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Introduction … and, a disclaimer

• QML brings together many areas: ML / AI, theoretical & applied 
CS, physics, quantum info science, hardware engineering, 
applied math, etc. 

• My viewpoint on QML is shaped by:

• my background in physics / theoretical CS

• my research preference for intermediate-to-far term applications for 
fault-tolerant quantum computers
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Goals and key questions

• Why might we hope quantum computing will be good at ML in 
the first place?

• What are the biggest outstanding technical challenges in QML 
(and how can Applied Math help?)

• What is the outlook of QML as an application area of quantum 
computing?
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Flavors of quantum machine learning
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Flavors of quantum machine learning

4

ML model

training 
data

input output

Example
A quantum algorithm for training 

support vector machines and performing 
inference on new inputs

Example
A quantum algorithm for 
training sparse classical 

neural networks

Example
Quantum training data such 

as molecular systems in 
thermal equilibrium, obtained 

experimentally

Example
A quantum neural network where artificial neurons 

are replaced with parameterized quantum gates
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Example: Quantum neural networks / 
variational quantum algorithms
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Key idea: entangled quantum states can capture 
nonclassical correlations
• Quantum states live in a high-dimensional vector space, not 

directly simulable classically

• Interference and entanglement allow quantum information to be 
processed in fundamentally nonclassical way

• New tool to try on big data problems
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Example: Quantum neural networks (QNNs)

But first, classical neural networks:
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input

hidden layers
output

• Computes functions 
from inputs to outputs

• Tunable weights, trained 
by optimizing a loss 
function

• Training occurs via 
(stochastic) gradient 
descent, with 
“backpropagation”

• Heuristic
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Example: Quantum neural networks (QNNs)

QNNs replace artificial 
neurons with quantum gates
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QNN caveats

• While somewhat NISQ-friendly, QNNs cannot be scaled 
indefinitely without quantum error correction
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• While somewhat NISQ-friendly, QNNs cannot be scaled 
indefinitely without quantum error correction

• Barren plateaus – due to exponentially large Hilbert space, 
gradients of loss function can be exponentially small

• Recent unification of barren plateau phenomenon in language of Lie 
algebras and their subalgebras 

• No quantum analogue of backpropagation – for a model with 
𝑂(𝑀) parameters, computing function requires 𝑂(𝑀) work but 
computing gradient of function requires at least 𝑂(𝑀!/#) work
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[Abbas et al. 2023]

[Larocca et al. 2022] [Larocca et al., 2024]
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• While somewhat NISQ-friendly, QNNs cannot be scaled 
indefinitely without quantum error correction

• Barren plateaus – due to exponentially large Hilbert space, 
gradients of loss function can be exponentially small

• Recent unification of barren plateau phenomenon in language of Lie 
algebras and their subalgebras 

• No quantum analogue of backpropagation – for a model with 
𝑂(𝑀) parameters, computing function requires 𝑂(𝑀) work but 
computing gradient of function requires at least 𝑂(𝑀!/#) work

• Classical ML is too good!
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[Larocca et al. 2022] [Larocca et al., 2024]

[Abbas et al. 2023]
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Example: QML via quantum linear algebra
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Key idea: quantum computing and ML are both high-
dimensional linear algebra
A quantum algorithm on log(𝑛) qubits is a sequence of sparse 
matrix-vector multiplications in 𝑛-dimensional vector space

11

= …

Initial stateFirst unitary 
gate

Second unitary 
gate

Last unitary
gate

output state



© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved. 

Example: Support vector machine
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?

𝑀 labelled training 
samples (𝑥+, 𝑦+) where 
𝑥+ is an 𝑁 dimensional 
vector

Goal: find “maximum margin” 
hyperplane described by 
normal direction 𝑤, offset 𝑏

𝑤

𝑏

[See Rebentrost, Mohseni, Lloyd 2013]
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Other examples of QML problems with linear algebra

• Recommendation systems

• Principal component analysis

• Supervised cluster assignment

• Gaussian process regression
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[Kerenidis, Prakash, 2017]

[Lloyd, Mohseni, Rebentrost, 2014]

[Lloyd, Mohseni, Rebentrost, 2013]

[Zhao, Fitzsimons, Fitzsimons, 2019]
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Problem often reduces to linear system of equations

14

𝒙𝐴 𝒃=

condition number = 𝜅

𝐴 and 𝑏 depend on the 
training and input data

Often, in QML applications one also assumes 𝐴 is low rank, or close to low rank  
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HHL algorithm can prepare quantum state encoding 
linear system solution in logarithmic time

Solution 
vector
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Quantum state

HHL algorithm (2009)
Prepares the state | ⟩𝒙  in 

time 𝜅)	polylog(𝑛) 

[Harrow, Hassidim, Lloyd, 2009]

Later improved to 
𝜅	polylog(𝑛)
See, e.g. [Ambainis 
2010] [Costa et al. 
2021]
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Compare to classical iterative methods
• Gaussian elimination 𝑂(𝑛!.#$)
• Conjugate gradient method 𝑂( 𝜅	𝑛) for psd 

sparse matrices 
• Randomized Kaczmarz method 𝑂(𝜅!𝑛) for 

low-rank matrices

Exponential speedup?!?!

HHL algorithm can prepare quantum state encoding 
linear system solution in logarithmic time

Solution 
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Caveat #1: Output problem

• Need to read out useful information from state 
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Caveat #1: Output problem

• Need to read out useful information from state 

• Learning entire state costs 𝑂(𝑛) copies, negating exponential speedup

• Can read out one quantity to error 𝜀 at multiplicative overhead of 𝑂( ⁄1 𝜀)

• End-to-end problem needs to rely on a small number of quantities, and not 
require high precision

• Example: SVMs – new vector can be classified by reading out 1 number
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Caveat #2: Input problem

• How is it possible that the algorithm has runtime polylog(𝑛) 
when the data takes 𝑂(𝑛) space to even write down?

17
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Caveat #2: Input problem

• How is it possible that the algorithm has runtime polylog(𝑛) 
when the data takes 𝑂(𝑛) space to even write down?

• Answer: parallelism, via assumption of quantum RAM

17

Index 𝒊 Data 𝒇(𝒊)
000 0

001 1

010 1

011 1

100 0

101 1

110 0

111 0

Quantum RAM allows data to be accessed 
in superposition
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Many QML algorithms assume this 
operation can be done at cost polylog(𝑛)
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Caveat #2: Input problem (cont’d)

• Assumption of polylog(𝑛)-cost QRAM is controversial

• Assumption roughly holds for classical RAM

• QRAM not perfectly compatible with quantum error correction

• No compelling hardware proposal for large-scale physical QRAM

• Without assumption of cheap QRAM, exponential speedup is 
gone

17

[See Jaques, Rattew, 2023]
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Caveat #3: “dequantization” of QML reduces available 
quantum speedup in many cases
• One should compare QML algorithms to classical algorithms under analogous 

input assumptions

• “Sample-and-query” access model for classical algorithms is analogue of QRAM

• Given dataset represented by a vector 𝒙 ∈ ℝ#, one can query entries 𝑥$ of 𝒙, or sample an entry 
with probability %!

"

𝒙 "	
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Caveat #3: “dequantization” of QML reduces available 
quantum speedup in many cases
• One should compare QML algorithms to classical algorithms under analogous 

input assumptions

• “Sample-and-query” access model for classical algorithms is analogue of QRAM

• Given dataset represented by a vector 𝒙 ∈ ℝ#, one can query entries 𝑥$ of 𝒙, or sample an entry 
with probability %!

"

𝒙 "	

• 2018: Quantum recommendation systems algorithm “dequantized” via classical 
algorithm with poly *

+
polylog(𝑛) total cost

• Also dequantized: Quantum Principal Component Analysis, Support Vector 
Machines, Nearest Centroid Classification, HHL for low-rank matrices

18

[Tang, 2018]
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Other topics not covered

• Topological data analysis

• Learning theory (e.g. PAC learning)

• Energy-based models (e.g. quantum Boltzmann machines)

• Tensor PCA

• Training sparse classical neural networks via quantum algorithms 
for nonlinear differential equations

• Learning with quantum data

19

[Liu et al., 2023]

[Hastings, 2020]

[Arunachalam, de Wolf, 2017]

[Chen, Cotler, Huang, Li, 2022]

[Amin et al. 2017] [Schuld, Petruccione 2021]

[Berry et al. 2024] [McArdle, Gilyén, Berta, 2022]
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Technical opportunities for applied math in QML

• Heuristic algorithms – how to gather evidence with limited 
empirical data?

• End-to-end problems – how to connect the capabilities of 
quantum computers with real-world problems that aren’t served 
by classical ML?

• More creative solutions to input-output problems

20
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Applications where input is small and calculation is hard 
offer clearer path to quantum advantage

Input/training 
data size

Available quantum 
speedup

Relative 
confidence in 

speedup

Machine learning
e.g., training support vector 

machines

Big
e.g., large database of 

classified images

Small / Medium / 
Unknown Low

Simulation
e.g., computing energies of 

chemical systems

Small
e.g., locations of nuclei in 

molecule
Medium / Large Medium

Optimization
e.g., finding an optimal route

Small / Medium
e.g., locations of destinations 

along route 
Medium / Unknown Medium

Cryptanalysis
e.g., breaking RSA

Small
e.g., 2048-bit integer

Large High

21

More feasible 
than ML in the 
intermediate 

term
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Conceptual outlook and next steps

• QML needs new ideas to circumvent known caveats and 
expected scaling issues

• The energy in quantum computing is moving away from NISQ 
and toward fault-tolerant (FT) quantum computing

• What can we learn about QML from early FT devices?

• What “quantum data” problems are interesting in science and 
industry, and can we solve them?
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Some more references

•General: https://arxiv.org/pdf/1707.08561

•On classification of different QML tasks: Fig. 1 of 
https://arxiv.org/pdf/2303.09491

•Quantum algorithm for training sparse classical neural 
networks: https://www.nature.com/articles/s41467-023-43957-x

•Quantum neural networks: https://arxiv.org/pdf/2303.09491

•Quantum algorithms for support vector machines: 
https://arxiv.org/abs/1307.0471

•General: Sec. 9 of https://arxiv.org/pdf/2310.03011
35

https://arxiv.org/pdf/1707.08561
https://arxiv.org/pdf/2303.09491
https://www.nature.com/articles/s41467-023-43957-x
https://arxiv.org/pdf/2303.09491
https://arxiv.org/abs/1307.0471
https://arxiv.org/pdf/2310.03011
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Notes after presentation
• Thank you to attendees who pointed out 

mistake in conjugate gradient complexity 
(it has been fixed in this version)

• I have added more references


