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Abstract

In mathematics, a dynamical system is a system in which a point moves in a geometrical
space as a function of time. This paper considers one type of dynamical systems where the
time dependence function is given by high dimensional ordinary differential equations. This
mathematical model can be used to describe a wide variety of real world phenomena as simple
as a clock pendulum or as complex as a chaotic Lorenz system. Stability is an important topic
in the studies of the dynamical system. A major challenge is that the analytical solution of a
time-varying nonlinear dynamical system is in general not known. Lyapunov’s direct method
is a classical approach used for many decades to study stability without explicitly solving the
dynamical system, and has been successfully employed in numerous applications ranging from
aerospace guidance systems, chaos theory, to traffic assignment. Roughly speaking, an equilib-
rium is stable if an energy function monotonically decreases along the trajectory of the dynamical
system. This paper extends Lyapunov’s direct method by allowing the energy function to fol-
low a rich set of dynamics. More precisely, the paper proves two theorems, one on globally
uniformly asymptotic stability and the other on stability in the sense of Lyapunov, where sta-
bility is guaranteed provided that the evolution of the energy function satisfies an inequality
of a non-negative Hurwitz polynomial differential operator, which uses not only the first-order
but also high-order time derivatives of the energy function. The classical Lyapunov theorems
are special cases of the extended theorems. The paper provides an example in which the new
theorem successfully determines stability while the classical Lyapunov’s direct method fails.

1 Introduction

Consider a continuous time dynamical system

ẋ = f(x, t) (1)

where x ∈ Rn is a point in an n-th dimensional space and t is a one dimensional variable representing
time. x(t) is the state of the dynamical system at time t and represents the trajectory of the point
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as time passes. The initial state is given as x(t0) = x0. If f(x, t) is only a function of x, the system
is called time-invariant; otherwise, it is time-varying. Furthermore, if f(x, t) = Ax for some square
matrix A, it is linear time-invariant. The dynamical system is a mathematical model widely used
in many disciplines including engineering, physics, economics and biology.

A point x∗ is an equilibrium point of (1) if f(x∗, t) = 0 for any t ≥ 0. If the initial state
x0 = x∗, then the state will remain at x∗ forever. The stability of the equilibrium point is to
characterize whether the state will return to x∗ after certain perturbation away from it or diverge.
Stability is an important topic in the studies of the dynamical system. The stability criteria for
a linear time-invariant system have been well developed. However, it is difficult to examine the
stability of a nonlinear or time-varying system, because the analytical solution of such a system is
in general not known.

Lyapunov’s direct method, which was founded in A. M. Lyapunov’s thesis The General Problem
of Stability of Motion at Moscow University in 1892, has been a widely used approach to study the
stability of the dynamical system (Parks, 1992). Rather than solving (1) analytically, the method
employs a scalar positive definite function V (x, t) intuitively representing the energy of the state,
where V (x∗, t) = 0 and V (x, t) > 0 for any x 6= x∗. V̇ (x, t) is the time derivative of V (x, t) along
the trajectory. If V̇ (x, t) < 0 for any x except at x∗, then the energy decreases monotonically over
time and the trajectory converges to x∗. Lyapunov’s direct method has been employed in numerous
applications ranging from aerospace guidance systems, chaos theory, to traffic assignment (Parks,
1992).

It should be pointed out that Lyapunov’s direct method is sufficient but not necessary. Intu-
itively, for example, the dynamical system is still stable even if the energy does not monotonically
decrease as long as it eventually converges to 0. This paper will develop this idea rigorously and
propose a new set of stability criteria, which are more relaxed than the conventional Lyapunov
stability criteria. Specifically, the energy function is still employed but does not have to be mono-
tonically decreasing. Instead, the evolution of the energy is to satisfy an inequality of a Hurwitz
polynomial differential operator defined in the paper, which uses not only the first-order but also
high-order time derivatives of V (x, t).

The remaining of this paper is organized as follows. Section 2 introduces two commonly used
definitions of stability, namely stability in the sense of Lyapunov and asymptotic stability, and
reviews the Lyapunov’s direct method. Section 3 introduces the notion of a Hurwitz polynomial
and proposes a definition of non-negative Hurwitz polynomial differential operator. Section 4
presents the main results of this paper, i.e., the new set of stability criteria extending Lyapunov’s
direct method. Section 5 shows an example in which the new criteria can determine the stability
while the conventional Lyapunov stability criteria cannot. The paper is concluded in Section 6.

2 Definitions of Stability and Lyapunov’s Direct Method

For the sake of simplifying the description, shift the origin of the system by −x∗ so that the
equilibrium point is at x∗ = 0. The following two definitions of stability are commonly used (Teschl,
2012).

Definition 2.1 Stability in the sense of Lyapunov

The equilibrium point x∗ = 0 is stable in the sense of Lyapunov at t = t0 if for any ε > 0
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Figure 1: Illustration of two types of local stability. For global asymptotic stability, ∆ =∞.

there exists a δ(t0, ε) > 0 such that if ‖x0‖ < δ(t0, ε) then
∥∥x(t)

∥∥ < ε, ∀t ≥ t0. Furthermore, x∗ is
uniformly stable if δ is not a function of t0.

Definition 2.2 Asymptotic stability

The equilibrium point x∗ = 0 is asymptotically stable at t = t0 if it is stable in the sense
of Lyapunov and there exists a ∆(t0) > 0 such that if ‖x0‖ < ∆(t0) then limt→∞

∥∥x(t)
∥∥ = 0.

Furthermore, x∗ is uniformly asymptotically stable if it is uniformly stable and ∆ is not a function
of t0. x∗ is globally asymptotically stable if limt→∞

∥∥x(t)
∥∥ = 0 for x0 anywhere in Rn.

Figure 1 illustrates the concepts of the two types of stability in a two dimensional space. The
system in Figure 1(a) is stable in the sense of Lyapunov where if x(t0) is within a small circle of
radius δ, the trajectory x(t) is always within a large circle of radius ε for any t ≥ t0. The system
in Figure 1(b) is asymptotically stable where if x(t0) is within a circle of radius δ, the trajectory
x(t) eventually converges to the origin as t → ∞, although

∥∥x(t)
∥∥ does not necessarily decrease

monotonically as t increases. Clearly asymptotic stability is stronger than Lyapunov stability.

Lyapunov’s direct method can be used to determine the asymptotic stability of the dynamical
system without analytically solving the differential equation (1), as stated in the following theorem
(Narendra & Annaswamy, 1989).

Theorem 2.3 Lyapunov theorem for global uniform asymptotic stability

The dynamical system (1) is globally uniformly asymptotically stable if a scale function V (x, t)
with continuous partial derivative with respect to x, t exists and if the following conditions are
satisfied:

1. There exists continuous non-descending functions α(‖x‖) and β(‖x‖), such that ∀t ≥ t0,‖x‖ >
0,

0 < α(‖x‖) ≤ V (x, t) ≤ β(‖x‖), (2)

α(0) = β(0) = 0, V (0, t) = 0, (3)

α(‖x‖)→∞ with ‖x‖ → ∞. (4)
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Figure 2: Illustration of conditions on V (x, t) and V̇ (x, t) in the stability theorems of Lyapunov.
The energy function V (x, t) is bounded by α(‖x‖) below and β(‖x‖) above. The time derivative

V̇ (x, t)

∣∣∣∣
ẋ=f(x,t)

is bounded by −W (‖x‖) above.

2. There exists a continuous non-descending function W (‖x‖) such that ∀t ≥ t0,‖x‖ ≥ 0,

V̇ (x, t)

∣∣∣∣
ẋ=f(x,t)

≤ −W (‖x‖), (5)

W (‖x‖) > 0,∀‖x‖ > 0, and W (0) = 0. (6)

Here the time derivative is given by

V̇ (x, t)

∣∣∣∣
ẋ=f(x,t)

=
∂V (x, t)

∂t
+
∂V (x, t)

∂x
f(x, t). (7)

The above two sets of conditions are illustrated in Figure 2.

Similarly the following theorem (Murray, Li, & Sastry, 1994) states Lyapunov’s direct method
to determine the stability in the sense of Lyapunov.

Theorem 2.4 Lyapunov theorem for uniform stability in the sense of Lyapunov

The dynamical system (1) is uniformly stable in the sense of Lyapunov if a scale function
V (x, t) with continuous partial derivative with respect to x, t exists and if the following conditions
are satisfied:

1. There exists continuous non-descending functions α(‖x‖) and β(‖x‖) and some constant Ω,
such that ∀t ≥ t0, 0 <‖x‖ < Ω,

0 < α(‖x‖) ≤ V (x, t) ≤ β(‖x‖), (8)

α(0) = β(0) = 0, V (0, t) = 0, (9)

α(‖x‖)→∞ with ‖x‖ → ∞. (10)

2. There exists a continuous non-descending function W (‖x‖) such that ∀t ≥ t0,‖x‖ < Ω,

V̇ (x, t)

∣∣∣∣
ẋ=f(x,t)

≤ −W (‖x‖), (11)

W (‖x‖) ≥ 0, and W (0) = 0. (12)
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Figure 3: Illustration of time evolution of V (x(t), t) in the two stability theorems of Lyapunov.

The main difference between the two theorems lies in (6) and (12). To ensure asymptotic
stability, W (‖x‖) is strictly positive except at ‖x‖ = 0. For the stability in the sense of Lyapunov,
W (‖x‖) only needs to be non-negative. In addition, conditions (2), (5) and (6) are satisfied globally
for x ∈ Rn, while (8), (11) and (12) are satisfied locally near the equilibrium point ‖x‖ < Ω.

Because x(t) is a function of t, V (x, t) along the trajectory is a function of only t. For example,
for asymptotic stability, if the conditions (2) to (6) are met, V (x(t), t) monotonically decreases to 0
because the time derivative is strictly negative unless

∥∥x(t)
∥∥ = 0. The time evolution of V (x(t), t)

in the two stability theorems of Lyapunov is illustrated in Figure 3(a).

Note that monotonic decrease in V (x(t), t) is sufficient but not necessary to ensure the con-
vergence of V (x(t), t) to 0 or some constant. Figure 3(b) shows two examples. In one example,
V (x(t), t) goes up and down and converges to 0 and in the other example V (x(t), t) does not
even converge to any constant although it does not diverge either. We will provide an example of
V (x(t), t) in Section 5, Figure 9, to show the idea of Figure 3(b). The main contribution of the
paper is to characterize such dynamics of the energy function V (x(t), t). To this end, the next
section defines a non-negative Hurwitz polynomial differential operator.

3 Non-negative Hurwitz Polynomial Differential Operator

Denote differential operator D =
d

dt
. An m-th degree polynomial differential operator is given

by

P (D) =

(
d

dt

)m
+ a1

(
d

dt

)m−1

+ · · ·+ am, (13)

where the constant coefficients a1, . . . , am are real. In the special case of m = 0, a0 = 1. The
corresponding polynomial is

P (s) = sm + a1s
m−1 + · · ·+ am. (14)

Denote λ1, . . . , λl the complex roots of polynomial P (s) and n1, . . . , nl the corresponding multiplic-
ities where

∑l
j=1 nj = m. l is the number of distinct complex roots.

A time-invariant linear ordinary differential equation

dmy(t)

dtm
+ a1

dm−1y(t)

dtm−1
+ · · ·+ amy(t) = z(t) (15)

can be written in the form of a polynomial differential operator

P (D)[y(t)] = z(t). (16)
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Figure 4: Illustration of input and output of a linear system corresponding to linear differential
equation P (D)[y(t)] = z(t).

This linear differential equation is said to be defined by P (D). y(t) and z(t) are called the output
and input of the corresponding linear system, respectively, as shown in Figure 4.

The solution of (15) or (16) with input z(t) and initial conditions y(0),
dy(0)

dt
, . . .,

dm−1y(0)

dtm−1

is given by (Lathi, 2005)
y(t) = y1(t) + y2(t), (17)

where y1(t) is the zero-state response and y2(t) is the zero-input response given by

y2(t) =
l∑

j=1

 nj∑
k=1

ck,jt
k−1

 eλjt. (18)

For unit step input function

z(t) =

{
1, if t ≥ 0,

0, otherwise,
(19)

y1(t) is called the zero-state unit step response and given by

y1(t) =
1

am

1−
l∑

j=1

 nj∑
k=1

dk,jt
k−1

 eλjt

 , (20)

Constant coefficients dk,j are completely determined by P (D). ck,j is a function of both P (D) and

the initial conditions y(0),
dy(0)

dt
, . . .,

dm−1y(0)

dtm−1
.

The notion of zero-state unit step response is meaningful only when am 6= 0, which holds for
any Hurwitz polynomial differential operator P (D) defined next.

Definition 3.1 Hurwitz polynomial and Hurwitz polynomial differential operator (Kuo,
1966)

Polynomial P (s) is said to be Hurwitz if the roots of P (s), λ1, . . . , λl, all have negative real
parts. Polynomial differential operator P (D) is Hurwitz if the corresponding polynomial P (s) is
Hurwitz.

If P (D) is Hurwitz, then am 6= 0, because otherwise P (s) has a root at λ = 0.

It follows from (20) and (18) that if (16) is Hurwitz, then

lim
t→∞

y1(t) =
1

am
, (21)

lim
t→∞

y2(t) = 0. (22)
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Lemma 3.2
∫ t
t0
y1(τ) dτ goes to infinity as t→∞ for any fixed t0.

Proof This follows immediately from (21).

We next define a new type of Hurwitz polynomial differential operator, which has not been
studied in the literature so far, but will be used in Section 4.

Definition 3.3 Non-negative Hurwitz polynomial differential operator

Hurwitz polynomial differential operator P (D) is non-negative if the zero-state unit step re-
sponse defined in (20), y1(t) ≥ 0, ∀t ≥ 0.

Lemma 3.4 Any Hurwitz polynomial differential operator P (D) for m = 0, 1, 2, 3 is non-negative.

Proof Solve the m coefficients dk,j of the zero-state unit step response (20) by setting the initial
conditions to zero

y(0) =
dy(0)

dt
= . . . =

dm−1y(0)

dtm−1
= 0.

For m = 0, (15) is reduced to y(t) = z(t). Thus y1(t) = 1. P (D) is non-negative.

For m = 1,
dy(t)

dt
+ a1y(t) = z(t). For the differential operator to be Hurwitz, a1 > 0. The

zero-state unit step response is

y1(t) =
1

a1

(
1− e−a1t

)
≥ 0,∀t ≥ 0.

For m = 2,
d2y(t)

dt2
+ a1

dy(t)

dt
+ a2y(t) = z(t). For the differential operator to be Hurwitz,

a2 > 0. There are three cases of the roots of P (s).

• First, distinct real roots λ1, λ2 < 0.

y1(t) =
1

a2

(
1− λ2

λ2 − λ1
eλ1t − λ1

λ1 − λ2
eλ2t

)
.

• Second, distinct complex roots λ1,2 = σ ± ωi with σ < 0.

y1(t) =
1

a2

(
1−

(
cos(ωt)− σ

ω
sin(ωt)

)
eσt

)
.

• Third, identical real root λ1 < 0.

y1(t) =
1

a2

(
1− (1− λ1t) e

λ1t
)
.
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The minimum value of y1(t) can be obtained by letting ẏ1(t) = 0. It can be verified by algebra that
the minimum value is non-negative in all of the three cases. Therefore, y1(t) ≥ 0, ∀t ≥ 0,

For m = 3,
d3y(t)

dt3
+ a1

d2y(t)

dt2
+ a2

dy(t)

dt
+ a3y(t) = z(t). For the differential operator to be

Hurwitz, a3 > 0. There are four cases of the roots of P (s).

• First, distinct real roots λ1, λ2, λ3 < 0.

y1(t) =
1

a3

(
1− d1e

λ1t − d2e
λ2t − d3e

λ3t
)
,

d1 =
λ2λ3

(λ2 − λ1)(λ3 − λ1)
, d2 =

λ3λ1

(λ3 − λ2)(λ1 − λ2)
, d3 =

λ1λ2

(λ1 − λ3)(λ2 − λ3)
.

• Second, a pair of complex roots λ1,2 = σ ± ωi with σ < 0 and one real root λ3 < 0.

y1(t) =
1

a3

(
1− d3e

λ3t − bσ
(
bc cos(ωt)− bs sin(ωt)

)
eσt
)
,

d3 =
σ2 + ω2

(σ − λ3)2 + ω2
, bσ =

λ3

ω
(
(λ3 − σ)2 + ω2

) ,
bc = (ωλ3 − 2σω) , bs =

(
λ3σ − σ2 + ω2

)
.

• Third, a pair of identical real roots λ1 < 0 and one distinct real root λ2 < 0.

y1(t) =
1

a3

(
1−

(
d1,1 + d2,1t

)
eλ1t − d2e

λ2t
)
,

d1,1 =
λ2

2 − 2λ1λ2

λ2
1 − 2λ1λ2 + λ2

2

, d2,1 =
λ1λ2

λ1 − λ2
, d2 =

λ2
1

λ2
1 − 2λ1λ2 + λ2

2

.

• Fourth, three identical real roots λ1 < 0.

y1(t) =
1

a3

1−

(
1− λ1t+

λ2
1

2
t2

)
eλ1t


Similarly to the case of m = 2, y1(t) ≥ 0,∀t ≥ 0, in all of the four cases. �

It should be pointed out that not all Hurwitz polynomial differential operators are non-negative.
Figure 5 shows the zero-state unit step response y1(t) of m = 4 where polynomial P (s) has a pair of
complex roots σ1±ω1i = −0.1±i√

(−0.1)2+12
each with multiplicity 2. It is clear that while y1(t) converges,

y1(t) < 0 for some t. This is an example where P (D) is not non-negative. As the damping factor
increases, the polynomial differential operator can be made non-negative. Figure 5 shows that
y1(t) > 0,∀t when the complex roots become σ2 ± ω2i = −0.5±i√

(−0.5)2+12
.
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Figure 5: Zero-state unit step response y1(t) defined in (20) of two 4-th order Hurwitz polynomial
differential operators.

4 Main Results

The higher order time derivatives of V (x, t) along the trajectory can be derived from (7). For
example, the second order time derivative is given by

d2V (x, t)

dt2

∣∣∣∣
ẋ=f(x,t)

=
∂2V

∂t2
+ 2

∂2V

∂x∂t
f +

∂2V

∂x2
f2 +

∂V

∂x

∂f

∂x
f +

∂V

∂x

∂f

∂t
. (23)

For d2V (x,t)
dt2

to exist, all the second order partial derivatives of V with respect to x, t have to exist
and the first order partial derivatives of f with respect to x, t have to exist. In general, for the m-th
order time derivative dmV (x,t)

dtm to exist, all the m-th order partial derivatives of V with respect to
x, t have to exist and the (m− 1)-th order partial derivatives of f with respect to x, t have to exist.

Theorem 4.1 Extended theorem for global uniform asymptotic stability

The dynamical system (1) is globally asymptotically uniformly stable if a scale function V (x, t)
with continuous (m+ 1)-th order time derivative along the trajectory exists such that

1.

max
q=1,...,m

∣∣∣∣∣d(q)V (x, t0)

dtq

∣∣∣∣∣ ≤ γ(‖x‖), (24)

where γ(‖x‖) is a continuous non-descending function,

2. V̇ (x, t) along the trajectory given by (7) is bounded above by some positive function ρ(‖x‖)
when t is sufficiently large,

V̇ (x, t) ≤ ρ(‖x‖), (25)

i.e., V̇ (x, t) does not diverge to +∞ as t → ∞ as long as x(t) is finite, which is a much
weaker assumption than (5) and (6),
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and if the conditions in Theorem 2.3 are satisfied except that (5) is replaced by

P (D)[V̇ (x, t)]

∣∣∣∣
ẋ=f(x,t)

≤ −W (‖x‖), (26)

where P (D) is an m-th degree non-negative Hurwitz polynomial differential operator.

Proof Along the trajectory of (1), V (x, t)

∣∣∣∣
ẋ=f(x,t)

is a function of t. Denote

v(t) = V (x, t)

∣∣∣∣
ẋ=f(x,t)

, (27)

u(t) = P (D)[V̇ (x, t)]

∣∣∣∣
ẋ=f(x,t)

(28)

=
(
D · P (D)

)
[V (x, t)]

∣∣∣∣
ẋ=f(x,t)

. (29)

From the assumption of the theorem, v(t) ≥ 0, u(t) ≤ 0,∀t.

Equivalently, u(t) and v(t) can be considered the input and output, respectively, of a time-
invariant linear ordinary differential equation defined by the (m + 1)-th degree polynomial differ-
ential operator D · P (D). Thus, similar to (17), v(t) can be written in two independent parts

v(t) = v1(t) + v2(t), (30)

where v1(t) is the zero-state response of the differential equation with u(t) as the input and{
v1(t0), v̇1(t0), . . . , v

(m)
1 (t0)

}
= {0, 0, . . . , 0} , (31)

and v2(t) is the zero-input response with the initial conditions given by{
v2(t0), v̇2(t0), . . . , v

(m)
2 (t0)

}
=
{
V (x0, t0), V̇ (x0, t0), . . . , V (m)(x0, t0)

}
, (32)

where the time derivatives V̇ , . . . , V (m) are taken along the trajectory. The above two equivalent
representations are illustrated in Figure 6.

Furthermore, the linear system of D · P (D)[v(t)] = u(t) is equivalent to two cascaded linear
systems P (D)[r(t)] = u(t) and D[v(t)] = r(t) as shown in Figure 7. Therefore, v2(t) is given by

v2(t) =

∫ t

t0

r2(τ − t0) dτ + V (x0, t0) (33)

=

∫ t

t0

l∑
j=1

 nj∑
k=1

ck,j (τ − t0)k−1

 eλj(τ−t0) dτ + V (x0, t0), (34)

where r2 is the zero-input response of the linear system P (D)[r(t)] = u(t) and is given in (18).
As noted previously, λj , nj depend on P (D) and coefficients ck,j depend on P (D) and the initial

conditions
{
V̇ (x0, t0), . . . , V (m)(x0, t0)

}
. Because P (D) is Hurwitz, the real part of λj is negative

for any j. Therefore, v2(t) converges to some constant as t→∞.
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Figure 6: Two equivalent system representations. (a) is a conventional representation using the
time-varying nonlinear dynamical system (1). (b) is a mathematically equivalent representation
using a time-invariant linear ordinary differential operator D · P (D) where u(t) is the input and
v(t) is the output.

Figure 7: Linear system of D · P (D) is equivalent to two cascaded linear systems P (D) and D.

Because v(t) ≥ 0,∀t, it follows that

v1(t) = v(t)− v2(t) > −M, for t > T, (35)

where T and M are large positive constants. Denote h(t) the zero-state unit impulse response of the
linear differential equation defined by P (D). From the property of impulse response, the zero-state
response of this linear differential equation with u(t) as the input is given by

r1(ξ) =

∫ ξ

t0

u(τ)h(ξ − τ) dτ. (36)

v1, the zero-state response of the linear differential equation defined by D ·P (D), is the integral of
r1(ξ) over ξ

v1(t) =

∫ t

t0

r1(ξ) dξ (37)

=

∫ t

t0

∫ ξ

t0

u(τ)h(ξ − τ) dτ dξ (38)

=

∫ t

t0

(∫ t−τ

0
h(η) dη

)
u(τ) dτ. (39)

Let y1(·) be the zero-state unit step response, which is given in (20). The inner integral of (39),
i.e.,

∫ t−τ
0 h(η) dη, is the unit step response of the linear differential equation defined by P (D) at

the instant of t− τ . It follows from the linear systems and signals (Lathi, 2005) that∫ t−τ

0
h(η) dη = y1(t− τ). (40)

Therefore,

v1(t) =

∫ t

t0

y1(t− τ)u(τ) dτ. (41)
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Figure 8: Illustration of v(t) when it does not converge to 0.

Because P (D) is non-negative, y1(t− τ) is non-negative for any t− τ , and because u(τ) ≤ 0,∀τ ,

y1(t− τ)u(τ) ≤ 0. (42)

We next show by contradiction that
lim
t→∞

v(t) = 0. (43)

Assume that v(t) does not converge to 0 as t → ∞. Then there exist a positive constant ε
and an infinite time sequence {ti}, i = 1, 2, . . ., such that v(ti) > ε, where ti+1 > ti and ti goes to
infinite as i→∞. From (2),

β(
∥∥x(ti)

∥∥) ≥ ε. (44)

Because β(·) is continuous and non-descending, there must exist a positive constant µ(ε) as a
function of ε such that ∥∥x(ti)

∥∥ ≥ µ(ε). (45)

Furthermore, because W (·) is continuous and non-descending,

W
(∥∥x(ti)

∥∥) ≥ ω (ε) , (46)

where ω (ε) is a positive constant as a function of ε. Therefore,

u(ti) ≤ −W
(∥∥x(ti)

∥∥) ≤ −ω (ε) . (47)

If a time instant t exist in interval (ti−1, ti) such that v(t) = ε
2 , then let si be the maximum value

of t such that t < ti and v(t) = ε
2 . Otherwise, let si = ti−1. Figure 8 illustrates the two different

cases of ti and si. In either case,

v(t) ≥ ε

2
,∀t ∈ [si, ti], (48)

By construction, intervals [si, ti] do not overlap each other except possibly at the end points.

We next show that an infinite number si exist such that v(si) = ε
2 . Assume on the contrary

that a number i0 exists such that for any i > i0, si = ti−1. This means v(t) > ε
2 ,∀t > ti0 . Then

u(t) ≤ −ω
(
ε
2

)
, where ω

(
ε
2

)
is a constant derived similarly to ω (ε) in (44), (45), and (46). From

(41) and (42)

v1(t) ≤
∫ t

ti0

y1(t− τ)u(τ) dτ (49)

≤ −ω
(
ε

2

)∫ t

ti0

y1(t− τ) dτ. (50)
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From Lemma 3.2, v1(t) goes to negative infinite as t→∞, which contradicts (35).

Denote the subsequence sik for which v(sik) = ε
2 . As shown below by contradiction, tik − sik

does not converge to 0 as k → ∞. Because of the continuity of v(t), there exists sik,1 ∈ [sik , tik ]
such that

v(t) ≤ ε, ∀t ∈ [sik , sik,1] (51)

v(sik,1) = ε. (52)

As illustrated in Figure 8, sik,1 is the minimum value of t such that t > sik and v(t) = ε. From the
mean-value theorem, there exists sik,2 ∈ [sik , sik,1] such that

v̇(sik,2) =
v(sik,1)− v(sik)

sik,1 − sik
≥

ε
2

tik − si,k
. (53)

Assume that limi→∞ tik − sik = 0. Then v̇(sik,2) goes to +∞. On the other hand, from (51),

v(sik,2) < ε. (54)

From (2), ∥∥x(sik,2)
∥∥ < K1(ε), (55)

where K1(ε) is a positive constant as a function of ε. Thus,

v̇(sik,2) < K2(ε) (56)

for some positive constant K2(ε), because V̇ (x, t) along the trajectory is bounded by ρ(‖x‖) when t
is sufficiently large from (25) in the theorem. Contradiction! Therefore, tik − sik does not converge
to 0 as k → ∞. In other words, there exist a positive constant ζ and a subsequence of {sik , tik},
referred to as {sikj , tikj }, j = 1, 2, . . . , such that

tikj − sikj ≥ ζ. (57)

Denote Φ the union of all the intervals [sikj , tikj ]. Similar to (50),

v1(t) ≤
∫

Φ
y1(t− τ)u(τ) dτ (58)

≤ −ω
(
ε

2

)∫
Φ
y1(t− τ) dτ. (59)

From (21), y1(t) ≥
(

1
am
− ε1

)
for a small positive constant ε1 when t is sufficiently large. Therefore,

as t→∞,

v1(t) ≤ −ω
(
ε

2

) ∞∑
j=1

(
tikj − sikj

)( 1

am
− ε1

)
. (60)

Because of (57), the right side and thus v1(t) go to negative infinite, which contradicts (35). Hence,
by contradiction, we have proved (43). From (2), we conclude that

lim
t→∞

∥∥x(t)
∥∥ = 0. (61)

Note that (61) holds for any x0, t0.
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Next we show that x∗ is uniformly stable in the sense of Lyapunov. For any given ε > 0, to
show that

∥∥x(t)
∥∥ < ε,∀t ≥ t0, from (2) it suffices to require that

v(t) = V (x, t) < (ε), ∀t, (62)

where ψ(ε) is a positive constant as a function of ε, because α(‖x‖) ≤ V (x, t) < ψ(ε) and α(‖x‖) is
continuous non-descending and α(‖x‖) = 0 only when ‖x‖ = 0. From (41) and (42),

v1(t) ≤ 0,∀t. (63)

Therefore, it suffices to require that

v2(t) = v(t)− v1(t) < (ε),∀t. (64)

From (34), v2(t) is a linear combination of coefficients ck,j and V (x0, t0),

v2(t) =
l∑

j=1

nj∑
k=1

ck,j

(∫ t

t0

(τ − t0)k−1 eλj(τ−t0) dτ

)
+ V (x0, t0). (65)

Because
(∫ t

t0
(τ − t0)k−1 eλj(τ−t0) dτ

)
converges to some constant as t→∞ for any k, j, the quantity

max
t

∑
k,j

∣∣∣∣∣
∫ t

t0

(τ − t0)k−1 eλj(τ−t0) dτ

∣∣∣∣∣
is bounded and only depends on P (D). Therefore, it suffices to require

max

(
max
k,j

∣∣ck,j∣∣ , V (x0, t0)

)
<

(ε)

maxt
∑

k,j

∣∣∣∫ tt0 (τ − t0)k−1 eλj(τ−t0) dτ
∣∣∣+ 1

(66)

The coefficients ck,j are obtained by solving a system of linear algebra equations from (32),

v
(q)
2 (t0) =

l∑
j=1

nj∑
k=1

ck,j
dq
(∫ t

t0
(τ − t0)k−1 eλj(τ−t0) dτ

)
dtq

∣∣∣∣
t=t0

= V (q)(x0, t0), (67)

for q = 1, 2, . . . ,m. This system of linear equations can be written in the standard form

Aw = b (68)

where vector w consists of coefficients ck,j , vector b consists of V (q)(x0, t0), and the elements of

A are
dq
(∫ t

t0
(τ−t0)k−1eλj(τ−t0) dτ

)
dtq

∣∣∣∣
t=t0

. A is a square because
∑l

j=1 nj = m. Furthermore, for any

Hurwitz P (D), A is nonsingular (Lathi, 2005). Thus,

‖w‖∞ ≤
∥∥∥A−1

∥∥∥
∞
‖b‖∞ . (69)

Therefore, to satisfy (66), which is an upper bound of ‖w‖∞, it suffices to require that

max
q=0,...,m

∣∣∣∣∣d(q)V (x0, t0)

dtq

∣∣∣∣∣ =‖b‖∞ ≤ γ(‖x0‖)

<

 Ψ(ε)

maxt
∑

k,j

∣∣∣∫ tt0 (τ − t0)k−1 eλj(τ−t0) dτ
∣∣∣+ 1

 /
∥∥∥A−1

∥∥∥
∞
, (70)
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Finally, because γ(‖x0‖) is a continuous non-descending function, it suffices to require that

‖x0‖ < δ(ε). (71)

for some positive δ(ε), which is independent of t0. From Definition 2.1, x∗ is uniformly stable.

Hence, from Definition 2.2, x∗ is globally asymptotically uniformly stable. �

Theorem 2.3 is a special case of Theorem 4.1 when m = 0. From Lemma 3.4, one can use any
m = 0, 1, 2, 3 Hurwitz polynomial differential operator. However, it should be pointed out that the
use of the high order time derivatives in Theorem 4.1 imposes more stringent requirements on the
choice of V (x, t) and on the dynamical system itself. Specifically, from (7), f(x, t) is not necessarily
continuous in Theorem 2.3. From (23), both ∂f

∂x and ∂f
∂t have to exist to apply Theorem 4.1 with

m = 1. Just like the classical Lynapunov theorem, Theorem 4.1 provides a sufficient condition to
test global uniform asymptotic stability. One can try out multiple choices of m, P (D) and V (x, t)
to see whether one of them works out.

Theorem 4.2 Extended theorem for uniform stability in the sense of Lyapunov

The dynamical system (1) is uniformly stable in the sense of Lyapunov if a scale function
V (x, t) with continuous (m + 1)-th order time derivative along the trajectory exists such that (24)
holds when ‖x‖ < Ω, and if the conditions in Theorem 2.4 are satisfied except that (11) is replaced
by

P (D)[V̇ (x, t)]

∣∣∣∣
ẋ=f(x,t)

≤ −W (‖x‖). (72)

where P (D) is an m-th degree non-negative Hurwitz polynomial differential operator.

Proof Because of the difference between (12) and (6), (46) in the proof of Theorem 4.1 does not
hold here and v(t) does not necessarily converge to 0 as shown in (43). The difference between
Theorems 4.1 and 4.2 parallels that between Theorems 2.3 and 2.4.

The proof of Theorem 4.1 has already provided the steps from (62) and onward to show uniform
stability. The proof is based on u(t) ≤ 0,∀t, which does not rely on (6). (12) is sufficient to ensure
u(t) ≤ 0,∀t. Therefore, the proof is applicable here, with the only difference being that in this
theorem (8), (24) and (72) now hold for ‖x‖ < Ω instead of for x ∈ Rn. To show uniform stability
here, consider any given ε > 0. Without loss of generality1, suppose that ε ≤ Ω. It suffices to show
that

∥∥x(t)
∥∥ < ε,∀t ≥ t0 for which (8), (24) and (72) always hold.

From the proof of Theorem 4.1, it follows that if

‖x0‖ < min
(
δ(ε), ε

)
, (73)

where δ(ε) is given in (71), then (66) and (70) hold. As a result,

max
t≥t0

v2(t) < Ψ(ε). (74)

1Otherwise, set ε = min(ε,Ω), and find the region of x0 for which the trajectory x(t), ∀t ≥ t0, stays in a smaller
region than the original ε.
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As the trajectory starts with‖x0‖ < ε ≤ Ω, v1(t) ≤ 0 because u(t) ≤ 0 from the assumption of
the theorem and because of (41) and (42). Thus

V (x, t) = v(t) = v1(t) + v2(t) < (ε), (75)

and therefore
∥∥x(t)

∥∥ < ε from (8). In other words, once the trajectory starts within the ε local
region around the equilibrium point, (8), (24) and (72) hold, therefore keeping the trajectory to
stay within the region.

Hence, it is concluded that
∥∥x(t)

∥∥ < ε, ∀t ≥ t0 and x∗ is uniformly stable in the sense of
Lyapunov from Definition 2.1. �

Theorem 2.4 is a special case of Theorem 4.2 when m = 0.

5 An Example

Consider the following example of a one dimensional time-varying linear system

ẋ = g(t)x, (76)

with t0 ≥ 0 and g(t) a differentiable function. The solution of this system can be analytically given
as

x(t) = x0e
∫ t
t0
g(τ) dτ

, (77)

from which stability can be determined. However, for the sake of illustration, we use Lyapunov’s
direct method and compare the Lyapunov and extended theorems for asymptotic stability.

Let

V (x, t) =
1

2
x2. (78)

It follows that
V̇ (x, t) = xẋ = gx2. (79)

To apply Theorem 2.3, g(t) has to be negative ∀t ≥ t0.

Now consider the second order time derivative of V (x, t)

V̈ (x, t) =
(
ġ + 2g2

)
x2, (80)

and let
P (D)[V̇ (x, t)] = V̈ (x, t) + a1V̇ (x, t), (81)

where a1 > 0 making P (D) non-negative Hurwitz. It follows that

P (D)[V̇ (x, t)] =
(
ġ + 2g2 + a1g

)
x2 := G(t)x2. (82)

To apply Theorem 4.1, g(t) does not have to be negative ∀t ≥ t0. When g(t) > 0, if ġ is sufficiently
negative, G(t) can be negative. Consider a concrete example of g(t)

g(t) = −1 + 5e−10t. (83)

(77) becomes

x(t) = x0e
t0−t+ 1

2(e−10t0−e−10t). (84)

From Definition 2.2, x∗ = 0 is globally uniformly asymptotically stable, because
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Figure 9: Plot of V (x(t), t) of the dynamical system (76) with (83) with t0 = 0. V (x(t), t) is not
always decreasing.

• limt→∞ x0e
t0−t+ 1

2(e−10t0−e−10t) = 0.

• x(t) = x0e
t0−t+ 1

2(e−10t0−e−10t) < x0e
1
2 ,∀t ≥ t0, t0 ≥ 0. Thus, for any ε > 0, let δ = εe−

1
2 . If

‖x0‖ < δ, then
∥∥x(t)

∥∥ < ε.

Figure 9 plots V (x(t), t) by plugging (84) into (78). Clearly V (x(t), t) is not always decreasing,
which is an example of the scenario depicted in Figure 3(b).

Rather than relying on the analytical solution (84), we now employ Lyapunov’s direct method.
Let a1 = 3.

G(t) = ġ + 2g2 + a1g = −1− 55e−10t + 50e−20t. (85)

It is easy to show that G(t) < 0,∀t ≥ t0. Figure 10 plots g(t), G(t). Because g(t) is not always
negative, Theorem 2.3 cannot be applied to confirm global uniform asymptotic stability. Because
G(t) < 0,∀t ≥ t0, Theorem 4.1 can be applied to show that in (76) with (83) x∗ = 0 is globally
uniformly asymptotically stable.
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Figure 10: Plots of g(t), G(t) of the dynamical system (76) with (83) with t0 = 0. V̇ (x, t) = g(t)x2

is not always negative. P (D)[V̇ (x, t)] = G(t)x2 < 0,∀t ≥ t0. Therefore the system is globally
uniformly asymptotically stable from Theorem 4.1.

6 Conclusion

Stability is an important topic in the studies of the dynamical systems. A major challenge is
that the analytical solution of a time-varying nonlinear dynamical system is in general not known.
Lyapunov’s direct method is a classical approach used for many decades to study stability without
explicitly solving the dynamical system. Roughly speaking, an equilibrium is stable if an energy
function monotonically decreases along the trajectory of the dynamical system. In this paper, we
extend Lyapunov’s direct method by allowing the energy function to temporarily increase. More
precisely, we prove two theorems, one on globally uniformly asymptotic stability and the other on
stability in the sense of Lyapunov, where stability is guaranteed provided that the evolution of the
energy function satisfies an inequality of a non-negative Hurwitz polynomial differential operator.
The classical Lyapunov theorems are special cases of the extended theorems. We provide an example
in which the new theorem successfully determines stability while the classical Lyapunov’s direct
method fails. In the future study we hope to apply the extended stability theorems to more
sophisticated dynamical systems in the real world.
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