
Training Implicit Networks for Image Deblurring using Jacobian-Free
Backpropagation

Linghai Liu † , Shuaicheng Tong ‡ , and Lisa Zhao §

Project advisor: Samy Wu Fung ¶

Abstract. Recent efforts in applying implicit networks to solve inverse problems in imaging have achieved com-
petitive or even superior results when compared to feedforward networks. These implicit networks
require only constant memory during backpropagation, regardless of the number of layers. However,
they are not necessarily easy to train because they require backpropagating through a fixed point,
which leads to computationally expensive gradient calculations. In particular, this process requires
solving a large linear system whose size is determined by the number of features in the fixed point
iteration. To circumvent such calculations, Jacobian-free Backpropagation (JFB) was recently pro-
posed. This paper explores its application in image deblurring problems. Our results show that
JFB is comparable to the classical TV method, Plug-n-Play, and Deep Equilibrium at a reduced
computational cost.

1. Introduction. Inverse problems consist of recovering a signal, such as an image or a
parameter of a partial differential equation (PDE), from noisy measurements, where direct
observation of the signal is not possible. As an effort to solve these problems, deep learning
techniques have been utilized to acquire high-quality medical images like magnetic resonance
imaging (MRI) and computed tomography (CT) [1, 2, 3].

Conventional deep learning approaches for solving inverse problems use deep unrolling
[4, 5, 6, 7, 8, 9, 10], which utilizes a fixed number of iterations usually chosen heuristically. A
deep network is “unfolded” into a wider and shallower network, where each layer is split into
multiple sub-layers. While this method allows the network to learn complex patterns in the
input data, it suffers from overfitting and the well-known vanishing gradient problem [11], not
to mention the lack of flexibility compared to other network structures [12, 13]. Moreover,
they are challenging to train due to memory constraints in backpropagation. Another line
of work, feed-forward denoising convolutional neural networks (CNNs) [14, 15, 16, 17], use
deep convolutional neural networks to learn the residuals between the ground truth images
and noisy observations instead of directly reconstructing the clean underlying images. These
end-to-end models are not trained for a particular forward model, so they may require large
amounts of labeled data for training [12, 13].

Recently, deep equilibrium models (DEQs) were proposed [18, 19, 20, 21, 22, 23, 24]. DEQs
use implicit networks with weight-tying, input-injected layers that propel the dynamics of la-
tent space representation by sharing the input across layers. Training involves backpropagat-
ing through a fixed point of the layer using implicit differentiation, where the number of layers
can be deemed infinite. This feature allows implicit networks to save memory significantly
since there is no need to save any intermediate values on the backpropagation graph. Despite
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yielding fixed memory costs and matching performances of other state-of-the-art (SOTA)
models, DEQs are still very expensive to train because backpropagation requires solving a
Jacobian-based linear system at every gradient evaluation [13]. To this end, a Jacobian-Free
Backpropagation (JFB) approach was recently introduced to avoid solving the linear system
during training [25].

The theory of JFB allows us to replace the Jacobian matrix with the identity under certain
conditions. JFB not only maintains a fixed memory cost but also avoids the substantial
computational cost of Jacobian-based methods while ensuring a descent direction [25]. It has
performed well in image classification tasks [25], computational tomography [26, 27], traffic
routing [28], and finding the shortest paths [29]. A variation of JFB, where the inverse
Jacobian was approximated as a perturbed identity matrix, also proved to be successful in
image classification [24]. When the norm between the approximation and the true inverse
grows beyond a threshold, this method then falls back to JFB. In this paper, we investigate
the effectiveness of JFB in training implicit networks for inverse problems arising from image
deblurring 1.

2. Related Works.

2.1. Deep Unrolling for Inverse Problems. Deep unrolling methods [4, 5, 6, 7, 8, 9, 10]
for inverse problems involve a fixed number of layers where each layer resembles the iteration
of an optimization algorithm. These networks can thus be interpreted as an algorithm to solve
an optimization problem with a fixed number of iterations and a regularizer parametrized to
adaptively regularize the training process that minimizes the loss of the estimate at each
iteration. Deep unrolling has achieved successful results in other inverse problems in imaging,
such as low-dose CT [7], light-field photography [10], blind image deblurring [30], and emission
tomography [31]. This method involves a finite number of iterations K that is fixed. From
prior numerical experiments [12, 23], K is usually a relatively small number chosen as a result
of fine-tuning and computational limitations in time and space for both training and inference.

2.2. Implicit Networks. Deep equilibrium models (DEQs), a type of implicit networks,
were proposed [12, 18, 19, 20, 21, 22, 32]. DEQ requires less memory because it is designed
to have only one layer of actual weights (weight-tied) and the original input is fed into each
of the identical layers (input-injected). It solves the fixed-point problem and uses implicit
differentiation to calculate the gradient for backpropagation. On the other hand, SOTA deep
feed-forward networks such as deep unrolling have memory issues since they store intermediate
values while iterating through each network layer.

3. Mathematical Background.

3.1. Problem Setup. We have N noisy, blurred images {di}Ni=1 ⊆ Rn referred to as
measurements. The corresponding original images are denoted as {xi}Ni=1 ⊆ Rn. We use the
model:

(3.1) d = Ax+ ε,

1Access the GitHub repository at https://github.com/lliu58b/Jacobian-free-Backprop-Implicit-Networks

67

https://github.com/lliu58b/Jacobian-free-Backprop-Implicit-Networks


TRAINING IMPLICIT NETWORKS FOR IMAGE DEBLURRING USING JFB

where x, d ∈ Rn, the forward operator A : Rn 7→ Rn is a mapping from signal space of original
images to measurement space, and ε ∈ Rn is a noise term that models measurement errors.

3.2. Traditional Optimization for Deblurring. A natural idea is to apply A−1 to (3.1)
and obtain x∗ = A−1(d − ε) when A is invertible, which is the case in denoising (A = I)
and deblurring (A is the Toeplitz matrix of a convolution operator). However, doing this
can amplify the noise and result in really poor reconstructions when A is ill-conditioned.
Therefore, we estimate the true image x∗ by formulating a regularized optimization problem
that minimizes the difference between the reconstructed image and the observed image:

(3.2) x∗ = argmin
x∈Rn

1

2
||Ax− d||22 + λR(x),

where λ > 0 is a tunable parameter and R(x) is a regularizer chosen based on common
practice, such as Total Variation [33], or potentially learned from given data [34, 35, 36, 37].

We can solve (3.2) by applying the gradient descent algorithm, and the iteration is

(3.3) xk+1 = xk − η
(
∇x||Axk − d||22 + λ∇xR(xk)

)
, k = 0, 1, . . . ,K − 1

where K is the number of steps of gradient descent, η > 0 is the step size, and x0 is an initial
guess.

3.3. Anderson Acceleration. To find x such that x = f(x) for a known function f , one
method is to use fixed-point iteration, where we perform xk+1 = f(xk) for k ∈ N starting
from an initial guess x0. However, fixed-point iteration tends to converge slowly or not at all.
On the other hand, Anderson acceleration [38, 39] serves as an alternative method to find a
fixed point. We first translate the problem into finding the root of g(x) = f(x)− x. The idea
is to assign a linear combination of the past to the current iteration. Given an initial guess
x0 and a parameter m for the maximum length of the past considered, Andersen acceleration
[38, 39] does the following:

Algorithm 3.1 Anderson acceleration

for k = 1, 2, · · · do
Set mk = min(m, k)
Set Gk = [g(xk−mk) · · · g(xk)]
Find αk ∈ Rmk+1 that solves

min
α∈Rmk+1

||Gkα||22 s.t. α0 + . . .+ αmk
= 1

Update: xk+1 =

mk∑
i=0

αk
i f(x

k−mk+i)

end for

3.4. Implicit Networks and Challenges. Implicit networks [40] are newly proposed mod-
els that are capable of representing a wide range of feedforward models. The idea is to find a
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fixed point for their weight-tied layers, modeled as a non-linear function T (·), and map it to
the inference space. We formulate our implicit network NΘ(·) as follows:

(3.4)
[Equilibrium equation] TΘ(x) = x,
[Prediction equation] NΘ(d) = x∗,

where Θ denotes the trainable parameters, and

(3.5) TΘ(x) = x− η
(
∇x||Ax− d||22 + SΘ(x)

)
with SΘ(·) being a trainable network containing all the weights of NΘ(·). We then perform
iterations to find the fixed point x∗(d) of TΘ(·) in the [Equilibrium equation] in (3.4):

(3.6) xk+1 = TΘ(x
k) = xk − η

(
∇x||Axk − d||22 + SΘ(x

k)
)
, k = 0, 1, . . . ,K − 1

where η > 0 is the step size, x0 is an initial “guess” that depends on the input d, and K is
the number of iterations (layers) in our neural network NΘ(·). Note that the [Equilibrium
equation] is satisfied as K → ∞ when TΘ(·) is a contraction. The output of the network is
NΘ(d) := x∗ given by the [Prediction equation], which depends on d since x∗ is the fixed point
for the [Equilibrium equation], where TΘ(x) involves d, as in Eq. 3.6. This iterative scheme is
called DE-GRAD in [12]. We can observe that (3.6) and (3.3) have the same form, only differing
in that we replace the gradient of a chosen regularizer λ∇xR with a trainable network SΘ.
Convergence of the iterative scheme (3.6) is guaranteed under certain assumptions proven
in [12, Theorem 1]. For completeness, we restate it here.

Theorem 3.1 (Convergence of DE-GRAD). Assume that SΘ − I is ϵ−Lipschitz, and let
L = λmax(ATA) and µ = λmin(ATA), where λmax(·) and λmin(·) denote the maximum and
minimum eigenvalues, respectively. If the step-size parameter η > 0 is such that η < 1/(L+1),
then the DE-GRAD iterative map TΘ(x) in 3.5 satisfies

(3.7) ||TΘ(x; d)− TΘ(x
′; d)|| ≤ (1− η(1 + µ) + ηϵ)︸ ︷︷ ︸

:=γ

||x− x′||

for all x, x′ ∈ Rn. If ϵ < 1 + µ, then γ < 1 and the iterates of DE-GRAD converge.

To update the trainable parameters Θ, we set up our objective as

(3.8) min
Θ

E(x,d)∼D [ℓ(x,NΘ(d))]

and then use the gradient descent scheme after setting up a loss function ℓ (in our numerical
experiments, this is chosen to be mean squared error 1

n ||x−NΘ(d)||2). When backpropagating

our implicit network, the hard part is to calculate dx∗

dΘ , which can be derived by performing
implicit differentiation on the [Equilibrium equation] in (3.4):

(3.9)
dx∗

dΘ
=

∂TΘ(x
∗)

∂x∗
dx∗

dΘ
+

∂TΘ(x
∗)

∂Θ

rearrange terms
=⇒

(
I − ∂TΘ(x

∗)

∂x∗

)
dx∗

dΘ
=

∂TΘ(x
∗)

∂Θ
69
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Then, we can substitute this into the update rule of gradient descent:

(3.10) Θ← Θ− α
dℓ

dx∗
J −1∂TΘ(x

∗)

∂Θ
,

where α > 0 is the learning rate and J = (I − dTΘ(x∗)
dx∗ ) is the Jacobian matrix. This update

rule is costly due to the need to invert J , which motivates the search for other ways to speed
up the backpropagation process.

4. Proposed Methodology. We propose using JFB [25], a recently-introduced algorithm
that updates the trainable parameters Θ at a lower computational cost. The idea is to
circumvent the Jacobian calculation in (3.10) by replacing J with the identity I, leading to
an approximation of the true gradient:

(4.1) pΘ =
dℓ

dx∗
∂TΘ(x

∗)

∂Θ

which is still a descent direction for the loss function ℓ with more constraints on TΘ [25].
Approximating J with I is equivalent to taking the first term of the Neumann series

(4.2)

(
I − ∂TΘ(x

∗)

∂x∗

)−1

=

∞∑
k=0

(
∂TΘ(x

∗)

∂x∗

)k

.

Some researchers adopt the first several terms for finer approximations while training
Jacobian-based implicit networks [32]. Note the difference here compared to implicit networks
is that we are inverting the identity matrix rather than the Jacobian J in (3.10).

Algorithm 4.1 describes our proposed algorithm, DE-GRAD with JFB. We start by ini-
tializing a neural network SΘ whose details are specified in Network Architecture in Section
5. Hence, we can build TΘ and NΘ according to (3.5) and [Prediction equation] in (3.4),
respectively. Given a pair of measurement and truth (x, d), we use Anderson acceleration
[38, 39] to facilitate the process of finding fixed points for the mapping TΘ(·) while keeping
torch.no grad(), like in other works [12, 21, 23, 25]. After finding the root x∗, we resume the
gradient tape and output NΘ(d) = TΘ(x

∗) = x∗ as an input of loss ℓ, which is implemented as

the mean squared error in this paper. Then, we use PyTorch to calculate dℓ
dx∗

∂TΘ(x∗)
∂Θ = dℓ

dx∗
∂x∗

∂Θ
and update the trainable parameters Θ.

The last step above is O(n2) because we fixed the dimension of parameters once training
starts. Even though JFB is not always performing the steepest descent, the JFB step is much
less costly to calculate, which lowers its overall cost while ensuring a descent direction. In
contrast, implementing other models with implicit differentiation requires multiplying by dℓ

dx∗

and ∂TΘ(x∗)
∂Θ , which is also O(n2), to the left and right of the inverse J −1 [32]. The complexity

of these update rules is augmented mainly by inverting the Jacobian, which is hard to build 
explicitly and requires solving a large linear system.

5. Experimental results. We mimic the format in [12] while implementing our JFB ap-
proach. That is, we perform our experiments on the same dataset and use the same quality 
measures for image reconstruction.
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Algorithm 4.1 DE-GRAD with JFB

Require: Implicit network NΘ(·) with weight-tying layers TΘ(·) as in (3.5).
Set learning rate α > 0.
for measurement-truth pair (d, x) in training set do
Find fixed point of TΘ with Anderson acceleration while torch.no grad().
Output: NΘ(d) = TΘ(x

∗).
Calculate loss: ℓ(x∗, x) = ||x∗ − x||22.
Update: Θ← Θ− α dℓ

dx∗
∂TΘ(x∗)

∂Θ .
end for

5.1. Experiment Setup.
• Data: We use a subset of size 10,000 of the CelebA dataset [41], which contains around
200,000 centered human faces with annotations. Among the subset of 10,000, 8,000
images are used for training and the rest are left for testing purposes.
• Preprocessing: Each image is resized to 128×128 pixels with 3 channels (RGB) and
normalized to the range [0, 1] with mean 1

2 for each channel. The blurred images are
generated using Gaussian blurring kernels of size 5 × 5 with variance 1, i.e., A is a
Gaussian blur operator. The measurements are then crafted by adding white Gaussian
noise with standard deviation σ = 10−2 to the blurred images.

• Network Architecture: We use a convolutional neural network (CNN) structure
with 17 layers. Except for the first and last CNN layer, each intermediate layer consists
of 3× 3 convolutional kernels that mapping from 64 channels to 64 channels, followed
by batch normalization and element-wise ReLU activation function. For the first layer,
it is a CNN layer with 3× 3 kernels and raises the RGB image into 64 channels. The
last layer is also a CNN, mapping its input from 64 channels to 3 channels. To ensure
that we have a contractive mapping TΘ, we scale the weights in each layer with a
constant γ < 1 using spectral normalization [42].

• Training: With the aforementioned data and preprocessing specifics, the training
strictly follows Algorithm 4.1, where TΘ(·) is the same as defined in (3.6). As part of
TΘ, the trainable network SΘ(·) is initialized as the above “Network Architecture” and
is also pre-trained as practiced in [12] to observe an improvement in reconstruction.
We let step size η = 10−3. The stopping criterion is either the maximal change in the
norm of the subsequent iteration is too small or we exceed the maximum number of
iterations.
• Visualization: We first visualize the average training and testing loss per image over
the number of epochs in Fig. 1, running on a sample of 2000 images, with an 80-20
training-testing split.

We see that as the number of epochs increases, the training loss decreases, while
the testing loss remains relatively high. For this proof of concept, we are using only
a subset of our dataset, so it is hard for the model to generalize well to the testing
images. Also, the JFB algorithm only promises a descent direction for the loss function,
rather than a technique that learns the structure of the data distribution. We then
visualize examples from the DE-GRAD model trained using JFB in Table 1, using the
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Figure 1. Training and Testing Losses of the DE-GRAD Model with JFB. Training losses are calculated
on the training set of size 8,000. Testing losses are calculated on the test set of size 2,000.

Ground Truth

Noisy Blurred Image

Direct Inverse

Gradient Descent

DE-GRAD with JFB

Table 1
Visualization of Several Images across Different Models

same four images for each row. Ground truths are the images in CelebA dataset resized
to 128 × 128 pixels. Noisy blurred images are generated by a 5 × 5 Gaussian kernel
mentioned above. Direct inverse images are the results of applying the inverse of A
on blurred images, which is defined in (3.1). Gradient descent images are obtained by
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applying gradient descent using total variation. JFB images are obtained using Noisy
blurred images as inputs with JFB-trained weights for DE-GRAD.

5.2. Comparison of Quality. We compare our results obtained from JFB with total vari-
ation (TV) [33], Plug-n-Play [43], and Deep Equilibrium (DEQ) [12]. TV is a classical method
for image denoising that aims to preserve the sharp edges of the image [33]. Plug-n-Play is
a framework that uses denoising algorithms as priors for model-based image reconstruction
[12]. The metrics we use to assess the quality of reconstructed images are peak-signal-to-noise
ratio (PSNR) and structural similarity index measure (SSIM) [44]. The values reported in
Table 2 are the average PSNR and SSIM values calculated on the test set.

To compare against TV, Plug-n-Play, and Deep Equilibrium, we followed the same set-up
in [12]: blurry images are simulated using 9 × 9 pixel Gaussian blur kernel with variance 5
and additive white Gaussian noise with variance σ = 0.01. Although we have not achieved
better results than DEQs, which find the true gradient in a complicated manner in (3.10), we
currently observe results that are competitive with other techniques. TV

Total Variation Plug-n-Play Deep Equilibrium JFB (Ours)

PSNR 26.70 29.77 32.43 26.88

SSIM 0.90 0.88 0.94 0.91
Table 2

Comparison of PSNR and SSIM values on the test set across models

5.3. Comparison of Time and Complexity. We compare the complexity per gradient/step
computation using JFB and Jacobian-based backpropagation on the CelebA dataset. Here,
n = 128 × 128 × 3 = 49152 after preprocessing. Importantly, we note that JFB requires
a Jacobian matrix-vector product per sample, leading to complexity O(n2). Jacobian-based
backpropagation, however, also requires the inverse of J , i.e., solving a linear system as shown
in (3.10).

Näıvely using PyTorch for gradient tracking and taking the inverse of the Jacobian during
our experiments depletes all possible RAM (more than 32 Gigabytes). Hence, we use the
conjugate gradient method to solve the linear system in (3.10). The idea is to let w = dℓ

dx∗J −1,

and solve wJJ T = dℓ
dx∗J T instead of wJ = dℓ

dx∗ .
In our experiments, we fix a  b atch o f 1 6 i mages i n t he C elebA d ataset, r un b oth the 

Jacobian-based update and JFB for 20 repetitions, and then record the average time needed 
in seconds for each parameter update. The dimensions of the images are square with 3 
channels, so the lengths vary from 16 to 128 with an increment of 16.

Figure 2 shows that while maintaining comparable image reconstruction quality measured 
by PSNR and SSIM, JFB algorithm is faster and easier to implement with auto-differentiation 
libraries such as Tensorflow or PyTorch.

6. Conclusions. In this paper, we explored JFB for implicit networks with applications in 
image deblurring. Our approach recovers images rather effectively across the test s et. More-
over, JFB is competitive with other state-of-the-art methods whose hand-crafted parameters 
have been fine tuned across all stages. We also demonstrated the advantage of JFB in terms of
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Figure 2. Computation Time per Batch for Jacobian-based Method v.s. DE-GRAD with JFB

its computational complexity and ease of implementation in practice. Future work involves ap-
plication to other inverse problems like denoising [45, 33], geophysical imaging [46, 47, 48, 49],
and more.
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