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Abstract. The image processing task of the recovery of an image from a noisy or compromised image is an ill-
posed inverse problem. To solve this problem, it is necessary to incorporate prior information about
the smoothness, or the structure, of the solution, by incorporating regularization. Here, we consider
linear blur operators with an efficiently-found singular value decomposition. Then, regularization is
obtained by employing a truncated singular value expansion for image recovery. In this study, we
focus on images for which the image blur operator is separable and can be represented by a Kronecker
product such that the associated singular value decomposition is expressible in terms of the singular
value decompositions of the separable components. The truncation index k can then be identified
without forming the full Kronecker product of the two terms. This report investigates the problem
of learning an optimal k using two methods. For one method to learn k we assume the knowledge of
the true images, yielding a supervised learning algorithm based on the average relative error. The
second method uses the method of generalized cross validation and does not require knowledge of the
true images. The approach is implemented and demonstrated to be successful for Gaussian, Poisson
and salt and pepper noise types across noise levels with signal to noise ratios as low as 10. This
research contributes to the field by offering insights into the use of the supervised and unsupervised
estimators for the truncation index, and demonstrates that the unsupervised algorithm is not only
robust and computationally efficient, but is also comparable to the supervised method.
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1. Introduction. Image restoration is a fundamental problem in image processing and
refers to the process of recovering an original image from its noisy or compromised version [8].
The image recovery process for contaminated images is, however, an ill-posed problem. In the
context of image restoration, this means that basic inversion will not provide a recovered image
that is acceptable as an approximation to the unknown true image due to the susceptibility
of the problem to errors in the data [1, 6, 5]. Without additional considerations, any image
that is recovered will be contaminated by noise, and unusable for interpretation. Here, we
regularize the inversion algorithm by truncating the singular value decomposition (SVD) of
the blurring matrix yielding a truncated singular value expansion for the solution [3, 4].

The image blurring problem is an example of a linear problem described by

(1.1) Axtrue = btrue.

In the image blurring case A is a matrix of size m × n that estimates the discrete blurring
operator of the discrete image xtrue of length n. The discrete blurred image btrue is of length
m. We will assume that the system is consistent with m = n. Then, even when A is
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S. BERMUDEZ

invertible, the solution of (1.1) is still challenging because A is ill-conditioned. Supposing
btrue is contaminated by noise ξ, yielding b = btrue + ξ, then, the direct solution given by

(1.2) x = A−1b = A−1btrue +A−1ξ = xtrue +A−1ξ,

is contaminated by the A−1ξ term that depends on the noise in the data and the conditioning
of A. Consequently, it is not guaranteed that x provides a useful estimate for xtrue.

We adopt the notation that the SVD is given by A = UΣV ⊤. The matrices U ∈ Rn×n

and V ∈ Rn×n are orthogonal and their columns form the left and right singular vectors, ui

and vi, for the matrix A. The matrix Σ is diagonal, with entries σ1 ≥ σ2 ≥ · · · ≥ σr > 0,
where r ≤ n is the rank of A. When r = n, A is invertible and the solution of (1.2) is given
by the expansion

x =
n∑

i=1

u⊤
i b

σi
vi =

n∑
i=1

u⊤
i btrue
σi

vi +
n∑

i=1

u⊤
i ξ

σi
vi.(1.3)

We see that (1.3) contains the contributions from the error ξ. For the terms with |u⊤
i ξ| > σi,

we can expect their contributions to the solution to increase. In particular, if |u⊤
i ξ| > σi while

|u⊤
i btrue| < σi, the contribution to the solution for the ith term in (1.3) is dominated by the

coefficient due to the error rather than the true data. This is investigated using the Picard
plot as described in [4, 6], and as will be illustrated in subsection 4.2.

To improve the naive solution given by (1.3) the most basic form of regularization is to use
a truncated version of the SVD, A = U(:, 1 : k)Σ(1 : k, 1 : k)V (:, 1 : k)⊤ where the notation
indicates that we use k columns from each of U and V , and the leading block diagonal
component of Σ of size k × k. This corresponds to setting σk+1 = σk+2 = · · · = σr = 0 and
gives the truncated expansion for the solution

xk =
k∑

i=1

u⊤
i b

σi
vi.(1.4)

The number of terms to include can be estimated by using a tolerance tol which defines k  ≤ r 
as the smallest index for which σk ≥ tol > σk+1, and defines regularization b y t runcation to 
find x  f rom b.

We focus on image restoration problems of the form (1.1), where matrix A is a spatially 
invariant blurring operator for the true image. Moreover, we suppose that the blur is separable 
in the space directions x and y which define t he c oordinates o f t he image w ith r espect t o a 
reference space. Then, A is a Kronecker product (KP) operator given by A = Ar ⊗ Ac, and 
the SVD for A is expressed in terms of the SVD for each of Ac and Ar [8].

In this paper, we investigate the problem of learning a good choice for k to use in (1.4). 
In section 2 we introduce the image restoration problem using the Kronecker product and 
the SVD for the Kronecker product. To find k  we u se t wo d ifferent ap proaches; th ese are 
described in section 3. Numerical experiments given in section 4 are used to validate the use of 
the two different f unctions. The robustness of each function with respect to different blurring 
operators, and varying degrees of noise contamination and noise sources is demonstrated. 
Conclusions and future extensions of the research are given in section 5.
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Main Contributions In this work we demonstrate that we can use unsupervised learning
to give the truncation index for the SVD used in image restoration by minimizing the gen-
eralized cross validation criterion applied for a relatively small training set of contaminated
images. We show (i) that we can obtain the index using the minimization of a given function
without calculating the function for all possible k, (ii) that it is possible to learn the optimal
truncation index using knowledge of true solutions to minimize an overall error, and (iii) that,
alternatively, it is possible to learn the index without knowledge of true solutions using the
method of generalized cross validation. Moreover, the experiments indicate that the approach
is robust across blur types, noise types, and signal to noise ratios1.

We note that this work can be seen as an application of a general framework for learning
the regularization operator for the solution of inverse problems that was presented in [10]. Here
our regularization approach is described by the truncated singular value decomposition, and
the optimization is carried out not only with regard to minimizing the error of the solutions via
supervised learning but extends to unsupervised learning using generalized cross validation.
This technique has applications in many disciplines such as medical, astronomical, and traffic
imaging.

2. Mathematical Details of Image Restoration and the Kronecker Product SVD. Here
we follow the derivation given in [8] which describes the image blurring process for two di-
mensional images. In subsection 2.1 we give the basic background for the Kronecker product
following [8, Chapter 1] and then obtain the SVD following [8, Chapter 4].

2.1. Image Restoration. Before examining the SVD we reframe (1.1) for the two di-
mensional case. We suppose that (1.1) is replaced by the two dimensional formulation in
which we assume that the true image and blurred images are given by Xtrue ∈ RN×N , and
Btrue ∈ RN×N , respectively, and A is obtained from the discretization of a blur that is sep-
arable. For A = Ar ⊗ Ac, where Ar and Ac denote the blurring across rows and columns,
respectively,

(2.1) Btrue = AcXtrueA
⊤
r .

MatricesAc andAr are each assumed to be of sizeN×N requiring only 2N2 entries for storage.
This is equivalent to the one dimensional formulation (1.1) when both Xtrue and Btrue are
consistently reshaped as one dimensional vectors of length n = N2 and A is explicitly formed
from its KP, yielding the matrix A of size N2 ×N2 with n2 = N4 entries. From here on, we
assume that no reshaping of the images is applied and that the matrix A is never explicitly
formed from its KP. Furthermore, consistent with the contaminated representation for the one
dimensional case given in (1.2), we have the contaminated image B = Btrue + Ξ, and using
the properties of the KP when A is invertible, we have

(2.2) X = A−1
c B(A⊤

r )
−1 = A−1

c (Btrue +Ξ)(A⊤
r )

−1,

which contains the contribution due to Ξ.

1See https://github.com/sbermudez01/Salina-Bermudez-SIURO-Manuscript-Code.git for the MATLAB®

code.
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2.2. The Kronecker Product SVD. For (2.2), we assume that Ac = UcΣcV
⊤
c and

Ar = UrΣrV
⊤
r are the SVDs for Ac and Ar, respectively. Then, using the properties of

the Kronecker product, the SVD for A is given by

A = (UrΣrV
⊤
r )⊗ (UcΣcV

⊤
c ) = (Ur ⊗Uc)(Σr ⊗Σc)(Vr ⊗ Vc)

⊤ = UΣV ⊤,(2.3)

see [3, 8]. Further, we can rewrite (2.2), again using the properties of the KP, as

X = VcΣ
−1
c

(
U⊤

c BUr

)
Σ−1

r V ⊤
r .(2.4)

Introducing the matrix B̂ = U⊤
c BUr as the set of coefficients of the image B we see that

(2.4) is equivalent to

X = Vc(Σ
−1
c B̂Σ−1

r )V ⊤
r .(2.5)

But now, observing that B̂ is equivalent to the reshaped vector of coefficients for the image,
and that Σr ⊗Σc yields diagonal Σ of size N2 ×N2, we can also summarize the entries for Σ
using the array given by the outer product

S = σcσ
⊤
r(2.6)

Sij = (σc)i(σr)j , 1 ≤ i, j ≤ N,(2.7)

where σc = diag(Σc) and σr = diag(Σr). Here diag extracts the diagonal entries from a
matrix, and index ij extracts the ijth entry from a 2D array. Equivalently, assuming Σr⊗Σc

is invertible, so that all the singular values are strictly positive, we can use R of size N ×N
to indicate the array with entries 1/((σc)i(σr)j). Then, without reshaping, we have

Σ−1
c B̂Σ−1

r = R⊙ B̂ and(2.8) (
Σ−1

c B̂Σ−1
r

)
ij
=

B̂ij

(σc)i(σr)j
=

(B̂true)ij + Ξ̂ij

(σc)i(σr)j
,(2.9)

where ⊙ denotes the elementwise Hadamard product, as indicated in (2.9). As in (1.3) we
have an expansion for X which will be contaminated with the error terms if |Ξ̂ij | > (σc)i(σr)j
when |Ξ̂ij | > |B̂ij |, where we consistently define B̂true = U⊤

c BtrueUr and Ξ̂ = U⊤
c ΞUr.

To obtain the truncated solution that is equivalent to (1.4) for the one dimensional case
we need to truncate Σ. To truncate the entries in Σ we introduce the array for entries of the
truncated singular value matrix

(Strunc)ij =

{
(σc)i(σr)j (σc)i(σr)j > tol

0 otherwise,
.(2.10)

Then, consistent with the notation for the inverse entries from S, we use Rtrunc as the array
with the entries of the pseudoinverse for Σ†

(Rtrunc)ij =

{
1

(σc)i(σr)j
(σc)i(σr)j > tol

0 otherwise.
(2.11)
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where † indicates the pseudoinverse of a matrix [3]. Combining the terms (2.5) and (2.11) we
obtain the the truncated solution

Xtrunc = Vc(Rtrunc ⊙ B̂)V ⊤
r ,(2.12)

which is efficiently implemented by matrix operations for matrices of sizes N ×N rather than
N2 ×N2, and depends on tol in (2.10).

In (2.10) we see that the truncation of the singular values depends on the products of
the singular values in σc and σr, and not on each of these independently. Reordering the
elements (σc)i(σr)j from large to small, corresponding to the ordered singular values for Σ,
(2.12) corresponds to identifying an index k such that the first k singular values are greater
than tol and the remaining ordered singular values for index greater than k are ignored in
forming (2.12). Assuming that A is invertible, there are N2 choices for truncated solutions
(2.12) indexed by truncation index k given by Xtrunc(k), k = 1, . . . , N2. We note that each
choice of k corresponds to a choice for tol where k will increase as tol decreases, and we
expect that the solutions (2.12) depend on k via (2.11).

3. Identification and Validation of Optimal Truncation Indices. We establish how to
learn an optimal choice for k with respect to minimization of an objective function Φ(k) with
different choices for Φ and with the definition

(3.1) kOPT = argmin
1≤k≤N2

Φ(k).

Here, we consider two possible approaches for determining kOPT in (3.1) in a learning frame-

work when we have more than one image to restore. Suppose that we have a set of T contam-
inated images B(t), indexed by t, t = 1, . . . , T . These correspond to T true images Xtrue(t), 
t = 1, . . . , T . In the first instance we suppose that X true(t) are g iven and that we can learn 
kOPT to minimize a measure of the image error. In the second case, we suppose that Xtrue(t) 
are not given and it is of interest to learn the value for kOPT in an unsupervised learning 
framework, namely without using Xtrue(t). This leads to our second method that uses the 
method of generalized cross validation (GCV). This is a classical statistical technique with 
extensive discussion in the literature [2, 6]. Fundamentally, the aim of GCV is find a  good 
estimate for kOPT that is valid if the image is restored with a missing data point, considered 
over all possible missing data points. In both cases we can validate against known images to 
test the ability of the unsupervised method to provide stable indices for kOPT, and we can test 
the results against data that were not used in the training, namely with a set of testing images. 
A third method was used in early testing for the unsupervised learning using the normalized 
cummulative periodogram (NCP) [7, 13], but this method did not perform as well and results 
are not reported. In particular, the NCP requires the choice of an additional parameter, for 
tuning the reliability with respect to the noise in the data, and therefore the approach is in 
general less robust.

In general, with any of these approaches it is important to note that there are some 
potential disadvantages of the learning process. There must be sufficient da ta of  similar 
image quality and type in terms of noise level and the image blur, here we assume T = 40 
images are available and we use 20 images to the train the algorithm and 20 images for testing.
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The size of the image need not be a factor, provided that any given image can be partitioned
to the size of the smallest image in the data set.

We describe the methods used to identify kOPT in subsections 3.1 to 3.2, the approaches to
minimize their objective functions in subsection 3.3, and the approach to validate the choice
of kOPT in subsection 3.4.

3.1. Supervised Learning Using Uncorrupted True Images. Given a known uncorrupted
image Xtrue(t) we can evaluate the error between Xtrue(t) and Xtrunc(t, k) as a function of k,
k = 1, . . . , N2. We define the absolute relative error ε(t, k) for a given image t and a given
truncation index k by

ε(t, k) =
∥Xtrunc(t, k)−Xtrue(t)∥F

∥Xtrue(t)∥F
.(3.2)

Here we use the definition of the Frobenius norm, ∥Y ∥2F =
∑

ij y
2
ij where Y is a matrix with

entries yij . Consequently, ε(t, k) measures the total relative error of the true image from the
approximated image for each pixel as a function of k for fixed t. This leads to the error
function defined over images t = 1, . . . , Ttrain, for a training set of size Ttrain,

ΦMRE(k) =
1

Ttrain

Ttrain∑
t=1

ε(t, k) =
1

Ttrain

Ttrain∑
t=1

∥Xtrunc(t, k)−Xtrue(t)∥F
∥Xtrue(t)∥F

(3.3)

=
1

Ttrain

Ttrain∑
t=1

∥Rtrunc ⊙ B̂ − X̂(t)∥F
∥Xtrue(t)∥F

.(3.4)

Here we have used (2.12) to rewrite Xtrunc(t, k) and introduced X̂ = V ⊤
c XtrueVr yielding the

efficient representation depending on Rtrunc ⊙ B̂ as a function of k. Minimizing ΦMRE(k) as
a function of k using the definition in (3.1) to give kOPT, leads to kMRE that is optimal with
respect to minimizing the absolute relative error over all training images. We denote this
method by MRE (for mean relative error).

3.2. Using Generalized Cross Validation. The second process to learn the truncation
index kOPT uses the GCV method [3, 5, 8]. This is an unsupervised method and is formulated
for a single set of data in terms of the residual ∥Ax(k) − b∥2, weighted by the number of
terms not used to generate x(k). For a single image, as shown on [8, page 79, Section 6.5],
the GCV function admits a concise expression given by

G(k) = 1

(N2 − k)2

N2∑
j=k+1

|B̂j(t)|2,(3.5)

which leads to

ΦGCV(k) =
1

Ttrain
(N2 − k)2

Ttrain∑
t=1

N2∑
j=k+1

|B̂j(t)|2,(3.6)
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taken over all images t = 1, . . . , Ttrain. Now minimizing ΦGCV(k) as a function of k defines
kGCV as optimal with respect to the GCV function calculated for all training images. Notice
that due to the orthogonality of Vc and Vr the expression is given just in terms of the coeffi-
cients B̂j(t) for each image t. Moreover, in (3.6) we can switch the order of the summation

so that we can form a summed set of coefficients across all images, |B̂all|2 =
∑Ttrain

t=1 |B̂(t)|2
which is independent of k. The sum over j is then very efficient for any k. Given a choice of
kOPT we can also calculate the error given by (3.2) as a quantitative measure of the quality
of the restoration.

3.3. Methods to Minimize the Functions. In each case we consider two options to min-
imize ΦMRE and ΦGCV. This yields four different choices for kOPT. Here kexhMRE and kexhGCV are
the indices given by evaluating Φ(k) over all discrete choices for k and then finding the actual
minimum of the discrete set Φ(k), k = 1, . . . , N2 in each case. This is the exhaustive case,
hence the superscript exh. We can verify whether Φ(k) at the chosen point kexhOPT is a discrete
local or global minimum by looking at its graph of the discrete set (k,Φ(k)), k = 1, . . . , N2.
For the second approach we use the MATLAB® function fminbnd to automatically find the
minimum of the function Φ(k), but treated as a continuous function in k. We can plot the
output of the iterated values (ki,Φ(ki)), i = 1, . . . , kconv, where kconv is the ki at which the al-
gorithm converges to the provided tolerance, to assess the performance of fminbnd for finding
the minimum index. Practically, we select kOPT as the nearest integer to kconv. Because Φ is
a function of only one variable, this approach is successful, as will be shown in the presented
results.

3.4. Validation Approach. Given a choice of truncation index kOPT provided by one of
the methods, it is important to validate the use of kOPT for images that are not part of the
training set. Given the images B(t), t = 1, . . . , T , Ttrain < T images are used to learn kOPT

for each Φ. The remaining images t = Ttrain + 1, . . . , T are used for validation. For each
image we can calculate ε(t, k), for a given k = kOPT, as defined in (3.2) and therefore

(3.7) ρ(k) =
1

Ttest

T∑
t=Ttrain+1

ε(t, k)

is a measure of the average relative error over Ttest = T −Ttrain images that were not used for
training. Notice that by (3.4), ρ(k) calculated for the training data alone is just ΦMRE(k) and
can be used to compare the average relative errors of the restored images from the training
and testing data sets.

4. Description of Numerical Experiments and Results.

4.1. Numerical Experiments. The numerical images used in the experiments are selected
from multiple online sample image databases including NASA’s California Institute of Tech-
nology, the University of Southern California, Stanford University and an online site bogoto-
bogo.2 The original images are set to a gray scale and the same size. The images are then

2The selected testing and training images are available to the public courtesy of NASA, JPL-Caltech, SU,
USC, and bogotobogo [11, 12, 14, 15].
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blurred and corrupted by the addition of noise, dependent on noise type and the amount of
noise added, as described in subsections 4.1.1 and 4.1.2.

4.1.1. Image Blur. All the images are contaminated using a two dimensional Gaussian
blur [8, 3.2] given in each spatial dimension by the function

(4.1) p(x) = exp

(
−1

2

(x
α

)2
)
,

with entries less than 1e−4 set to 0. We assume that each image is on the domain−1 ≤ x, y ≤ 1
for all images with N×N pixels. Then, p(x) is discretized for the given image and normalized
such that the

∑
i p(xi) = 1. Two choices of blur are considered, a symmetric blur with

Ac = Ar, with α = .01 and a blur that is more elongated in one direction, Ac ̸= Ar with Ar

formed using α = .02, but keeping the same Ac. The point spread functions for these blurs
are illustrated in Figure 1 for the case with N = 512. In the presented formulation we assume
zero boundary conditions, so that Ar and Ac are Toeplitz [8]. An example from the image
set, peppers512x512.tif, is shown on the left in Figure 2, with the effect of blurring shown
in the middle and right in Figure 2. We observe that the asymmetric blur distorts the image
significantly. For the presentation of the results of the restoration we will, therefore, mainly
show the restored images for the case with the symmetric blur. We will, however, still use the
asymmetric case for testing the estimation of kOPT, in terms of the relative errors that are
obtained over all data by the different methods.

Figure 1. The point spread function for symmetric and asymmetric blur, left and right plot respectively,
for the case with N = 512, zoomed into the middle region with from indices 233 to 280, in both directions.

4.1.2. Noise Contamination and the Signal to Noise Ratio. Given the blurred image
Btrue, noise Ξ is added to the given image based on obtaining images with comparable signal
to noise ratios defined by

(4.2) SNR = 10 log

(
∥Btrue∥2F
∥Ξ∥2F

)
.

To obtain the comparable noise levels for the different n oise d istributions, w e g enerate a 
contaminated image B by using the Image Processing toolbox function B =imnoise(Btrue,
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Figure 2. Original, uncontaminated image Xtrue from the testing set, on gray scale where N = 512, on
the left. Btrue images with symmetric and asymmetric blur, middle and right respectively.

‘noisetype’), where noisetype is chosen as either gaussian, poisson or salt & pepper.
Then, to obtain the scaling of the error added to B we use

(4.3) Ξ = (B −Btrue)10
−(SNR

20
) ∥Btrue∥F
∥B −Btrue∥F

,

and set B = Btrue + Ξ. This is non standard, particularly for Gaussian noise, but it allows
the use of the same approach for all noise types and generates consistent SNR of each image.
For the salt & pepper case we note that we can change the density for the noise by using
the density parameter of impacted pixels. For the experiments we use the default that 5%
of pixels are contaminated. Hence, rather than noise level we generate the results in terms
of the SNR. These effects are shown in Figures 3 and 4 for the case of low (SNR = 10) and
high (SNR = 40) SNR, respectively, with noise types gaussian, poisson and salt & pepper

noise from left to right in each image, as applied to the image obtained with symmetric blur
as given in the middle Figure 2.

Figure 3. Images B with symmetric blur and gaussian, poisson and salt & pepper noise, left to right, 
respectively, for the case with N = 512 and SNR = 10.

4.2. Experimental results. For the example image with Poisson noise and SNR = 40 as 
shown in the middle plot in Figure 4, we find the naive solution which is obtained from (2.5).
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Figure 4. Images B with symmetric blur and gaussian, poisson and salt & pepper noise, left to right
plots respectively, for the case with N = 512 and SNR = 40.

This is illustrated on the right in Figure 5. The Picard plots for all images in Figure 4 are given
in Figure 5, from left to right. The Picard plot gives the singular values, σk, the coefficients
|B̂k| and their ratios, and shows that the ratios of the coefficients to the singular indices grow
in magnitude for large index k when the noise is such that |B̂k| > σk, and corresponds to the
point of instability when restoring the image, [5]. Across all noise types the plots suggest that
we may estimate the truncation index to generate the truncated solution indicated in (1.4)
and (2.12). For clarity in the Picard plots, the entries are plotted every 100 points. From
this plot we can estimate that it might be appropriate to form a truncated solution, say with
k = 6500, using (2.12). This point is given by the solid grey line in each plot. This estimated
value is applied to all three cases of noise for the image B shown in Figure 4 to verify accuracy
for all types. These solutions are illustrated in Figure 6. With these results we can confirm
that a truncated solution is far more reliable and accurate than the naive restoration. But,
in general, we want to identify an optimal k without analysis of each Picard plot. In the
Picard plots the thick solid blue line indicates the truncation index which gives the actual
least relative error for the given contaminated case.

Figure 5. The Picard plots for the symmetric blur operator with N = 512 and SNR = 40, for the noise 
types gaussian, poisson and salt & pepper, respectively, from left to right. In the last plot Xnaive is the 
restored image of B for the case with poisson noise corresponding to the second Picard plot. The solid grey 
line is at k = 6500 and the thicker solid blue line is at k which gives the least error over all choices for k.
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Figure 6. The restoration of images in Figure 4 using a truncated solution with k = 6500 points for
gaussian, poisson and salt & pepper noise, left to right plots respectively. The relative errors for these images
are 0.0914, 0.0918 and 0.0917, rounded to 3 significant digits. This compares with the optimal errors obtained
for these images for the blue vertical lines indicated in the Picard plots in Figure 5, 0.0911, 0.0914, and 0.0912,
respectively.

In the experiments to find kOPT we use a total of T = 40 images, separated into two
sets. Training images 1 to 20, Ttrain = 20, are used to find the optimal kMRE and kGCV.
Testing images 21 to 40, Ttest = T − Ttrain = 20, are used to evaluate the use of kMRE and
kGCV. Examples from each set are illustrated in Figure 7. The example image in Figure 2 is
a member of the testing set.

Figure 7. Four images from the training and testing set, top and bottom row, respectively

In Figure 8 we plot the functions Φ(k) illustrated for training the data on images of size 
N = 128 with symmetric blur, SNR = 40 and gaussian noise. The solid lines represent 
the exhaustive case used to calculate Φ(k) using all k for both functions (3.4) and (3.6). The 
second approach utilizes the MATLAB® function fminbnd to automatically find the minimum 
of both functions. The × indicate the iterative indices ki used in fminbnd to find the minimum 
of Φ(k). The diamonds indicate the points at the minimum. This case illustrates that fminbnd

438



S. BERMUDEZ

Figure 8. Here with the solid line we show the functions (3.4) and (3.6), with red and blue, respectively,
for all k. The indices kMRE and kGCV are found as the minimum over all the plotted points on the curves, and
are indicated by the diamonds in each case. The × symbols are the ki used in the minimization of (3.4) and
(3.6), respectively, when we minimize using the MATLAB® function fminbnd to find kMRE and kGCV. The
plot is obtained using N = 128 for gaussian noise with SNR = 40 and symmetric blurring.

does identify the minimum of Φ(k). Due to the increased efficiency of using fminbnd, in our
results we will only present kOPT using fminbnd.

Figure 9. Box plots for the training data for problem size N = 512 with noise type gaussian, poisson
and salt & pepper, left to right plots respectively. In each plot the noise levels in each pair are SNR = 40,
25 and 10, with each pair corresponding to the results with ΦGCV and then ΦMRE for finding kGCV and kMRE,
respectively, as indicated in the box plot labels.

Figure 10. Box plots for the testing data for problem size N = 512 with noise type gaussian, poisson 
and salt & pepper, left to right plots respectively. In each plot the noise levels in each pair are SNR = 40, 
25 and 10, with each pair corresponding to the results with ΦGCV and then ΦMRE for finding k GCV and kMRE, 
respectively, as indicated in the box plot labels.

4.2.1. Relative Error Box Plots. In Figures 9 and 10 we show the box plot relative errors 
for the experiments, as indicated in the captions. The results shown are chosen to illustrate
results with size N = 512 for all noise levels, SNR = 10, 25 and 40, and all noise types, 
with symmetric blur and contrasting results for training and testing data in Figures 9 and 10,
respectively. Specifically, the relative errors are calculated for the training data against the
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true data, and for the testing data against the true data, yielding the two sets of box plots.
For each method, ΦMRE and ΦGCV, three noise levels are chosen yielding the six different
plots in each case, as indicated in the labels. There are then three sets of results in Figures 9
and 10 to represent the effects of each of the three noise types.

From the box plots, we can see that the approaches for finding kOPT are successful. Notice
that in each figure, all three plots have the same x-axis scale so that a true comparison can be
seen between the training and testing data, as the error level decreases, and for the different
methods. We see immediately that the errors for the testing data are higher than for the
training data and have a larger range of whiskers, meaning there is more uncertainty in the
testing results. This is to be expected since the testing data are not used to find the kOPT.
The errors are, however, still reasonably low and we can see that both ΦMRE and ΦGCV are
successful across all noise types and levels. This demonstrates that we can learn kOPT in
both a supervised and an unsupervised framework. The results indicated in the box plots are
visually comparable for both supervised and unsupervised methods. This suggests that the
GCV estimator is a powerful tool that can be used to find kOPT from small sets of data, here
just 20 images are used for training in each case.

4.2.2. Quantitative Results. To further assess the methods, the impact of using kOPT

to generate the restored images can be analyzed quantitatively. As previously described, we
calculate the average relative error, (3.7), for the given kOPT and sets of images. The results
are summarized in Tables 1 to 3 for the three choices of SNR and the three noise types. For
comparison we also record the time taken by each method, τ , and the number of iterations and
function evaluations, IT and FE respectively. Here ρ is the mean relative error over the testing
images, t = Ttrain + 1 to T . In Table 1 we give the results for size N = 256 with symmetric
blur, the same case but with N = 512 in Table 2, and then for the case with asymmetric blur
and N = 512 in Table 3. All results are reported for experiments using MATLAB® version
R2022a running on an iMac with a 4.2 GHz Quad-Core Intel Core i7 chip.

Table 1
The results of calculating kOPT using (3.4) and (3.6) and fminbnd in terms of the computational cost

measured in seconds, the number of iterations IT, the number of function evaluations, FE, and the average
relative error ρ, for each method. Here the results are given for the problem with N = 256 and symmetric blur.

Noise K τ IT FE ρ

Type SNR MRE GCV MRE GCV MRE GCV MRE GCV MRE GCV

Gaussian
10 1426 1287 0.12 0.072 29 28 30 29 0.179 0.181
25 2970 3063 0.11 0.031 27 32 28 33 0.124 0.123
40 5120 5206 0.14 0.032 32 19 33 20 0.0946 0.0944

Poisson
10 1410 1410 0.099 0.039 26 22 27 23 0.176 0.176
25 2889 3063 0.11 0.03 37 26 38 27 0.124 0.123
40 5210 5205 0.072 0.028 20 24 21 25 0.0946 0.0946

S & P
10 1406 1276 0.1 0.033 33 30 34 31 0.178 0.18
25 3053 3080 0.075 0.027 26 27 27 28 0.123 0.123
40 5108 5196 0.071 0.029 24 22 25 23 0.0947 0.0945
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Table 2
The results of calculating kOPT using (3.4) and (3.6) and fminbnd in terms of the computational cost

measured in seconds, the number of iterations IT, the number of function evaluations, FE, and the average
relative error ρ, for each method. Here the results are given for the problem with N = 512 and symmetric blur.

Noise K τ IT FE ρ

Type SNR MRE GCV MRE GCV MRE GCV MRE GCV MRE GCV

Gaussian
10 2007 2002 0.51 0.13 26 30 27 31 0.197 0.197
25 3906 4120 0.38 0.13 27 24 28 25 0.16 0.159
40 6222 6338 0.34 0.14 22 22 23 23 0.14 0.139

Poisson
10 2002 2026 0.45 0.13 38 20 39 21 0.193 0.193
25 3898 3906 0.34 0.13 25 31 26 32 0.159 0.159
40 6156 6273 0.35 0.13 25 29 26 30 0.14 0.139

S & P
10 2026 2012 0.35 0.13 24 26 25 27 0.196 0.196
25 3907 4122 0.42 0.14 28 26 29 27 0.16 0.159
40 6153 6434 0.45 0.13 33 29 34 30 0.14 0.139

Table 3
The results of calculating kOPT using (3.4) and (3.6) and fminbnd in terms of the computational cost

measured in seconds, the number of iterations IT, the number of function evaluations, FE, and the average
relative error ρ, for each method. Here the results are given for the problem with N = 512 and asymmetric
blur.

Noise K τ IT FE ρ

Type SNR MRE GCV MRE GCV MRE GCV MRE GCV MRE GCV

Gaussian
10 1176 1277 0.43 0.13 25 27 26 28 0.217 0.216
25 2223 2205 0.32 0.13 16 25 17 26 0.186 0.186
40 3397 3507 0.39 0.16 27 30 28 31 0.169 0.169

Poisson
10 1273 1272 0.39 0.13 31 28 32 29 0.212 0.212
25 2314 2228 0.33 0.13 22 23 23 24 0.185 0.186
40 3377 3509 0.39 0.14 27 23 28 24 0.169 0.169

S & P
10 1272 1275 0.41 0.14 34 25 35 26 0.215 0.215
25 2210 2231 0.38 0.13 26 27 27 28 0.186 0.186
40 3389 3545 0.36 0.13 24 33 25 34 0.169 0.169

First of all, from all three tables Tables 1 to 3, we see that the average errors obtained by 
methods using ΦMRE and ΦGCV are comparable, regardless of blur type or image size. This 
confirms the observations f rom the box p lots f or the symmetric case and N  =  5 12. We also 
see uniformly that the number of function evaluations and iterations are comparable for each 
method, but that the cost in terms of computational time of finding kMRE is higher than that 
of finding k GCV. To understand t he d ifference in  co sts, we  lo ok ba ck to  (3 .4) and (3 .6) and 
assess that the precalculation of |B̂all| provides a function that is more efficient to  evaluate 
for GCV. These observations together strongly support the use of the GCV function to find 
kOPT. We also confirm that the approach is successful for different image sizes, see the results
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in Tables 1 and 2, and different blur types, comparing Tables 2 and 3. Moreover, from the
calculated estimates for kMRE and kGCV, comparing the methods, we see that we do not find
kMRE = kGCV. This suggests that the results are not too sensitive to the choice for kOPT,
provided that the given function has found a minimum to the tolerances used in fminbnd,
particularly given that the different choices for kOPT yield comparable relative errors over
the testing data. As would be expected the errors and the computational costs are larger
for the larger problem. Moreover, we would anticipate from the image degradation seen for
the image with asymmetric blur, that we would expect kOPT to be smaller than for the case
with symmetric blur. This is confirmed in the results. Finally, these quantitative results
demonstrate that the approach is successful for all three noise types and three noise levels
considered in the experiments.

We are able to conclude that despite changes in noise type, SNR indices, and blur type,
the GCV method in (3.6) does not require the known data, is far less expensive to run, and
gives errors that are comparable to the use of the MRE method in (3.4).

4.2.3. Illustrative Restored Images. We now assess this conclusion by plotting images
that were restored using the optimal indices kMRE and kGCV for the original image from the
testing set given in Figure 2 and an image from the training set.

Figure 11. The restoration of images in Figure 4 using the function ΦMRE for gaussian, poisson and 
salt & pepper noise, left to right plots respectively. The relative errors for these images are all .091, with the 
same rounding as in Table 2.

The images presented in Figures 11 and 12 provide a visual evidence of the quality of the 
restoration of the images B in Figure 4, images from the testing set, using the truncation 
indices kMRE and kGCV found using each Φ. Also given in the captions are the relative errors 
for each of these images as compared to the true images. For all of the images in Figures 11 
and 12 the relative errors are .091, with rounding to two significant d igits. T hese relative 
errors are marginally less in all cases than the relative errors reported in Figure 6 where 
the truncation index was found by inspection of the Picard plot, in each case. Moreover, as 
expected from Table 1, the results from both methods are quite similar despite the difference 
in truncation indices. Further, even though these images are from the testing set, their relative 
errors are less than the average relative errors for these cases as reported in Table 2. But from 
Figure 10 we can see that it is possible for images from the testing set range to have errors 
.091 which are on the low ends of the whiskers in the relative error box plots.
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Figure 12. The restoration of images in Figure 4 using the function ΦGCV for gaussian, poisson and 
salt & pepper noise, left to right plots respectively. The relative errors for these images are all .091, with the 
same rounding as in Table 2.

In Figure 13 we show the restoration of an image, house.tiff, from the training data set, 
with the different noise types and SNR =  4 0, t o c onfirm th e pr esented qu antitative results. 
Specifically, that the testing set results are acceptable in relation to the training r esults. For 
this example, the relative errors given in the captions are all close, 0.102 with rounding for 
the different noise types, respectively, and larger than the reported errors for the image from 
the testing set. The relative error box plots for the training data allow that images may 
have larger relative errors for an individual case as compared to results from the testing data. 
Overall the images presented in Figures 11 to 13 support the results presented in the box plots 
and the results in Table 2, and demonstrate that the restorations are acceptable.

To show the impact of using the approach to restore images with asymmetric blur, in 
Figure 14 we show the restoration of the corrupted image with the three noise types for the 
image in the right in Figure 2, corresponding to an image in the testing set with SNR = 40. 
The relative errors are all close for each image, 0.118 with rounding for the different noise 
types.

Overall, these results are notable particularly given the simplicity of the approach which 
only uses truncation in the SVD and does not impose any other form of regularization. We 
emphasize that it is sufficient to  us e th e un supervised GCV me thod to  fin d an acceptable 
truncation index for image restoration.

5. Conclusions. We have shown that the presented machine learning approach can be 
used to identify kOPT for image restoration. Different m ethods f or i dentifying k OPT were 
considered. Our experiments considered both symmetric and asymmetric blur operators and 
image sizes up to N = 512, and demonstrated that either method to identify kOPT is robust 
regardless of image size, blur operator, signal to noise ratios, and the gaussian, poisson and 
salt & pepper noise types. The reported experiments demonstrate that it is sufficient to  use 
an unsupervised method to find the truncation indices, specifically the GCV function can be 
efficiently mi nimized. Moreover, the results obtained are comparable in  terms of  the achieved 
relative errors to those from the supervised MRE method. Notably, it is computationally 
cheaper in terms of wall clock time to use the unsupervised GCV estimator. Finally, these 
results are achieved using a small training set with just 20 images for images of sizes, and has
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Figure 13. The restoration of a blurred image in the training set with N = 512, using kGCV as given in
Table 2 for gaussian, poisson and salt & pepper noise, left to right plots respectively, and symmetric blur.
The relative errors for these images are are all 0.103 with the same rounding as in Table 2.

Figure 14. The restoration of a blurred image in the testing set with N = 512, using kGCV as given in 
Table 3 for gaussian, poisson and salt & pepper noise, left to right plots respectively, and asymmetric blur. 
The relative errors for these images are are all 0.118 with the same rounding as in Table 3.

been tested on images from N = 64 to N = 512, with results presented for N = 256 and 
N = 512. Overall, determining kOPT using fminbnd applied to minimize the GCV function 
is effective and efficient across blur types, image sizes, SNR levels and noise types.

We note that our investigation is not unique. In another report on optimal experimen-
tal design for inverse problems, similar supervised learning approaches were used [9]. There, 
Tikhonov regularization was more generally considered, as well as optimal spline and mean 
squared error (MSE) filters. They remarked that these optimal filters and approaches per-
formed better than the standard GCV method for a one-dimensional problem, but did not 
consider the use of GCV for two dimensional problems. It would, therefore, be interesting to 
use the GCV approach for the more challenging problems considered in [9]. Further, future 
work should look at applying the approach when used with different boundary conditions 
or for restoring color images with independent color channels. In summary, this presented 
research has made a valuable contribution to the automated improvement of contaminated 
image data sets without knowledge of true solutions.
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