
Including Batter Sprint Speed in the Calculation

of the Intrinsic Value of a Batted Ball

William Melville
willmel@byu.edu

Advisor: Sean Warnick
sean@cs.byu.edu

Information and Decision Algorithms Laboratories
(IDeA Labs)

Brigham Young University

July 2019

Copyright © SIAM
Unauthorized reproduction of this article is prohibited

169



Abstract: This paper describes the process used to create two different models 
to define the intrinsic value of a batted ball. The first model, which was origi-
nally created by Dr. Glenn Healey, maps a batted ball’s speed, vertical angle, 
and horizontal angle to an intrinsic value. This first model has the property that 
above average runners tend to be underrated and below average runners tend 
to be overrated by the intrinsic value. Thus, the second model described in this 
work attempts to address this property by including the batter’s sprint speed in 
the mapping to an intrinsic value. A visual representation of the first mapping 
called the wOBA cube is presented as well as a visual representation of the sec-
ond mapping called the wOBA tesseract. The mean absolute deviation between 
the intrinsic statistic and the outcomes-based statistic is used to compare the 
accuracy of both intrinsic values, and it is determined that the sprint speed in-
trinsic value is at least as accurate as the non-sprint speed intrinsic value. The 
two intrinsic statistics’ reliabilities are compared using Cronbach’s alpha, and 
it is determined that they are similarly reliable and that they are both more 
reliable than the outcomes-based statistic. Finally, the ten most under and over-
rated players, in terms of the difference between their outcomes-based statistic 
and their intrinsic statistic, are identified for both intrinsic statistics, and it 
is determined that the sprint speed intrinsic value underrates fast runners and 
overrates slow runners less frequently than the non-sprint speed intrinsic value.

Keywords: baseball, batted balls, Bayes, intrinsic, modeling

1 Introduction

In Glenn Healey’s article Learning, visualizing, and assessing a model for the 
intrinsic value of a batted ball [1], he used a Bayesian model to map a batted 
ball’s speed, vertical angle, and horizontal angle to an intrinsic value. He then 
showed that the intrinsic value statistic he derived has a higher reliability than 
the outcomes-based statistic. In baseball, there are many confounding vari-
ables that can affect the outcome of any given batted ball. These confounding 
variables include things like the quality of the defenders, the ballpark, and the 
weather. Thus, the intrinsic value model could potentially improve upon the 
evaluation of baseball hitters because it ignores these confounding effects and 
focuses only on what the batter can control.

Healey’s intrinsic value model mapped a batted ball vector, x = (s, v, h), to an 
intrinsic value, where s is the batted ball’s launch speed, v is its vertical launch 
angle, and h is its horizontal angle. In a paper he wrote for the Hardball Times, 
Healey noted that many players with a large difference between their outcomes-
based statistic, O, which was given by weighted on base average on contact or 
wOBAcon, and their intrinsic statistic, I, often had an above average running 
speed. Likewise, players with a small O − I value had a below average running 
speed [2][3]. It seems that fast runners are able to exceed the expectation 
given by the intrinsic value of their batted balls, whereas slow runners have
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a hard time meeting that expectation. Intuitively, a slow ground ball hit to
the third baseman is less valuable to a slow baserunner than it is to a fast
baserunner because the fast runner may be able to use his speed to beat the
throw to first base, whereas the slow runner is unlikely to beat the throw to
first. Likewise, above average runners can sometimes stretch what are normally
singles or doubles into doubles or triples using their above average speed. These
observations suggest that the intrinsic value of a batted ball as Healey defines it
is likely to underrate fast runners and overrate slow runners. Thus, a potential
improvement to the intrinsic value model would consider the batter’s sprint
speed as part of the intrinsic value of the batted ball.

In this paper, an updated version of Healey’s intrinsic value model that con-
siders the batter’s sprint speed is presented. Healey’s intrinsic value statistic
will be referred to throughout as Ins, which stands for the intrinsic value statis-
tic with no sprint speed parameter. The updated version will be referred to
throughout as Is, which stands for the intrinsic value statistic with a sprint
speed parameter. I will refer to one or both intrinsic value statistics. Be aware
of the difference between I and I(x). I(x) will refer to the intrinsic value of a
batted ball with batted ball vector x, whereas I will refer to the intrinsic value
statistic, which is simply the average value of I(x) for all of a player’s batted
ball vectors. Visuals that depict Ins(x) and Is(x) for varying vertical and hori-
zontal angles are also presented in this paper. Finally, Ins and Is are compared
in terms of accuracy, reliability, and their O − I values. Note that O will refer
to the outcomes-based statistic, wOBAcon, throughout this paper.

2 Data

Batted ball data from the 2017 MLB season were obtained from Statcast using
data scraping functions in the baseballr package of the R programming language
[4][5]. This provided the batter, launch speed, launch angle, horizontal angle,
and wOBAcon of every batted ball in 2017. The batters’ sprint speeds were
also obtained separately from Statcast and are defined for each player as ”feet
per second in a player’s fastest one-second window” [4]. FanGraphs provided
all the weights used to calculate I(x) except for the weight of reaching base on
an error, which was taken from Tom Tango’s The Book [6][7].

3 Methodology

In Healey’s article, he estimated the probability of an outcome, Rj , given a
batted ball vector, x = (s, v, h), using Bayes’ Theorem, which in this context is
defined as:

P (Rj |x) =
p(x|Rj)P (Rj)

p(x)
. (1)
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For the outcome, Rj , there were six possibilities: out, single, double, triple,
home run, and reached base on an error [8]. These outcomes were given by
j = 0, ..., 5 respectively. A kernel density estimate for p(x|Rj) was obtained
using the formula

p̂(x|Rj) =
1

n

n∑
i=1

K(x− xi) (2)

where xi is the ith batted ball vector from a set of n observed batted balls with
outcome Rj , and K is the zero-mean Gaussian kernel given by

K(x) =
1

(2π)d/2|Σ|1/2
exp[−0.5xTΣ−1x] (3)

where d is the dimension of the probability density function, and Σ is the d× d
covariance matrix. Now, as Healey discussed in his work, Σ gives the amount and
orientation of the smoothing and is often chosen to be the identity matrix times
a scalar. However, Healey wanted to allow for different amounts of smoothing in
different directions, so he adopted a diagonal model for Σ with variance elements
given by (σ2

s , σ
2
v , σ

2
h). Since Healey’s vector was given by x = (s, v, h) and was

thus three-dimensional, he was able to rewrite (3) as

K(x) =
1

(2π)3/2σsσvσh
exp[−0.5(

s2

σ2
s

+
v2

σ2
v

+
h2

σ2
h

)]. (4)

Choosing the smoothing bandwidth parameters is the most important part of
kernel density estimation. The size of the bandwidth determines the widths of
the Gaussian kernels to put at each data point. If the bandwidth parameters are
too small, the estimated density is too spikey, which increases the variance in
the probability estimates. On the other hand, if the bandwidths are too large,
the estimated density is too smooth, which increases the bias in the probability
estimates. The optimal bandwidths find an appropriate balance between bias
and variance and can often be obtained through maximum likelihood estimation.
Healey estimated the three unknown bandwidth parameters, σ = (σs, σv, σh),
by maximizing the pseudolikelihood,

σ∗k = arg max
σ

∏
xi∈Sk

p̂(xi|Rj) (5)

where k = 1, ...,M and Sk is one of M disjoint sets of observed batted balls
with outcome Rj . The batted balls with outcome Rj that were not in Sk were
used for the n observed batted ball vectors with outcome Rj in (2). Then, the
optimal bandwidth vector, σ∗, was simply the average of the M different σ∗k
vectors. When Healey did this, he set M equal to two, and he obtained his two 
disjoint sets by separating batted balls hit on even numbered days from batted 
balls hit on odd numbered days. He then removed batted balls from the larger 
of the disjoint sets until both contained nv batted balls, where nv is the number 
of batted balls in the smaller of the two disjoint sets. Then, for each set, Sk,
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he performed a three-dimensional search in σs, σv, and σh using a step size of
0.1 to find the solution to (5). After finding the optimal bandwidth vector, σ∗,
for each outcome, he was able to estimate p̂(x|Rj) using (2). He then estimated
P (Rj) by dividing the total number of times that outcome Rj occurred in the
batted ball data by the total number of batted balls. Finally, he estimated p(x)
using the formula

p̂(x) =
5∑
j=0

p̂(x|Rj)P̂ (Rj). (6)

This gave him everything he needed to use Bayes’ Theorem to estimate P (Rj |x)
in (1). From there he calculated the intrinsic value, Ins(x), using the formula

I(x) =
5∑
j=0

wjP (Rj |x) (7)

where wj is the wOBA value or weight associated with each of the six possible
outcomes.

In order to compare the 2017 Ins statistics with the Is statistics, Ins(x) first
had to be calculated for every batted ball in 2017. Since Healey calculated Ins(x)
for the 2014 batted balls, new bandwidth vectors, σ∗, had to be calculated for
2017. The method used in calculating the new bandwidth parameters was very
similar to Healey’s method with just some slight adjustments. Like Healey, the
batted balls for each outcome were split into two disjoint sets depending on if
they were hit on an odd or an even day. Then for each outcome other than outs,
a three-dimensional search with a step size of 0.2 was performed on σs, σv, and
σh to find the solution to (5). Then σ∗ for each outcome was the average of
the two searches. The reason the step size was changed from 0.1, which is the
step size Healey used, to 0.2 was simply to save on computational time. For
outs, the two disjoint sets were divided into ten. Then, for each of the ten sets
of two, equation (5) and the method described above were used to find σ∗j for
j =1,...,10. The optimal bandwidth vector was then the average of all of the σ∗j
vectors. The reason why the outs’ bandwidth parameter search was done using 
this method rather than Healey’s method was because the implementation of 
(2) was slow for the large number of batted balls that resulted in outs. Since (2) 
gets called on frequently in (5), the outs batted balls were split up even further 
to reduce the computational time of (2). There were about ten times as many 
outs as doubles. Since calculating the bandwidth for doubles did not take very 
long, the outs were split by ten to reduce the problem to essentially calculating 
ten more doubles’ bandwidths, which was much faster than trying to calculate 
the outs bandwidth without splitting the data any further.

Table 1 gives the bandwidth parameters that were found for the 2017 season. 
Other than the slight changes made to save time in the calculation of the band-

173



σ∗ Outs 1B 2B 3B HR RBOE

σs 3.12 1.9 3 3.1 1.5 5.5
σv 2.59 1.9 3.1 4.3 1.6 2.1
σh 3.8 4.7 2 2.3 3 8.6

Table 1: 2017 Bandwidth Parameters

width parameters, all other calculations were performed using the same method-
ology that Healey used. The weights used in (7) were w0 = 0, w1 = 0.877,
w2 = 1.232, w3 = 1.552, w4 = 1.98, and w5 = 0.92 [6][7].

To calculate Is(x) for the batted balls in 2017, the speed of the batter had to
be included. Thus, the batted ball vector, x = (s, v, h), became x = (s, v, h, ss),
where ss is the sprint speed of the batter as obtained from Statcast [4]. This
required making adjustments to (4), and it required estimating new bandwidth
parameters given by σ∗ = (σs, σv, σh, σss). Adjusting (4) was fairly simple. The
dimension, d, changed from three to four, and the covariance matrix, Σ, became
the diagonal matrix with variance elements given by (σ2

s , σ
2
v , σ

2
h, σ

2
ss). This led

to the updated equation for K,

K(x) =
exp[−0.5( s

2

σ2
s

+ v2

σ2
v

+ h2

σ2
h

+ ss2

σ2
ss

)]

(2π)2σsσvσhσss
. (8)

All of the other equations remained unchanged except that x was (s, v, h, ss)
instead of (s, v, h).

New bandwidth parameters needed to be estimated to include sprint speed.
Once again, each outcome’s batted balls were split by even and odd days. Then
a four-dimensional search was performed on σs, σv, σh, and σss with a step size
of 0.2. As one would expect, increasing the dimension of the search from three
to four led to an increase in the computational time. For all outcomes other
than singles and outs, σ∗even and σ∗odd were calculated, and then σ∗ was simply
the average of those two vectors. Since there were a large number of batted
balls that resulted in outs or singles, the odd and even sets for singles were split
into 10, and the odd and even sets for outs were split into 20. Then, the method
described above was used to find σ∗j for j = 1, ..., 10 for the singles and σ∗k for
k = 1, ..., 20 for the outs. Then the singles’ bandwidth parameters were given by
the average of the 10 different σ∗j vectors, and the outs’ bandwidth parameters
were given by the average of the 20 different σ∗k vectors. This was done to save
on computational time. There were about ten times as many outs as there were 
doubles, and there were about five times as many singles as there were doubles. 
Calculating the bandwidths for doubles didn’t take very long, and calculating 
the bandwidths for doubles using half as many doubles would have taken even 
less time. Thus, by splitting outs by twenty and singles by ten, the problem was
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essentially reduced to calculating the doubles’ bandwidths using half as many
doubles twenty more times and ten more times respectively. This reduced the
computational time.

The bandwidth parameters that were obtained for the 2017 season are given
in Table 2. Using these bandwidth parameters and the same weights that were

σ∗ Outs 1B 2B 3B HR RBOE

σs 3.39 3.97 3.4 2.9 1.9 6
σv 4.35 3.79 3.6 4.1 1.9 3.4
σh 8.49 6.41 2.1 2.9 3.7 10
σss 0.915 0.9 0.8 0.9 0.6 1

Table 2: 2017 Bandwidth Parameters with Sprint Speed

used in the calculation of Ins(x), Is(x) was then calculated using (7).

4 Visualizing the Intrinsic Values

In his article [1], Healey created a visual mapping from (s, v, h) to the intrinsic 
value, Ins(x), called the wOBA cube. Fig. 1 gives a similar wOBA cube that 
uses the 2017 data rather than the 2014 data that Healey used. The distance 
from home plate to the fence is typically shortest along the baselines (h = ±45). 
Thus, it isn’t surprising that Fig. 1 suggests that when a batted ball is hit with 
a speed of 96 mph, it is most valuable when it is hit down the baselines (h > 40 
or h < −40) with a vertical angle, v, between 25 and 35. The cold spots centered 
just below v = 20 with horizontal angles of -30, 0, and 30 represent balls hit 
to the left, center, and right fielders which typically result in outs. Likewise, 
the cold spots below v = 0 that are centered near h = −35, −15, 20, and 40 
represent balls fielded for outs by third basemen, shortstops, second basemen, 
and first basemen respectively.

A similar visual can be created that maps (s, v, h, ss) to Is(x) if s and ss are 
held constant. This visual can no longer be called a wOBA cube though, since 
there are four inputs instead of three. Instead, it should be called a wOBA 
tesseract.
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Figure 1: 2017 wOBA Cube with s=96 mph

Figure 2: wOBA Tesseract with s = 96 mph and ss = 25 ft/s
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Figure 3: wOBA Tesseract with s = 96 mph and ss = 27 ft/s

Figure 4: wOBA Tesseract with s = 96 mph and ss = 29 ft/s
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Figs. 2, 3, and 4 give the wOBA tesseracts for s = 96 mph and ss = 25, 27, 
and 29 ft/s respectively. 27 ft/s is the MLB average sprint speed, and 25 and 
29 ft/s are relatively slow and fast MLB sprint speeds. These tesseracts all look 
pretty similar, but there are some subtle differences. It seems that ground balls 
down the first base line (h > 40, v ∈ [−10, 0]) get increasingly more valuable as 
the sprint speed increases, as we would expect. Also, balls hit with v close to 
30 and h less than -40 seem to get increasingly more valuable as sprint speed 
increases. This is less obvious because the color scales on each tesseract are a 
bit different, but for ss equal to 29, balls hit with these characteristics have 
a value as high as 1.4. For ss equal to 27, these balls have an intrinsic value 
close to 1.2. Finally, for ss equal to 25, they have an intrinsic value of less than 
1.2. Thus, as sprint speed increases, batted balls hit with these characteristics 
get increasingly valuable in terms of Is(x). A similar thing happens for v = 30 
and h > 40, but the improvement is less obvious. The intrinsic value improves 
from about 1.2 to something greater than 1.2 as ss increases from 25 to 27, 
but then for some reason it goes back down to 1.2 or slightly less than 1.2 for 
ss equal to 29. This unexpected result could potentially be explained by a 
smaller sample size of batted balls with similar characteristics. In 2017, there 
was only one batted ball with ss = 29, v between 25 and 35, s between 90 and 
100, and h greater than 40. This batted ball resulted in an out, which could 
explain why the wOBA tesseract for ss = 29 has a surprisingly low value for 
balls with v near 30 and h greater than 40. Contrarily, there were over 300 
batted balls in 2017 in the same ranges for s, v, and h with any sprint speed. 
By adding a sprint speed parameter, the number of observed batted balls with 
similar characteristics to any given batted ball vector naturally decreases, which 
could explain why increasing ss isn’t guaranteed to increase Is(x) even though 
that’s what one might expect.

5 Comparing the Sprint Speed Intrinsic Value
with the non-Sprint Speed Intrinsic Value

The main purpose of this work was to address the point that Healey brought 
up in [2] that Ins tends to result in high O − I values for fast runners and 
small O − I values for slow runners, where O is the outcome statistic wOBA on 
contact or wOBAcon. By adding a sprint speed parameter to calculate Is, the 
goal was to maintain the accuracy and reliability of the Ins statistic and also to 
avoid the trend of underrating fast runners and overrating slow ones in terms 
of O − I. In this section the accuracy, reliability, and O − I values of Ins and 
Is are compared.

5.1 Accuracy

One would expect the intrinsic value of a batted ball to be fairly close to the 
actual outcome value, or wOBAcon. If there is a significant difference between 
the wOBAcon and I values of a large number of hitters, then the intrinsic
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value model is likely inaccurate. To measure this, the mean absolute deviation
between O and I, as given by

M.A.D =
1

K

K∑
j=1

|Ij −Oj |, (9)

where K is the number of batters, Ij is the jth batter’s intrinsic value statistic,
and Oj is the jth batter’s wOBAcon, was calculated using the 2017 batted ball
data. The Ins statistics had an M.A.D. of about 0.0367 and the Is statistics had
an M.A.D. of about 0.0365. Thus, the sprint speed intrinsic value seems to be at
least as accurate, if not more accurate, than the non-sprint speed intrinsic value.
This led to the conclusion that the sprint speed intrinsic value maintained the
accuracy of the non-sprint speed intrinsic value, which was one of the goals of
this work.

5.2 Reliability

In Healey’s work, he used Cronbach’s alpha to compare the reliability of the
non-sprint speed intrinsic values in 2014 with the wOBAcon values in 2014 [1][9].
He showed that the intrinsic values were more reliable. Another goal for the
sprint speed intrinsic value calculations was to maintain or improve upon the
level of reliability of the non-sprint speed intrinsic values. Cronbach’s alpha was
calculated for both intrinsic values and the wOBAcon. The results are given in
Figure 5.

Figure 5: Reliability comparisons using Cronbach’s alpha
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As expected, the intrinsic value without sprint speed still has a higher relia-
bility than the outcome statistic. Additionally, the intrinsic value with sprint
speed is just as reliable as the one without sprint speed. Thus, the goal that the
sprint speed intrinsic value be just as reliable as the non-sprint speed intrinsic
value was met.

5.3 O − I Comparisons

The final goal of adding sprint speed to the intrinsic value calculation was
to not underestimate fast runners and overestimate slow runners. In Healey’s
2014 calculations, he noted that most of the top ten highest O− I values came
from players with above average running speed. Likewise, the ten smallest O−I
values all came from below average runners [2]. A similar trend occurs in the
2017 hitters. Looking at only players with at least 300 batted balls who also
had sprint speed data available, the ten largest O−Ins values are given in Table
3. The ten smallest O − Ins values are given in Table 4.

Name O − Ins Sprint Speed (ft/s)

Trevor Story 0.084 29.3
Charlie Blackmon 0.080 28.2

Javier Baez 0.073 28.5
Scooter Gennett 0.070 26.4

Bryce Harper 0.069 27.7
Zack Cozart 0.069 26

Marwin Gonzalez 0.069 26.7
Didi Gregorius 0.068 28.2

Cory Spangenberg 0.060 28.6
Corey Dickerson 0.060 27.6

Table 3: Largest O − Ins

Note, the average sprint speed in 2017 was about 27 ft/s. All but three of 
the batters with the highest O − Ins values had an above average sprint speed. 
All of the hitters with small O − Ins values had below average sprint speeds. 
Just like in 2014, most of the highest O − Ins values were from above average 
runners, and all of the smallest O− Ins values were from below average runners.

Charlie Blackmon and Trevor Story not only benefitted from good sprint 
speeds, but they also play for the Colorado Rockies in the most hitter friendly 
ballpark in all of baseball. This ballpark effect is likely to inflate O, which could 
be another reason why these players ended up with high O − Ins values in 2017. 
This provides further evidence that the intrinsic value statistic does a good job 
of ignoring confounding variables such as ballpark effects.
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Name O − Ins Sprint Speed (ft/s)

Mitch Moreland -0.051 25.7
Albert Pujols -0.044 21.8
Todd Frazier -0.043 26.5
Joe Mauer -0.037 26.1

Shin-Soo Choo -0.036 26.3
Kendrys Morales -0.034 23.5

Yadier Molina -0.033 23.8
Manny Machado -0.032 26.3
Maikel Franco -0.031 26

Hanley Ramirez -0.031 26.1

Table 4: Smallest O − Ins

Now, the primary goal of adding sprint speed to the intrinsic value calculation
was to stop overrating slow runners and underrating fast runners. The ten
players in 2017 with the largest O − Is values are given in Table 5. The ten

Name O − Is Sprint Speed (ft/s)

Zack Cozart 0.081 26
Trevor Story 0.080 29.3

Scooter Gennett 0.076 26.4
Marwin Gonzalez 0.073 26.7
Charlie Blackmon 0.071 28.2

Javier Baez 0.069 28.5
Bryce Harper 0.062 27.7
Didi Gregorius 0.054 28.2

Corey Dickerson 0.054 27.6
Nolan Arenado 0.054 25.7

Table 5: Largest O − Is

smallest O − Is values are given in Table 6.

The ten players with the highest O − Is values are similar to the ten players 
with the highest O − Ins values. The only differences are the ordering and that 
Nolan Arenado has taken Cory Spangenberg’s spot. Nolan Arenado is a below 
average sprinter, so now there are four below average sprinters in the top ten 
rather than three like there were in the O − Ins list. Nolan Arenado, like Story 
and Blackmon, is a Colorado Rockie, so his large value of O − Is could likely be 
explained by the fact that he plays his home games in a high scoring ballpark. 
In addition to all the Rockies on this list, all but Marwin Gonzalez, Javier Baez, 
and Corey Dickerson played in a ballpark that is slightly more hitter friendly
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Name O − Is Sprint Speed (ft/s)

Todd Frazier -0.038 26.5
Ian Kinsler -0.032 26.9

Manny Machado -0.032 26.3
Mitch Moreland -0.031 25.7
Shin-Soo Choo -0.031 26.3

Ben Zobrist -0.025 27.1
Robbie Grossman -0.025 27.9
Dansby Swanson -0.025 28.7
Hanley Ramirez -0.025 26.1
Scott Schebler -0.020 28.3

Table 6: Smallest O − Is

than average. This may have contributed to them having high O − Is values, 
but overall it seems that even the sprint speed intrinsic value tends to underrate 
fast runners. However, it seems to underrate them by less than Ins. The average 
O − Is value in the top ten list is 0.0674, whereas the average O − Ins value in 
the top ten list is 0.0702. Thus, although Is still seems to have a tendency to 
underestimate fast runners, it seems to underestimate them by less than Ins, 
which could be considered a slight improvement.

The top ten smallest O − Is values list is fairly different from the top ten 
smallest O − Ins values list. Unlike in the O − Ins list, there are a few players 
that are not below average sprinters in the O − Is list. Scott Schebler, Dansby 
Swanson, Robbie Grossman, and Ben Zobrist are all above average runners, 
and all of them had small O − Is values. Thus, it seems we have made an 
improvement in not overrating slow runners in terms of their Is. Additionally 
just as in the top ten list, the O − Is value list overvalues these players by less 
on average than the O − Ins list. The O − Ins bottom ten list had an average 
O − Ins value of -0.0372, whereas the O − Is list had an average O − Is value of 
-0.0284. Thus, not only does Is not overrate slow runners as frequently as Ins 
but it also seems to overrate slow runners by less than Ins.

Although the sprint speed intrinsic value still had a slight tendency to overrate 
slow runners and underrate fast runners in terms of their O − I, these top and 
bottom ten lists suggest that it improved upon the non-sprint speed intrinsic 
value. The Is value over and underrated slow and fast runners less frequently 
than Ins, at least according to these top ten lists. Is also seemed to under and 
overrate these top and bottom ten players by less than Ins
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6 Alternative Modeling Choices

Although many alternative choices could have been made in the modeling 
process, this section discusses the decisions to use diagonal covariance matrices 
in the kernel density estimates and to use Statcast’s sprint speed metric.

6.1 Non-Diagonal Σ in Kernel Density Estimation

In both Healey’s model and the updated sprint speed model, the covariance 
matrix, Σ, of the Gaussian kernel is assumed to be diagonal. This makes finding 
the optimal bandwidths less computationally expensive because most of the 
entries in Σ are zero. However, assuming Σ is diagonal requires the assumption 
that the covariances between the entries of the batted ball vector are all zero. 
This assumption was made to make computations simpler, but it was never 
justified. It is possible that the covariance between some of these factors is not 
zero. In particular, the value that sprint speed adds to a batted ball’s intrinsic 
value depends heavily on the type of batted ball. For example, the intrinsic 
value of a ground ball probably depends a lot on the sprint speed, whereas 
the intrinsic value of a home run that leaves the ballpark isn’t affected at all 
by the batter’s sprint speed. Thus, it is likely that the covariances between 
sprint speed and the other factors are actually nonzero. It is also possible 
that the covariances between s, v, and h are nonzero. Therefore, removing 
the assumption that Σ is diagonal could potentially improve the accuracy and 
reliability of the intrinsic value models, particularly the sprint speed model, at 
the cost of increased computational time.

6.2 Alternative Measures of Sprint Speed
The sprint speed metric used in this research is defined on the Statcast web-

site as ”feet per second in a player’s fastest one-second window” [4]. One of 
the potentially interesting applications of the intrinsic value statistic is to map 
an amateur player’s batted ball characteristics to an intrinsic value that can be 
compared to the MLB standard. Many batting cages and even college baseball 
fields have the ability to track a batted ball’s velocity, vertical angle, and hori-
zontal angle. However, the ability to determine a player’s sprint speed as defined 
by Statcast would be difficult without the data collecting technologies inside of 
MLB stadiums. An alternative measure of sprint speed that is also available on 
Statcast is a player’s home plate to first base time. This data point can easily 
be collected on amateur players by using a stopwatch. The model described in 
this work used Statcast’s sprint speed metric, but it could likely be adjusted to 
use the home plate to first base time instead. Making this adjustment would 
allow for amateur players to more easily compare the intrinsic value of their 
batted balls with the MLB standard, and it is an interesting alternative to the 
method used in this work.

183



7 Conclusion

In [1], Healey used a Bayesian model to map a batted ball’s speed, vertical 
angle, and horizontal angle to an intrinsic value given by the expected wOBA 
of such a batted ball. He created a visual of this mapping called the wOBA 
cube, and he showed that the intrinsic value statistic is more reliable than the 
outcomes-based statistic wOBAcon in terms of Cronbach’s alpha. Despite the 
accuracy and the reliability of this intrinsic value, Healey noted that it had a 
tendency to underrate fast runners and overrate slow runners [2].

The purpose of this research was to address the intrinsic value’s tendency to 
underrate fast runners and overrate slow runners while maintaining the accuracy 
and reliability. Sprint speed data for 2017 MLB players were used to update 
the original model to include the sprint speed of the batter. The mapping was 
adjusted to map the batted ball’s speed, vertical angle, and horizontal angle 
as well as the batter’s sprint speed to an intrinsic value. A new visual of this 
mapping was created called the wOBA tesseract. Additionally, comparisons 
between the sprint speed intrinsic value statistic and the non-sprint speed in-
trinsic value statistic showed that the sprint speed intrinsic statistic maintained 
the accuracy and reliability of the non-sprint speed statistic. It also seemed 
to under and overrate fast and slow runners less frequently and by a smaller 
amount than the non-sprint speed statistic. Thus, the goals of this work were 
met. The sprint speed intrinsic value not only maintained the accuracy and 
reliability of the non-sprint speed intrinsic value, but it also seemed to do a 
better job of not overrating slow runners and underrating fast runners.

The advantage of using intrinsic value statistics over outcomes-based statistics 
is that they ignore confounding effects like the ballpark, the weather, or the 
quality of the defense. By ignoring these effects, the intrinsic value statistics 
are more reliable and represent a purer estimate of a hitter’s true talent. MLB 
teams that improve upon existing intrinsic value models, such as Glenn Healey’s 
or even the sprint speed intrinsic value model of this paper, will be better able 
to evaluate and sign hitter talent, giving them a competitive advantage in the 
journey to a World Series.
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