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Abstract

Ionic channels play an important role in regulating the cell’s membrane

potential and internal charge. This paper will focus on a continuum model

of the KcsA potassium channel. We will derive the Poisson-Nernst-Planck

(PNP) equations in general and then provide computational solutions for a

1D KcsA channel using experimentally determined parameters. The solu-

tion to the PNP equations consists of the time-dependent charge densities

of each ion, coupled with the electric potential. The results will be used to

solve for the time-dependent current in the channel in response to different

time-dependent voltage signals, which can be compared with experimental

data.
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1 Introduction

1.1 Ionic Channels
Cellular membranes are one of nature’s many amazing inventions that make life

possible. The membrane separates the internal components of a cell from its sur-

rounding environment and controls traffic into and out of the cell. Membrane

thicknesses are usually on the order of a few nm–four orders of magnitude smaller

than a typical eukaryotic cellular radius. Their physical and chemical structures

are incredibly complex, consisting of a mosaic of proteins and lipids that are in-

volved in a wide variety of the cell’s activities. Among these activities are control-

ling the concentration of various ionic species, which in turn affects the electric

potential across the membrane. Complex protein structures in the membrane form

ionic channels, which can be thought of as holes in the membrane that allow ions

to pass through them. A typical cell has on the order of 104 such channels that vary

widely in function and complexity. Although some channels allow the passage of

ions based solely on charge, we will be investigating the KcsA potassium channel,

which is selective, i.e., it only allows one kind of ion (K+) to pass though. The

KcsA channel is found only in bacteria but it makes an ideal model for studying

channels since its complete structure has been determined via X-ray crystallogra-

phy. Ionic channels also have many different gating mechanisms that trigger the

channel to open or close. However, in this paper, we will assume that the channel

is already open and will make no assumptions about the gating mechanism of the

channel.

The existence of ionic channels has been known for quite some time and they

continue to be an active area of research in cellular biology. These channels play

an important role in many biological processes such as chemical signalling in the

endocrine system as well as electrical signalling in the nervous system. Under-

standing their properties and the mechanisms by which they operate has yielded

valuable insights into many biological phenomena. Many heart-related illnesses

are treated by drugs that are designed to either prolong or accelerate the process

of repolarization due to large electrical impulses by manipulating the channels.

Experimental methods for examining channels, such as patch-clamp techniques,

have been employed by biologists since the 1960’s, but they are limited by the

amount and quality of data that they can provide. However, we can study many

channel properties and make useful predictions by way of numerical simulations

based on simplified mathematical models. For a thorough study on the biology of

ionic channels, see [1].
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1.2 The PNP Model
In the following discussion, we will derive the equations used to model ionic

channels. We begin by considering a channel that is surrounded by intracellular

and extracellular salt baths (water with dissociated ions) as shown in Figure 1. We

will assume that the baths contain only potassium (K+) and chloride (Cl−) ions as

these are the ions that play the greatest role in KcsA channels. The channel also

carries a fixed background charge due to ions embedded in the membrane protein,

which is overall negative.
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Figure 1: Simple schematic of the K channel. The green charges represent the K+

ions travelling through the channel and the black charges represent the K+ ions in the

extracellular bath. Gray and red charges represent the fixed background charge of the

channel. The dashed curves at the ends of the channel represent equipotential surfaces.

To simulate the behaviour of the ions in the channel, we consider an open

channel with a voltage bias V across the membrane. Our goal is then to determine

the time-dependent distribution of ions in the baths and channel. A well-known

model known as the Poisson-Nernst-Planck (PNP) model (or drift-diffusion model)

allows us to analyze this system by treating the ions as a continuum, instead of

discrete objects. The validity and accuracy of the PNP model has been verified by

the work done in [4]-[6]. This model uses two physical heuristics to determine a
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system of partial differential equations to model this scenario. The first heuristic

relies on the fact that there is a local conservation law for each ionic species. This

is stated mathematically as

∂ni

∂t
+ ∇ · Ji = 0, i = K+, Cl−, Na+, etc. (1)

where ni(x, t) is the number density (ions/volume) and Ji(x, t) is the current den-

sity of ionic species i. The second heuristic comes from Gauss’s Law, which

relates the electric potential in a given region to the charge density contained in

that region. The mathematical formulation of this statement is

∇ · (ε∇φ) = −ρ (2)

where ε(x) is the dielectric coefficient of the medium (bath or channel), φ(x, t)
is the electric potential and ρ(x, t) is the total charge density. Equations (1) and

(2) form the general PNP model. Note that these equations are not independent–

they are implicitly coupled because the current density depends on the potential

and the potential depends on the ion densities. To apply this model to a specific

channel, we must first find expressions for the current densities Ji and the total

charge density ρ.

Current is defined as the movement of charge, so to find an expression for the

current density we must consider what makes the ions move. There are two such

mechanisms: concentration gradients and potential gradients. Thus, we should

expect two terms in the current density, one to represent each gradient. Moreover,

the concentration gradient of species i should be proportional to ∇ni and the po-

tential gradient flux should be proportional to both ni and ∇φ. The full expression

for the current density of ionic species i is thus

Ji = −Di∇ni − ziμini∇φ (3)

where Di(x) is the diffusion coefficient, zi is the valence and μi is the mobility

coefficient. The coefficients Di and μi measure the effectiveness with which the

concentration gradient and the potential gradient, respectively, move a particular

ion. Determining the total charge density in the region of interest is much sim-

pler: it is just the sum of the charges of the ions in the salt baths plus the fixed

background charge embedded in the channel protein. Thus,

ρ = −eN + e
∑

i

zini (4)

where e is the unit charge and N(x) is the number density of the background

charge. Combining equations (3) and (4) with (1) and (2), we have
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∂ni

∂t
= ∇ · (Di∇ni + ziμini∇φ) (5)

∇ · (ε∇φ) = eN − e
∑

i

zini. (6)

This system of equations represents the general PNP model and is valid for any

ionic channel.

2 Implementation
We now form a well-posed problem by considering a one-dimensional KcsA chan-

nel with a fixed negative background charge N(x) that is surrounded by intracel-

lular and extracellular salt baths. Figure 2 shows a schematic of the 1D region

along with boundary conditions, which will be discussed in the next subsection.

The length of the channel (3.5 nm) is known from experimental observation. The

choice of extending the bath by 5 nm on each side of the channel seems some-

what arbitrary but it has been observed that this is approximately the distance

over which the charge densities reach their asymptotic bath values. The baths will
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Figure 2: Computational 1D region (nm scale).

be considered to be homogeneous solutions of K+ and Cl− ions in water with each

species having an equal number of ions in the baths. This assumption guarantees

that no current is flowing before the voltage is applied. At t = 0, we apply a

voltage bias V across the membrane and solve for the time-dependent ion densi-

ties and potential in the region shown in Figure 2. In the following calculations,

the densities of the K+ and Cl− ions will be denoted as p and n, respectively.The

general PNP equations from the last section can now be applied to the system we

are considering:
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∂p

∂t
=

∂

∂x

(
D

∂p

∂x
+ μp

∂φ

∂x

)
, x ∈ [−5, 8.5], t > 0 (7)

∂n

∂t
=

∂

∂x

(
D

∂n

∂x
− μn

∂φ

∂x

)
, x ∈ [−5, 8.5], t > 0 (8)

∂

∂x

(
ε
∂φ

∂x

)
= e(N − p + n), x ∈ [−5, 8.5], t > 0. (9)

This system contains three state variables, p, n and φ, along with four param-

eters, D, μ, ε and N . Note that the subscripts on D and μ have been dropped.

These parameters are specific to a given ionic species but they are determined by

the mass and charge magnitude of the species. Since K+ and Cl− are equal in

charge magnitude and have a negligible difference in mass, we can assume that

DK+ = DCl− ≡ D and μK+ = μCl− ≡ μ. In order to solve the given equations

for the 1D channel, we must make use of experimentally determined values for

the four parameters. All of these parameters are assumed to be piecewise con-

stant functions of x and their values in each region are given in Table 1. Note

that the values in Table 1 have been scaled appropriately to be consistent with our

computational units.

Region D ε μ N
[-5,0) 1.5 80 60 0

[0,0.2) 0.40 80 16 25

[0.2,1.3) 0.40 4.0 16 0

[1.3,2.3) 0.40 30 16 0.64

[2.3,3.5) 0.40 30 16 1.6

(3.5,8.5] 1.5 80 60 0

Table 1: K channel parameters taken from data given in [2]. Lengths are given in nm; D
is given in 10−5 cm2/s; ε is dimensionless in cgs units; μ is in 10−5 cm2/(V s); and N is

in 1021 cm−3.
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2.1 Initial and Boundary Conditions
For the initial conditions for equations (7) and (8), we assume that the entire region

[-5,8.5] begins with a uniform constant density Nbath = 0.1 for each ionic species.

However, we must also take into account the background charge in the channel.

Thus we have

p(x, 0) = N + Nbath and n(x, 0) = Nbath.

We also have the ambient Dirichlet boundary conditions for equations (7) and (8)

at the far ends of the baths:

p(−5, t) = p(8.5, t) = n(−5, t) = n(8.5, t) = Nbath.

The boundary conditions for equation (9) are imposed:

φ(−5, t) = 0 and φ(8.5, t) = V (t).

2.2 Spatial Discretization
To solve equations (7)-(9) numerically, we implement a finite difference scheme.

This is a rather natural choice for the spatial discretization, given that the compu-

tational region is a line segment. While many PDE software packages are capable

of solving these equations, the code for the following implementation was written

by the author in MATLAB. The key reason for this is to begin developing the soft-

ware that will be required to solve these equations on complex 2D regions, which

would not be easily implemented using a PDE package.

We begin by defining all spatial functions on M +1 equally spaced grid points

over the interval [-5,8.5] with a spacing of h = 1/M . The grid points are labeled

j = 0, 1, 2, ...,M with j = 0 and j = M representing the boundary points. All

computations are thus performed on grid points 1, 2, ...,M − 1 which couple to

the boundary points. In this scheme, all spatial functions (p, n, φ, N , ε, μ and D)

are represented as vectors of length M −1. Our goal is to transform the PDEs (7)-

(9) into matrix equations that can be solved computationally. Using second-order

central difference approximations for the spatial derivatives, we the discretized
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versions of equations (7)-(9) at an arbitrary grid point j ∈ {1, 2, ...,M − 1} are

∂p

∂t

∣∣∣∣
j

=
1

h2

(
Dj+ 1

2
(pj+1 − pj) − Dj− 1

2
(pj − pj−1)

)

+
1

h2

(
μj+ 1

2
pj+ 1

2
(φj+1 − φj) − μj− 1

2
pj− 1

2
(φj − φj−1)

)
(10)

∂n

∂t

∣∣∣∣
j

=
1

h2

(
Dj+ 1

2
(nj+1 − nj) − Dj− 1

2
(nj − nj−1)

)

− 1

h2

(
μj+ 1

2
nj+ 1

2
(φj+1 − φj) − μj− 1

2
nj− 1

2
(φj − φj−1)

)
(11)

1

h2

(
εj+ 1

2
(φj+1 − φj) − εj− 1

2
(φj − φj−1)

)
= e(Nj − pj + nj). (12)

Note that the subscripts j − 1
2

and j + 1
2

represent the values of the functions

at midpoints, which are defined by linear interpolation. For example, pj+ 1
2

=
1
2
(pj + pj+1) and pj− 1

2
= 1

2
(pj−1 + pj).

We can write equations (10)-(12) as linear systems of the form

∂p

∂t
= Ap + bp (13)

∂n

∂t
= Bn + bn (14)

Cφ = e(N − p + n) (15)

where A, B and C are tridiagonal difference matrices, p, n and φ are the so-

lution vectors and bp and bn are vectors containing boundary data for p and n,

respectively. This spatial discretization scheme effectively transforms equations

(10)-(12) into a system of ODE’s in time.

2.3 Temporal Discretization
An observant reader may notice that in order to calculate the matrices A and B,

it is necessary to first know φ. Thus, a fully implicit method of solving equa-

tions (10)-(12) would require us to solve for p, n and φ simultaneously. However,

equations (10) and (11) contain nonlinear terms, which would require us to use

Newton’s method (or some other nonlinear solver). In order to avoid solving

the nonlinear equations, we linearize the system by implementing a semi-implicit
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method which solves for φ using current data and then solves for p and n. Al-

though this method is not fully implicit, we can avoid numerical instabilities and

arrive at a reasonable solution by taking moderately sized time steps. To solve

equations (13) and (14), we must implement a temporal discretization scheme that

is numerically stable, accurate and computationally fast. One of the best schemes

that satisfies these requirements is the TRBDF2 method, which is L-stable and

second-order accurate. This method will be briefly reviewed here but the reader is

referred to [4] for a complete discussion.

Consider the ODE u̇ = f(u) with u(0) = u0. In the following discussion, uk

will be used to denote u(tk). To compute uk+1 from uk, we first use the Trapezoid

Rule (TR) to compute uk+γ:

uk+γ = uk +
γΔtk

2
(fk + fk+γ).

We then use the second-order Backward Difference Formula (BDF2) to compute

uk+1:

uk+1 =
1 − γ

2 − γ
Δtkf

k+1 +
1

γ(2 − γ)
uk+γ − (1 − γ)2

γ(2 − γ)
uk.

The constant γ = 2−√
2 is designed to minimize the norm of the local truncation

error at every time step. Notice that Δt has a subscript k. This is to signify that

Δt is not constant, but is adjusted at every time step to optimize the computation

time. To implement this dynamic time step, we add a subroutine to the program

that computes the optimal Δt within some window [Δtmin, Δtmax] by monitoring

a divided-difference estimation for the local truncation error (LTE). The LTE at

time step k + 1 is LTEk+1 = αΔt3ku
(3), which can be estimated as

LTEk+1 ≈ 2αΔtk

(
1

γ
fk − 1

γ(1 − γ)
fk+γ +

1

1 − γ
fk+1

)
,

where

α =
−3γ2 + 4γ − 2

12(2 − γ)
.

3 Results
Using the equations described in the previous sections, several numerical simula-

tions using different spatial resolutions and final times were performed in MAT-

LAB. Figures 3 and 4 show plots of the steady state densities and potential, re-

spectively, with V (t) = 0.1. These plots were generated using 540 spatial grid
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points and were simulated for 10 ns, which was found (by numerical simulation)

to be sufficient time for the channel to reach steady state. Note that the ordinate of

Figure 3 uses a log scale. Also, the background charge N is plotted with a dashed

line for reference. Figure 3 shows significant boundary layers of charge near the

Figure 3: Steady state densities.

Figure 4: Steady state potential.

boundaries of the channel, suggesting that during steady state most of the charge

has accumulated at the interface of the channel with the baths. Also, notice that

p roughly follows N inside the channel. This implies that the channel is being

driven toward electrical neutrality given that the sum of Nchan and n nearly cancel

out p. Figure 3 also asserts that approximately 0.07 Cl− ions are present in the

channel once it reaches steady-state. This is an effect of the continuum model and

does not contradict the fact that chloride ions are excluded from the channel given
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that n � 1. Also, we see that there is an average of approximately 4.5 K+ ions

in the channel during steady state. These averages were computed by numerically

integrating the densities over the channel.

Figure 4 shows the steady state potential. The changes in concavity coincide

with the different interior regions of the channel. We can also see that the potential

varies smoothly in the baths but varies dramatically in the channel.

It is often of interest to know the current in the channel in response to a time-

varying voltage signal so a useful numerical experiment is to compute this time-

dependent current I(t) for some different voltage signals. Once the current densi-

ties are known, this is a simple matter since I = JA where A is the cross-sectional

area of the channel or baths and J is the current density defined in equation (3).

The plot shown in Figure 5 was generated by calculating the current at an arbitrary

bath point (x = 8) with a square wave voltage source defined by

V (t) =

{ −0.1 if 0 ≤ t ≤ 10
0 if t > 10

.

A similar current plot, shown in Figure 6, was generated using a sinusoidal voltage

signal defined by

V (t) = 0.1(cos(ωt) − 1)

with ω = 4. The plot shown in Figures 5 is exactly what one would expect for

Figure 5: Current for a square wave voltage source.

a square wave voltage signal.The current is nearly zero at all times, except when
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Figure 6: Current for a sinusoidal voltage source.

the voltage is turned on at t = 0 ns and turned off at t = 10 ns, which causes large

spikes in the current, nearly reaching ±500 pA. The current quickly decays to 20

pA during the first five ns and then goes to zero once the voltage is switched off.

Figure 6 shows that the current reaches steady state very quickly (about 3 ns) in

response to a sinusoidal signal. Another interesting feature of Figure 6 is that the

current and voltage waves are slightly out of phase, signifying a small time lag.

Finally, an IV curve was generated by plotting the steady-state current for five

Figure 7: Current vs. Voltage.
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different voltages (see Figure 7); this in in excellent agreement with experimental

data. Note the curve shown appears to be linear although experimental curves

appear to be slightly super- or sub-linear (the interested reader can find these data

in [1]). The super/sub-linear appearance of the experimental curve is believed to

derive from the coupling to the experimental patch-clamp device. This curve also

verifies the model and simulation methods since it agrees with experiment.

4 Conclusion
We have seen that a continuum model can serve as a useful and powerful tool in

the quantitative analysis of ionic channels. Comparing the results of this paper

with experimental data provides further justification of the continuum model. In

addition, we were also able to make some useful predictions regarding the current

that flows in response to time-varying voltage signals.

Discrete models that are more realistic require computation times that are sev-

eral orders of magnitude greater than those required for the continuum model and

thus are not able to simulate the channel to steady state in a practical amount

of time. Although the continuum model is far from perfect, it does provide a

method of approximating the behaviour of channels and running simple simula-

tions quickly.

The 1D model explored in this paper is certainly useful but is not very real-

istic since the channel really has a 3-dimensional structure. However, it is not

unreasonable to assume angular symmetry and solve the equations in 2D cylindri-

cal coordinates (r, z). Although the equations to be solved remain the same, the

boundary conditions for the 2D problem are quite different (and much more dif-

ficult to implement) than those used in the 1D problem. The software for solving

this problem is currently under development.
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