 
heat equation. Indeed, we can write it as

    
T T T T T
k k k k k
+

− +− = − +
1
2

2
1 1

( ),

                      k n= …1, ,

with T
0

0=  (a new cell 
at 0°  enters from the left) 
and T

n+ =1 100  (a new 
cell at 100° enters from 
the right). The tempera-
ture will advance towards 
a linear profile regard-
less of initial tempera-
ture distribution; the first 
cell will thus approach 
T n
1
100 1= +/( )  while 

the last cell will approach 
T n
n
= − +100 100 1/( ).  

A larger n  means a more 
perfect temperature swap.

The key to the opera-
tion of the heat exchanger is that the tem-
perature differences are small in every 
heat exchange: T T

k k+ −≈
1 1

. 
This proximity of temperatures 
makes for a small entropy 
increase. When heat Q  passes 
from an object at temperature 
T
a

 to an object at tempera-
ture T T

b a
< , the entropy of 

the system consisting of these two objects 
increases by

      
Q
T T

Q
T T

TT
b a

a b

a b

( ) ,
1 1
− =

−

a small amount if T T
a b
» ,  even if Q  is not 

small (here, T  is the absolute temperature, 
not the centigrade). Since T T

k k+ −≈
1 1

, the 
heat exchanger increases entropy by less 
than an unintelligent design would. 

Speaking of intelligent design, biological 
evolution showed intelligence in “invent-
ing” the heat exchanger. For example, deep 
veins in our arms run along arteries, just 
like the two tubes in Figure 1 — the top 
tube represents a vein and the bottom one 
represents an artery. In cold weather, the 
outgoing arterial blood warms the cold 

venous blood coming from the hands; this 
helps maintain core body temperature.

The entropy’s near-
constancy signals the near-
reversibility of the process 
[1]. The latter is also direct-
ly apparent from our abil-
ity to run Figure 1’s outputs 
through another exchanger 

and nearly return to the original tempera-
tures (e.g., to 2°  and 98°).

References
[1] Feynman, R., Leighton, R., & Sands, 

M. (1964). Entropy. In The Feynman 
Lectures on Physics (Vol. 1). The California 
Institute of Technology.

Mark Levi (levi@math.psu.edu) is a pro-
fessor of mathematics at the Pennsylvania 
State University.

 

MATHEMATICAL 
CURIOSITIES
By Mark Levi

Figure 1. Beginning with equalized temperatures in adjacent cells (top), the cells advance (middle) and the tem-
peratures of adjacent cells (nearly) equalize. This completes the cycle. Figure courtesy of Mark Levi.

This leaves the crucial question of com-
putability. What parameters will quickly 
describe a large family of CPL functions? 
Linear finite elements start with a triangu-
lar mesh. But specifying many individual 
nodes in Rp, is expensive. It would be bet-
ter if those nodes are the intersections of a 
smaller number of lines (or hyperplanes). 
Please note that a regular grid is too simple.

Figure 1 is a first construction of a 
piecewise linear function of the data vec-
tor v.  Choose a matrix A  and vector b. 
Then set to 0 (this is the nonlinear step) 
all negative components of Av b+ .  Then 
multiply by a matrix C  to produce the out-
put w v v b= = + +F C A( ) ( ) .  That vector 
( )Av b+ +

 forms a “hidden layer” between 
the input v  and the output w.

The nonlinear function called 
ReLU( ) max( , )x x x= =+ 0  was origi-
nally smoothed into a logistic curve like 
1 1/( ).+ −e x  It was reasonable to think 
that continuous derivatives would help 
in optimizing the weights A C, , .b  That 
proved to be wrong.

The graph of each component of 
( )Av b+ +

 has two half-planes (one is 
flat, from the 0s where Av b+  is nega-
tive). If A  is q  by p,  the input space Rp, 
is sliced by q  hyperplanes into r  pieces. 
We can count those pieces! This measures 
the “expressivity” of the overall function 
F( ).v  The formula from combinatorics is

 r q p
q q q

p
( , )=












+











+ +











0 1



.

This number gives an impression of the 
graph of F. But our function is not yet 
sufficiently expressive, and one more 
idea is needed.

Here is the indispensable ingredient in 
the learning function F.  The best way 
to create complex functions from simple 
functions is by composition. Each F

i
 is 

linear (or affine), followed by the nonlinear 
ReLU : ( ) ( ) .F A

i i i
v v b= + +

 Their      com-
position is F F F F F

L L
( ) ( ( ( ( )))).v v= …−1 2 1

 
We now have L-1  hidden layers before 
the final output layer. The network becomes 
deeper as L  increases. That depth can grow 
quickly for convolutional nets (with banded 
Toeplitz matrices A).

The great optimization problem of deep 
learning is to compute weights A

i
 and b

i
 

that will make the outputs F( )v  nearly cor-
rect — close to the digit w( )v  that the image 
v  represents. This problem of minimizing 
some measure of F w( ) ( )v v-  is solved by 
following a gradient downhill. The gradient 
of this complicated function is computed 
by backpropagation: the workhorse of deep 
learning that executes the chain rule.

A historic competition in 2012 was to 
identify the 1.2 million images collected in 
ImageNet. The breakthrough neural network 
in AlexNet had 60 million weights in eight 
layers. Its accuracy (after five days of sto-
chastic gradient descent) cut in half the next 
best error rate. Deep learning had arrived.

Our goal here was to identify continu-
ous piecewise linear functions as power-
ful approximators. That family is also 
convenient — closed under addition and 
maximization and composition. The magic 
is that the learning function F A

i i
( , , )b v  

gives accurate results on images v  that F  
has never seen.

 This article is published with very light edits.

Gilbert Strang teaches linear alge-
bra at the Massachusetts Institute of 
Technology. A description of the January 
2019 textbook “Linear Algebra and 
Learning from Data” is available at math.
mit.edu/learningfromdata.

Figure 1. Neural net construction of a piecewise linear function of the data vector v.  

Deep Learning
Continued from page 1
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The general conservation laws for mass 
and momentum govern these physics-
based models. For materials, these equa-
tions are PDEs that describe changes in 
the materials’ velocity vector field v x t( , ) 
and density r( , ):x t
    
Dv
Dt

g
D
Dt

v= ⋅ + + ⋅ =
1

0
ρ
σ

ρ
ρ  ,

 
   
   

   
where g  is the gravitational force vector, 
s( , )x t  is the material’s stress tensor, and

                  D
Dt t

v=
∂
∂
+ ⋅

  
  
is the convective derivative operator. The 
choice of stress tensor determines which 
specific physical system is described.

To simulate snow, Teran and collabora-
tors animated cubes of a Jell-O-like sub-
stance, adjusting elastic and plastic param-
eters to visualize how the cubes bounced or 
stuck together. These cubes—though very 
unlike snow in a broad sense—formed the 
basis of the mathematical description of 
snow’s flow, incorporating frictional forces 
between snow grains.

Once a software PDE solver fast enough 
for animation became available after several 
years of development, the elastoplastic for-
mulation reduced rendering time by a mas-
sive amount. Frames of the film that would 
have previously entailed 40 minutes of gen-
eration time with other methods required 
only three to four minutes using PDEs.

Elastoplastic models are general enough 
to describe other materials that are use-
ful for CGI. Teran showed his audience 
simulations of water interacting with sand 
to demonstrate how the water gradually 
wears away a sand barrier until it collapses. 
Like snow, sand is granular and exhibits 
small-scale behavior governed by moisture 
content, grain size, and frictional interac-
tions between grains. Wet sand can also 
be packed (into sandcastles, for instance), 
though less durably than snow.

Cloth and Deformed Potatoes
Frozen aside, most movies do not require 

many snow scenes. However, the major-
ity of animated films have human char-
acters who sport hair and wear clothing. 
These systems are both extremely familiar 
and very complicated to visually simulate 
(compare the characters’ blocky hair in 
early animated films like Toy Story or Shrek 
to modern movies like Moana that use 
advanced physics models). Elastoplastic 
models can also visually describe these 
phenomena, despite hair and clothing’s dis-
similarity to snow or sand.

Teran noted that these systems can 
employ the same PDE solver as snow 
simulations. Unfortunately, clothes are not 
intrinsically granular, which makes them 
computationally much more expensive. 
If one treats them as a mesh of particles, 
the fabric texture constrains the relative 
positions of those particles. In addition, 
the external forces change constantly as 
different patches of cloth come in contact 
with other cloth, skin, and various objects. 
From a modeling perspective, cloth is 
almost always deformed; it creases, flaps 
in the wind, and clings when wet (see 
Figure 2, on page 3).

The total mathematical approach of 
Teran and his colleagues is a mixture of 
the Lagrangian picture—treating the forces 
on the material’s individual particles or 
fibers—and the Eulerian fluid continuum 
view. The low-level perspective addresses 
stresses, various frictional forces, and plas-
ticity with simple physical models, similar 
to those taught in introductory physics 
classes. The high-level fluid perspective 
provides the bulk elastic and plastic prop-
erties of the material.

The mathematical model for the mate-
rial’s deformation involves a flow map 
operator f  (which is invertible) taking 
the fabric from its original configura-
tion Ω

0
={ }X  to its final configuration 

Ω
t
x={ },  where x  and X  are the set of 

initial and final particle positions: 

   f(, ) :⋅ →t
t

Ω Ω
0

  and  x X t= f( , ).  

Teran described the geometrical process as 
“mapping a potato onto a deformed pota-
to.” The system’s physics is encapsulated 
in the Jacobian or “deformation gradient” 
F  and its determinant J :

F X t
X
J X t F X t( , ) ( , ) ( , ) .( )=

∂
∂

=
f

det

The conservation laws and material prop-
erties in the elastoplastic model are con-
nected to this mapping. One can linearize 
the system to simplify the math during 
each step of the deformation.

The model applies all external and inter-
nal forces acting on the cloth, mapping the 
motion and constraints on each grain. If the 
forces acting on a particle are physically 
unreasonable, the calculation employs con-
straints to restore the particle to an allow-
able configuration. In other words, every 
particle that begins in the fabric must end 
in the fabric in more or less the same posi-
tion relative to its neighbors; this prevents 
unphysical deformations to the material.

The resulting elastoplastic model is 
amazingly powerful, allowing realistic sim-
ulation of fabrics from heavy carpets and 
cable-knit sweaters to light silk cloth. Teran 
displayed animations of sand pouring over 
fabric that used the elastoplastic model for 
both materials (see Figure 3).

As with many numerical approxima-
tions to continuous systems, the accuracy 
of the elastoplastic simulation depends on 
the coarseness of the mesh that models the 
fabric. If the mesh is too coarse or too fine, 
the simulated fabric behaves incorrectly. 
Similarly, the types of constraints neces-
sary to make the fabric behave appropriate-
ly are similar to the unrealistic imaginary 
springs that some simulations utilize for 
similar tasks in other animations.

Nevertheless, the ability of real physics 
to produce more realistic animations with 
lower computational costs, even when the 
particular physics does not naïvely seem to 
describe the system at hand, is intriguing. 
With future advances in graphics process-
ing, animators will have an even greater 
ability to simulate the world, paving the 
way for increasingly imaginative stories.

References
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Figure 3. Two-way coupling between a piece of elastic cloth and seven million grains of 
sand. Image courtesy of [1].

Digital Animation
Continued from page 3

Randomized Projection Methods 
in Linear Algebra and Data Analysis
By Per-Gunnar Martinsson

The management and analysis of large 
complex datasets give rise to math-

ematical and algorithmic challenges that 
have intrigued applied mathematicians 
in recent years. A common situation is 
a dataset that apparently lives in high-
dimensional space, even though evidence 
suggests that it is interpretable as having 
a lower “intrinsic” dimension. Finding 
a way to represent such a dataset using 
fewer parameters enables its efficient stor-
age, transmission, and analysis to uncover 
additional structures.

Informally, one might say that the dif-
ficulty that arises as a problem’s dimen-
sionality grows is that there are just too 
many places to look. The unit cube in 



n 
has 2n  corners, which is a lot even for, 
say, n = 100.  Curiously, one’s best bet 
when facing a vast search space such as 
this is often to conduct the search com-
pletely randomly. I will illustrate how 
this works in practice by reviewing two 
recently developed algorithms — one for 
factorizing matrices and the other for find-
ing approximate nearest neighbors.

Linear Approximation       
(Principal Component Analysis)

A classical and well-understood dimen-
sion reduction problem—given a set of 
points { }a

j j
n
=1  in m—is to find a linear 

subspace L  that to some degree of approxi-
mation contains all points. A common tech-

nique for finding L  is to form the m n´  
matrix A = [ , ,..., ]a a a

1 2 n
 and compute its 

singular value decomposition (SVD)

              
A u v=

=
∑s

j
j

p

j j
1

*,

where p m n= min( , ),  { }s
j j
p
=1

 are 
the singular values of A  (ordered so 
s s s
1 2

0³ ³ ³ ³

p
),  and { }u

j j
p
=1

 and 
{ }v
j j
p
=1

 are the left and right singular vectors 
of A.  For any k p∈ …{ , , , },1 2  the subspace 
L  spanned by the first k  left singular vectors 
{ }u
j j
k
=1  is in certain regards “optimal.”

The aforementioned problem arises in 
many applications. An example occurs in 
statistics, when one attempts to fit observed 
high-dimensional data to an assumption that 
such data represent samples drawn from a 
multivariate normal distribution driven by 
a small number of significant components.

Randomized SVD
The problem of finding an optimal linear 

subspace has a clean and simple math-
ematical solution, but a user must determine 
how to compute the dominant k  singular 
values and singular vectors of the given 
data matrix A. Standard linear algebra 
routines, such as those in LAPACK, often 
return the full decomposition. This compu-
tation’s flop count, O mn m n( min( , )),  is 
typically unaffordable for large matrices. 
Alternatively, one could compute a partial 
factorization using an algorithm like col-
umn pivoted QR or Arnoldi. While this 
would reduce the asymptotic flop count 

to O mnk( ),  these algorithms can be dif-
ficult to efficiently implement on modern 
communication-constrained hardware.

Another option, which is often highly 
competitive, is the recently-developed ran-
domized SVD (RSVD) [1], which draws a 
Gaussian random matrix G  of size n k´  
to create a sampling matrix Y AG= .  In 
many situations, the columns of matrix 
Y  form a good approximate basis for the 
column space of A.  To identify approxima-
tions to the dominant modes of an SVD of 
A,  one must orthonormalize Y’s columns to 
find a basis for its column space before pro-
jecting the matrix A  down to this subspace 
and using deterministic methods to compute 
a full SVD of the resulting small matrix. 

To attain accuracy comparable to the 
best possible approximation of rank k,  
the RSVD must draw a few extra samples. 
To this end, let us select an oversampling 
parameter p (p = 5  or p = 10  are gener-
ally good) and proceed as follows:

(1) Draw an n k p× +( )  Gaussian ran-
dom matrix G

(2) Form the m k p× +( )  sampling 
matrix Y AG=

(3) Form an m k p× +( )  orthonormal 
matrix Q,  such that Y QR=

(4) Form the ( )k p n+ ×  matrix 
B Q A= *

(5) Compute a (small) SVD B UDV= � *

(6) Form the matrix U QU= �.
The result is an approximate factorization 
A UDV» *,  where the diagonal matrix D 
holds approximations to the singular vectors 
of A  and the tall, thin matrices U  and V 

have orthonormal columns. The RSVD has 
the same O mnk( )  complexity as existing 
techniques for partial SVD computation. 
However, its interaction with the matrix 
A via two matrix-matrix multiplications 
offers compelling advantages, as it often 
leads to high practical execution speed. 
Furthermore, it eases the method’s use in 
situations where A  may be stored on slow 
memory, such as a hard drive, or across a 
distributed computing system.

The RSVD produces a factorization with 
near-optimal accuracy in scenarios where 
A’s singular values decay reasonably rap-
idly. In the case of matrices whose singular 
values decay slowly, such as measured 
statistical data, combining the RSVD with 
a small number of steps of classical sub-
space iteration is imperative. In practice, 
we would then replace the computation on 
the aforementioned line (2) with something 
along the lines of Y A A AG= ( ( ))*  [1].

Variations of the RSVD
The basic algorithmic template of the 

RSVD is easily adaptable to specialized 
environments. For instance, one can reor-
ganize the computation in such a way that 
the algorithm only needs to see each entry 
of the matrix once; this enables the pro-
cessing of huge matrices resistant to stor-
age [1]. Replacing the Gaussian random 
matrix with a structured random projec-
tion, such as a subsampled and randomized 
FFT [1], can reduce the flop count from 
O mnk( )  to O mn k( log ).

See Randomized Projection on page 8
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The Chinese University of Hong 
Kong, Shenzhen
The School of Science and Engineering

Located in the Longgang District of 
Shenzhen, the Chinese University of Hong 
Kong, Shenzhen (CUHK-Shenzhen) is a 
research-intensive university, established in 
2014 through a Mainland-Hong Kong collabo-
ration with generous support from the Shenzhen 
Municipal Government. It inherits the fine aca-
demic traditions of the Chinese University of 
Hong Kong, and will develop its academic 
programmes in phases and offer courses in the 
School of Science and Engineering, the School 
of Management and Economics, and the School 
of Humanities and Social Science. English is 
the main language for course instruction, and 
students will receive degrees from the Chinese 
University of Hong Kong. At present, several 
research centers have been established in the 
School of Science and Engineering, including 
the Arieh Warshel Institute of Computational 
Biology, Kobilka Institute of Innovative Drug 
Discovery, Hopcroft Institute for Advanced 
Study in Information Sciences, and Shenzhen 
Key Laboratory of Semiconductor Lasers.

Post Specifications: The School of Science 
and Engineering (http://sse.cuhk.edu.cn/en) 
invites applications for faculty positions—pro-
fessor/associate professor/assistant professor/
lecturer—in focused areas of statistics, data 
science, mathematics, financial engineering 
and quantitative finance, and bioinformatics, 
though excellent applicants in all related areas 
will be considered.

Junior applicants should have (i) a Ph.D. 
degree (by the time of reporting for duty) in 

related fields and (ii) high potential in teaching 
and research. Candidates for senior posts (asso-
ciate and full professor) are expected to have 
demonstrated academic leadership and strong 
commitment to excellence in teaching, research, 
and services. Junior appointments will normally 
be made on contract basis for up to three years 
initially, leading to longer-term appointment or 
tenure later — subject to review. Exceptional 
appointments with tenure will be considered for 
candidates of proven excellence. Applicants are 
encouraged to check out details about the univer-
sity at http://www.cuhk.edu.cn/en.

Salary and Fringe Benefits: Salary will be 
comparable to international standards, commen-
surate with experience and accomplishments. 
Appointments will be made under the estab-
lishment of CUHK-Shenzhen, and employee 
benefits will be provided according to the rel-
evant labor laws of Mainland China as well as 
CUHK-Shenzhen regulations. Subsidies from 
various government-sponsored talent programs 
will also be made available for eligible can-
didates: http://www.cuhk.edu.cn/UploadFiles/
talentsprogramoutline.pdf.

An application package, including a CV and 
personal statements in teaching and research, 
as well as contact information of three refer-
ences who will write recommendation letters on 
behalf of the candidate, should be sent by email 
to Talents4SSE@cuhk.edu.cn. All applicants 
need to specify the rank(s) of the position being 
applied to in their application cover letters. Upon 
submission of applications, applicants should 
request three recommendation letters to be direct-
ly sent to Talents4SSE@cuhk.edu.cn.

Progress by Accident: Some Reflections on My Career
By Walter Gautschi

Walter Gautschi, professor emeritus at 
Purdue University and a leading math-
ematician in the areas of approximation 
theory, orthogonal polynomials, special 
functions, and numerical analysis, cel-
ebrated his 90th birthday in December 
2017. A conference honoring this occasion 
was held at Purdue University earlier this 
year.1 In the following article, Gautschi 
describes how different research areas 
sparked his interest. An extended version 
of this article is available online.2 

Often in my career, my interest in the 
mathematical areas in which I was 

active came about by chance occurrences 
that at the time seemed rather insignificant 
but were reinforced by later events.

Ordinary Differential Equations
Numerical ordinary differential equa-

tions (ODEs) piqued my interest during my 
first semester at the University of Basel. I 
enrolled in a course on “Wissenschaftliches 
Rechnen” (scientific computation), in which 
Professor Eduard Batschelet mentioned a 
graphical method for solving ODEs courtesy 
of Richard Grammel. The method uses polar 
coordinates: the argument x  of the solution 
y  serving as the polar angle and the recipro-
cal of the solution 1/ ( )y x  plotted on the radi-
us vector with angle x.  It struck me as odd 
that the reciprocal of the solution was being 
approximated. Why not the solution itself?

It turned out that a geometric construction 
similar to the one used by Grammel indeed 
exists to approximate the solution. I men-
tioned this to Batschelet, who was pleased 

1  https://www.cs.purdue.edu/sca/
2  https://sinews.siam.org/Details-Page/

progress-by-accident-some-reflections-on-
my-career

by my observation. He must have mentioned 
this to Alexander Ostrowski, who encour-
aged me to expand my work on Grammel’s 
method into a Ph.D. thesis. I was not thrilled 
with this suggestion, knowing that the digital 
computer era—which was just beginning—
would demand numerical 
methods rather than graphical 
ones. But I made the most of 
it and developed techniques 
for analyzing the error of 
Grammel’s method.

Aside from my thesis work, 
I also studied numerical methods; two early 
events stimulated my interest. One was the 
appearance of Lothar Collatz’s book on 
ODEs, which I eagerly studied from cover 
to cover. The other pertained to Ludwig 
Bieberbach’s visit to our university. In his 
1923 book on ODEs, Bieberbach had stated 
without proof an estimate for the local 
truncation error of the classical Runge-
Kutta method for a single first-order dif-
ferential equation. He worked out the full 
proof—also for systems of differential equa-
tions—during his visit and published it in 
an early issue of Zeitschrift für Angewandte 
Mathematik und Physik (ZAMP) in 1951. A 
few years earlier, Rudolf Zurmühl had pub-
lished Runge-Kutta methods that directly 
integrate single differential equations of 
nth  order, i.e., without first decomposing 
into a system of first-order equations. I 
decided to apply Bieberbach’s techniques 
to Runge-Kutta-Zurmühl methods to obtain 
local error bounds for all derivatives of 
order <n.  It was a laborious undertaking—
a real tour de force—but I persisted and 
published the results in ZAMP in 1955.

Throughout my years at Oak Ridge 
National Laboratory (ORNL)—and still lat-
er—I was teaching myself Russian and read-
ing Russian books and papers about approx-
imation and computation (recall that these 

were the years after the Sputnik launch). 
This inspired me to examine numerical 
methods for ODEs based on trigonometric, 
rather than algebraic, polynomials with the 
expectation that they could possibly be used 
to solve differential equations with oscilla-

tory solutions. I published a 
paper on this work in 1961, 
but it did not immediately 
have the resonance that I had 
hoped it would. It took some 
40 years until the paper was 
recognized as anticipating 

what in the meantime had been called 
“exponentially fitted” methods.

Special Functions
When I arrived at the National Bureau 

of Standards in Washington, D.C. (now 
the National Institute of Standards and 
Technology) in 1956, a major project 
entailed the preparation of the Handbook 
of Mathematical Functions. Milton 
Abramowitz, who was directing the project, 
asked me whether I would be interested in 
writing the as-yet unassigned chapter on the 
error function. I accepted, despite my com-

plete lack of experience with special func-
tions; I felt that my background in classical 
analysis was strong enough for me to be up 
to the task. I diligently began to study the 
literature on special functions, particularly 
the confluent hypergeometric function. At 
Milton’s request, I also helped with the 
chapter on the exponential integral.

Orthogonal Polynomials            
and Gaussian Quadrature

During my time at ORNL in the late 
1950s and early 1960s, an ORNL chemist 
asked Alston Householder if a member of 
his group could help with the computation 
of a definite integral that resisted accurate 
evaluation. Householder felt that I was the 
best person for the job. The integral in ques-
tion turned out to be an integral over [ , ]-1 1  
with a logarithmically singular factor in the 
denominator, something like p2 plus the 
square of log( )( ).1 1+ −x x  That seemed 
easy enough: use Gaussian quadrature with 
the reciprocal of this singular factor as a 
weight function and take n,  the number 
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The Johnson-Lindenstrauss 
Lemma and Applications to 
Nonlinear Problems

While linear approximation is a tre-
mendously powerful tool, many applica-
tions require techniques that are inherently 
nonlinear. Let us again consider a cloud 
of points { }a

j j
n
=1  in m,  where m  is 

large but information suggests that the 
points belong to some nonlinear manifold 
of lower dimension. To further complicate 
things, we must typically also account 
for noise in the model, meaning that each 
point may shift slightly away from the true 
lower-dimensional structure. The problem 
of discovering this structure and repre-
senting it in a user-friendly way is a sub-
ject of vigorous research. Key challenges 
include determining how to computational-
ly resolve certain recurring subtasks—such 
as clustering the points—or identifying 
each point’s nearest neighbors to form a 
connectivity graph. Standard algorithms 
for resolving these tasks scale unfavorably 
as the dimension m  of the ambient space 

of Gauss points, large enough to yield any 
desired accuracy. Having carefully studied 
Francis Hildebrand’s book on numerical 
analysis, I knew how the required orthogo-
nal polynomials could be generated from 
the moments of the weight function and was 
able to compute them to any order. With full 
confidence, I wrote the necessary short pro-
gram and ran it on ORACLE, the world’s 
fastest computer in 1954. I failed miser-
ably! Investigating the underlying reason 
for my failure—ill conditioning—gave rise 
to many papers on the constructive theory 
of orthogonal polynomials.

The 150th anniversary of Elwin 
Christoffel’s birth in 1979 greatly inten-
sified my preoccupation with orthogonal 
polynomials — especially Gaussian quadra-
ture. Christoffel was instrumental in gener-
alizing the Gaussian quadrature rule to arbi-
trary weight functions, and developed the 
underlying theoretical machinery involving 
orthogonal polynomials. The speaker slated 
to give the plenary talk on Christoffel’s 
contributions to numerical integration for 
the occasion had to withdraw unexpectedly, 
and I was asked to step in. Against all odds 
I pulled it off and presented the lecture, 
which was published in 1981.

History
I have continually enjoyed reading about 

the masters of centuries past, and whenever 
I suspected that some contemporary results 
may have been realized much earlier, per-
haps in the 19th century, I eagerly dug into 
the older literature to confirm my hunches. 
The first time this happened was in con-
nection with a result in Oskar Perron’s 

book on computing solutions to three-
term recurrences using continued frac-
tions, which I speculated was much older. 
Despite perusing many books on difference 
equations, I could not find any mention 
of this result. But I did find many refer-
ences to Italian mathematician Salvatore 
Pincherle, so I browsed through Pincherle’s 
collected works. There, in an 1894 paper on 
hypergeometric functions, I found exactly 
the result that Perron stated in his book. 
I attributed this result to Pincherle, and it 
became known as Pincherle’s theorem.

I have always admired Leonhard Euler. 
During a visit to Basel in the early 2000s, 
Emil Fellmann, a well-known Euler biog-
rapher, handed me a copy of a letter that 
Euler had written to his close friend Daniel 
Bernoulli. It dealt with the somewhat bizarre 
(and hence failed) attempt to interpolate 
the common logarithm at all powers of 
10. It took me a while to figure out what 
was being described in the letter, but I was 
eventually able to explain the matter both 
in a 2008 paper and a short commentary in 
a correspondence volume. A year earlier, 
I was invited to speak about Euler on the 
300th anniversary of his birth at the 2007 
International Congress on Industrial and 
Applied Mathematics, which took place in 
Zurich. It took me—not really an expert on 
Euler’s work and life—a whole year to pre-
pare the talk, an expanded version of which 
appeared in SIAM Review3 in 2008.
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Walter Gautschi celebrates his 90th birthday at the Purdue Conference on Scientific Computing 
and Approximation, which was held in his honor earlier this year. Image credit:  Kristyn R. Childres.
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increases, which naturally leads to a search 
for embeddings of the points into lower-
dimensional spaces that preserve important 
geometric properties. A classical result in 
this direction is the Johnson-Lindenstrauss 
lemma, which states that for any  > 0 and 
any dimension d  satisfying 

       d n≥ −










−

4
2 3
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there exists a map f m d: ®  that approx-
imately preserves distances in the sense that

 
( ) ( ) ( )1 2 2− − ≤ −ε a a a a

i j i j
f f

               ≤ + −( )1 2ε a a
i j

for every pair { , }a a
i j

 of points. The map 
f  is often built via stochastic techniques  
(e.g., f d( ) ,/x Gx= −1 2  where G  is again a 
Gaussian random matrix, now of size d n´ ).

The Johnson-Lindenstrauss lemma is 
compelling from a theoretical point of 
view; the reduced dimension d  depends 
exclusively on the number of points n  (not 
the dimension m  of the ambient space), 
and the dependence is only logarithmic with 

respect to n.  But from a practical point of 
view, the lemma is by itself of limited use 
— the scaling with respect to the distor-
tion parameter   is ghastly. For instance, 
if  = 0 1. , then d n 800log( ), which is 
far too high a dimension for most classical 
algorithms to be practicable and still leaves 
substantial distortions of 10 percent. While 
it is certainly possible to improve the origi-
nal Johnson-Lindenstrauss results, most 
known randomized dimension reduction 
techniques either exhibit very sizable dis-
tortions or an image space of unacceptably 
high dimension.

Randomized Nearest Neighbor 
Search and a Two-stage       
Sampling Strategy

A delightful algorithm proposed by 
Peter Jones, Andrei Osipov, and Vladimir 
Rokhlin [2]—designed to solve the afore-
mentioned approximate nearest neighbor 
problem—illustrates how to harness the 
power of randomized projections without 
badly sacrificing accuracy. Given a small 
integer k  and a set of points { }a

j j
n
=1  in 



m,  where m  is large, let us find each 
point’s k  nearest neighbors. This seems 
ideally suited for a Johnson-Lindenstrauss 
projection-type approach. However, as we 
have seen, if d  is small enough for classical 
methods, the introduced distortions would 
produce many mistaken nearest neighbors. 
While a single instance of the outlined pro-
cedure is exceedingly unreliable, the situ-
ation improves dramatically with several 
repetitions of the experiment [2]. Say we 
draw 10 different random projections and 
perform a low-dimensional search for each 
one. Every search yields a list of candidates 
for any given point’s nearest neighbors. 
Now we simply form for each point the 
union of these lists. Finally, we return to 
the original dataset to compute the actual 
distances in 



m,  keep the k  best results, 
and discard the rest.

Both the RSVD and the randomized 
nearest neighbor search manage to find 
accurate results despite randomized projec-
tions’ introduction of substantial distortions. 
Perhaps the trick is a two-stage recipe:

(1) Use randomized projections to inex-
pensively develop a rough sketch that tells 
us where to look

(2) Use high-precision deterministic 
methods to compute a precise answer.
The second step allows one to aggressively 
oversample in the first stage, worrying only 
about minimizing the risk of missing impor-
tant information. Any unnecessary informa-
tion is then filtered out in the second stage.

Here I have described two randomized 
algorithms designed to help process large 
datasets in high-dimensional spaces. These 
algorithms are typically more accurate than 
traditional randomized algorithms in sci-
entific computing such as Monte Carlo. 
One may perhaps argue that they are more 
closely related to methods like randomized 
QuickSort, in that the algorithm’s random-
ized aspect primarily affects the runtime. 
Algorithms of this type reliably produce 
highly accurate answers and are forgiving in 
terms of random number generation.
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