
A Comparison of Machine Learning Approaches to Housing Value Estimation

Orton Babb∗

Department of Mathematics, George Mason University

Abstract

Housing value estimation relies on hedonic pricing models whereby price is determined by both internal charac-
teristics (bedrooms, bathrooms, living area, etc.) as well as external characteristics (neighboring houses, ZIP code,
etc.). While classical parametric models based on linear regression analysis have been well studied in this applica-
tion, the theory of hedonic prices places no restrictions on the hedonic price functional form, and hence, more recent
research has attempted to apply machine learning (ML) approaches such as K-Nearest Neighbors and Support Vector
Machine Regression (SVR). Many of these ML methods are employed on the basis of their flexibility in terms of
making less assumptions on the shape or distribution of the data. ML models are therefore used with the expectation
of higher accuracy on predicting the final sale price of a house. In this study, we consider the combination of various
pre-processing procedures and candidate models on a historical data set of house sales in King County, Washington.
Different measures of accuracy are considered in interpreting model performance. The results suggest that while
machine learning algorithms like SVR achieve top performance as measured by the adjusted R2, classical parametric
models can also achieve out-of-sample generalization nearing that of the more sophisticated ML models, with faster
training times, no need for feature scaling and more easily interpreted parameters.

1 Introduction

In economic models of the real-estate market for residential homes, buyers and sellers engage in so called “arms-length
transactions” whereby sellers attempt to maximize their sale price while buyers attempt to get the best home for some
price within their budget. Most importantly, they do not have any relation to each other outside of this transaction.
Following this assumption, housing value estimation relies on hedonic pricing models in which price is determined by
both internal characteristics (bedrooms, bathrooms, living area, etc.) as well as external characteristics (neighboring
houses, ZIP code, etc.). In this case, a house is a composite good which may be broken down into its constituent parts
from which the contributory value of each part may be determined. In other words, characteristics of the house may
be represented by a vector x ∈ X ⊆ Rn where the estimated price is given by p̂(x). Buyers of type z, then maximize
utility, i.e. to solve max

x
{u(z, x, p̂(x))} subject to their budget constraints.

However, according to Nesheim [2006], the theory of hedonic prices places no restrictions on the hedonic price
functional form. Different approaches have been taken including the use of linear, log-linear, Box-Cox and fixed effects
models. It is suggested that there are no theoretical grounds for a restrictive parametric empirical model unless prior
knowledge of the market and products support such restrictions. If such knowledge is not given, then nonparametric
estimation is recommended, particularly when the number of examples is large relative to the dimension of x. When
the goal is prediction out-of-sample, satisfaction of goodness of fit and stability criteria may be sufficient to justify the
choice of functional form.

The online real estate database Zillow.com offers users a Zestimate R© estimated market value for individual homes
based on recorded sales for over 110 million homes and proprietary automated valuation models which are reported to
have a median absolute percentage error of 4.3%.1 This Zestimate R©, while being exceptionally accurate on the median
home, may be less accurate in certain areas where there is less availability of historical data or in luxury real estate
markets where prices tend to be much higher. This is suggestive of real estate market data being heteroscedastic,
i.e. the variance in prices is itself an increasing function of the features of the house. Therefore, robust regression
methods may be useful in this application. The reported performance of these proprietary models appears to be the
best evidence that automated valuation can achieve goodness of fit.

∗obabb@gmu.edu
1https://www.zillow.com/zestimate/

 Copyright © SIAM
 Unauthorized reproduction of this article is prohibited

367

Using learning algorithms for model selection in the functional form of a pricing model

Within the past decade, researchers have attempted to apply machine learning approaches in housing value estimation.
Del Cacho [2010] compared various data mining methods (from linear regression to decision trees, neural networks and
other ML methods) for real estate appraisal on a data set of about 25,000 properties in Madrid, Spain. It is noted that
the rising interest in automated valuation models has been driven by the high availability of data accessible through
the internet. Results showed that an ensemble of model trees exhibited the highest correlation rates between predicted
and actual prices, and the lowest mean relative error— underscoring the suitability of ML models in appraisal schemes.

Gan et al. [2015] also applied decision trees and neural networks to the prediction of real estate price for the years
2012-2013 in King County, Washington using data from the Department of Assessments. The top and bottom 5%
of houses (by price) were excluded, and 2012 data were used to train the models, while those from 2013 were used
for testing. Estimates of the percentage price increase from 2012 to 2013 were used to create a post-prediction price
adjustment leading to a mean absolute error of about $100,000 for the decision trees and $85,000 for neural networks.
Results were also reported over 10 price categories demonstrating higher mean absolute errors when house values are
higher for both models. It is noted that, the results conflict with that of Del Cacho [2010] as to the superiority of tree
based models—casting doubt on the primacy of any single ML paradigm over others for this application.

Oladunni and Sharma [2016] conducted an empirical study of the suitability of learning algorithms including
Support Vector Machine Regression (SVR), K-Nearest Neighbors (K-NN) and Principal Component Regression (PCR).
This study was motivated by the fact that application of the hedonic theory using ordinary least squares (OLS) linear
regression has been well studied, but other options for the functional form of these models should be considered. They
applied feature scaling to the data,

x′ =
x−min(X)

max(X)−min(X)

where lowercase, x, refers to a single point and uppercase, X, refers to the entire data set. (More details later)
Their results indicated that SVR had a Spearman’s rho correlation coefficient of approximately 0.87, while PCR had
a coefficient of 0.89. They suggest that these machine learning approaches to value estimation are superior to manual
appraisal mechanisms which are open to the sort of price manipulation that may have contributed to the most recent
financial crisis, and conclude that hedonic pricing theory is implementable using PCR, K-NN, and SVR.

While the results of Oladunni and Sharma, Del Cacho, and Gan et al. demonstrate the capacity of an ML approach,
it is important to know how much SVR and other models outperform traditional approaches to hedonic pricing, how
much of a difference the feature scaling makes, and which available accuracy measures are appropriate for measuring
goodness of fit. In the category of ML models, we place extra emphasis on SVR due to its origins in statistical learning
theory which is a useful explanatory framework both for non-parametric model selection when the functional form is
unknown (with its ability to employ different kernels) as well as interpretation of stability (i.e. model variation as the
input changes) in terms of so called “structural risk minimization” which protects against over-fitting. The regression
tree also has flexibility in terms of the functions that can be approximated and allows for bounds on the tree growth
that may also help with out-of-sample generalization. Many linear regression2 models (with or without robustness
or regularization) are considered as more standard approaches whose parameters may have more easily interpreted
economic significance when coupled with theoretically informed structural equations regarding market demand and
the utilities of agents (although such equations will not be covered). The models mentioned here were also chosen
because implementations of efficient solvers were readily available in MATLAB R©. Studied together, these models will
give each other more context and help to determine whether ML models provide any advantages over simpler methods.

Therefore, the study considers the following three objectives:

i Compare the performance of Support Vector Machine Regression (SVR) using a variety of kernels, Regression Trees,
Lasso Regression, Ridge Regression, Ordinary Least Squares (OLS) and robust linear regression in the housing value
estimation problem

ii Assess the impact of pre-processing procedures on model performance

This paper is organized as follows: First, we give a brief description of the data set used. Next, in the methodology
section, the pre-processing procedures, models and accuracy measures tested are defined. Finally, the most salient
aspects of the empirical results are presented in the order that they appear in the machine learning pipeline (pre-
processing, models, and accuracy measures). Key findings point to the utility of pre-processing and corroborate the
effectiveness of machine learning, as in Oladunni and Sharma, but also point to a similar effectiveness of much less
sophisticated models for goodness of fit as measured by the adjusted R2.

2We use the term “linear regression” to also include polynomial regression models which are linear in their parameters.

368

2 Data

We consider data from the “eRealProperty” catalogue of the King County Department of Assessments over the period
from May 2014 to May 2015 in King County, Washington. The cumulative file includes 21,613 observations and
was retrieved from Kaggle.com3, an online platform for predictive modeling and analytics competitions. The feature
descriptions were taken from the King County Department of Assessments eSales Residential Glossary of Terms.4

Tables 1 and 2 and Figure 1 summarize the features and target.

Type Feature/Target Description

Ordinal bedrooms The number of bedrooms
bathrooms The number of bathrooms, reported on quarter point scale

floors The number of floors, reported on a half point scale between ‘1’ and ‘3.5’
waterfront Whether property has a waterfront, ‘1’ for yes, ‘0’ for no

view Rating of the view from ‘1’ to ‘4’, and ‘0’ if no view
condition Rating of the condition from ‘1’ to ‘5’

grade Rating of the construction grade from ‘1’ to ‘13’, i.e. from poor to excellent
yr built The year the house was initially built

yr renovated The year the house was renovated, ‘0’ if never renovated

Categorical zipcode The ZIP Code that the house falls in

Continuous sqft living The area of the living area (not to be confused with living room area) in sq. ft.
sqft living15 The average living area, in sq. ft., of the 15 nearest houses

sqft lot The lot area in sq. ft.
sqft lot15 The average lot area, in sq. ft., of the 15 nearest houses

sqft above The living area, in sq. ft., above the basement
sqft basement The area, in sq. ft., of the basement

lat The latitude of house’s location on a map
long The longitude of house’s location on a map

price (target) The final sale price of the house in dollars

Table 1: Feature and target descriptions for the King County, WA House Sales Data Set

Features/Target Mean Std. Dev. Minimum Median Maximum
bedrooms 3.37 0.93 0 3 33

bathrooms 2.11 0.77 0 2.25 8
floors 1.49 0.54 1 1.5 3.5

waterfront 0.01 0.09 0 0 1
view 0.23 0.77 0 0 4

condition 3.41 0.65 1 3 5
grade 7.66 1.18 1 7 13

yr built 1 971.01 29.37 1900 1975 2015
yr renovated 84.40 401.68 0 0 2015

sqft living 2 079.90 918.44 290 1 910 13 540
sqft living15 1 986.55 685.39 399 1 840 6 210

sqft lot 15 106.97 41 420.51 520 7 618 1 651 359
sqft lot15 12 768.46 27 304.18 651 7 620 87 1200

sqft above 1 788.39 828.09 290 1 560 9 410
sqft basement 291.51 442.58 0 0 4 820

lat 47.56 0.14 47.1559 47.5718 47.7776
long -122.21 0.14 -122.5190 -122.2300 -121.3150

price 540 088.14 367 127.20 75 000 450 000 7 700 000

Table 2: Data summary (excluding ‘zipcode’)

3https://www.kaggle.com/harlfoxem/housesalesprediction
4https://info.kingcounty.gov/assessor/esales/Glossary.aspx

369

Figure 1: Price data in King County, Washington plotted proportional to the area of the markers (Visualized in Tableau Desktop 10.3)

370

3 Methodology

The early stage feature engineering involved several steps. Firstly, histograms and bar charts were produced to inspect
for outliers. There was a house which had 33 bedrooms but associated with an unlikely lot size of 6,000 sq. ft and
only a single floor. Hence, the record was treated as faulty and removed from the data set. Next, the single categorical
variable (‘zipcode’) which had 70 possible values was transformed to produce 70 numerical one-hot encoded variables
that took on a value of ‘1’ when the house corresponded to a certain ZIP Code and ‘0’ otherwise. There was an
‘id’ attribute which was excluded since it didn’t carry any information about the house itself but is used for internal
purposes. The ‘yr built’ feature was converted to a feature called ‘age’ according to the formula age = 2017−yr built.
Likewise, the ‘yr renovated’ feature was converted into a new feature called ‘effective age’ according to the formula:

effective age =

{
age yr renovated = 0

2017− yr renovated yr renovated > 0.

For the training and testing phases, the data were sorted by date and split with the first 80% (earliest in time) for
training and the remaining 20% (latest in time) for testing. As seen in Figure 1, the price as a function of location
varied a lot across King County. Since the models considered do not all accommodate spatial variables, we exclude
the latitude and longitude as features and rely on the ZIP Code features for location. As a result, the input variable,
x, consisted of all features mentioned in the data summary with the exception of the target variable (‘price’), the
latitude and longitude. Together, there was a total of 13 raw features, 2 engineered features (‘age’ and ‘effective age’)
and 80 one-hot encoded features (derived from ‘zipcode’), making a total of 85. Different forms of pre-processing on
x were considered, and model performance was measured on both the training and testing set using various accuracy
measures. In the following sub-sections, we will specify the types of pre-processing, models and measures of accuracy
used.

Feature Pre-processing

By feature pre-processing, we mean any transformation done to the data to put the features on a common scale.
Table 3 introduces the pre-processing procedures. Each pre-processing relies on parameters, derived from the training
set, which are stored and used to also process the testing data before input into the trained model. In the following
notation, we have a vector of pre-processing parameters with entries for each feature such as min(X) (the minima),
max(X) (the maxima), µX (averages), and σX (the std. deviations). Pre-processings were not applied to the one-hot
encoded variables.

Pre-processing Formula

Unprocessed x′ = x

Feature Scaling x′ = x−min(X)
max(X)−min(X)

Standardization x′ = x−µX

σX

Table 3: Definitions for each form of pre-processing

Models

We consider a model to be a combination of functional form, loss function and risk minimization principle. After pre-
processing, various instances of these combinations were trained and used to make predictions for the target variable
on the testing set. Of the models in Table 4, ‘lasso’, ‘ridge’, ‘svr-linear’, ‘svr-polynomial-order2’, ‘svr-gaussian’ and
the ‘regressiontree’ required hyperparameter tuning. MATLAB R©’s built in Bayes Optimizer was used. According to
Snoek et al. [2012], this sequential design strategy can optimize black-box functions without the use of derivatives and
also reduce the amount of objective function evaluations. A treatment of Bayesian model selection and adaptation of
hyperparameters along with cross validation is given in Chapter 5 of Rasmussen and Williams [2006]. For a detailed
account of robust loss functions and their motivation, see Huber [1981], DuMouchel and O’Brien [1989], Holland and
Welsch [1977], Street et al. [1988], or a more recent treatment in Chapter 15 of Montgomery et al. [2013]. MATLAB R©
includes many robust methods for re-weighting model parameters in linear regression, but preliminary results suggested
that it was sufficient to consider only the ‘bisquare’ iterative re-weighting as a representative for this class of robust
options both since it is the default and since there is a lack of a priori knowledge about the underlying joint distribution
between house features and price.

371

Model Implementation Details

In Table 4 (pp. 6-7), we introduce the models considered, all of which are available in the MATLAB R© Statistics
and Machine Learning Toolbox Documentation, and their settings. The notation p̂(x) refers to the estimated pricing
function and ~ptrain refers to the vector of true prices in the training set.

Model Details

linear-ols
Linear combination of features plus intercept term p̂(x) = β0 +

∑85
j=1 βjxj

(where xj refers to the value of the j-th feature for the input and not j-th data
point) and least squares loss function

linear-bisquare

Linear combination of features plus intercept term with the robust regression
derived from iteratively re-weighted least squares, where the functional form is
the same as ‘linear-ols’ with weightings given by:

w = (abs(r) < 1).*(1-r.∧2).∧2

r = resid/(tune*s*sqrt(1-h))

s = MAD/0.6745 where MAD is the median abs. deviation of residuals.

tune = 4.685

Further, resid is the vector of residuals from the previous iteration, h is the
vector of leverage values from a least-squares fit, and s is an estimate of
the standard deviation of the error term and finally, w is the weighting vec-
tor so that if W is the corresponding diagonal matrix then at each iteration
β = (XtWX)−1XtW~ptrain where X includes a column of 1’s for the intercept.
The default tunings are specific to MATLAB but the general formulation of
this algorithm is covered in Holland and Welsch [1977].

quadratic-ols

Quadratic regression (including linear effects, quadratic effects, interaction
effects between non-encoded variables and intercept) for a total of 206 terms
with least squares loss function:

10 20 30 40 50 60 70 80

20

40

60

80

100

120

140

160

180

200

0 1 2

LINEAR EFFECTS

QUADRATIC EFFECTS

INTERACTION EFFECTS

These types of models are discussed in Chapter 7 of Montgomery et al. [2013].

372

Model Details
quadratic-bisquare Same as ‘quadratic-ols’ but with bisquare weighting function as described for

‘linear-bisquare’
lasso Ordinary least squares linear regression with L1 regularization, model param-

eters solved with stochastic gradient descent, and regularization hyperparame-
ter, λ ∈ (5.784e−10, 5.784), optimized with Bayes Optimizer using 3-fold cross
validation and 27 allotted objective function evaluations. See Tibshirani [1996]
for details on lasso regression.

ridge Same settings as ‘lasso’ except with L2 regularization. See Marquardt and Snee
[1975] for more details about the formulation of the ridge regression.

regressiontree

Partition of the feature space through a binary tree structure which maximizes
the information of each partition, and determines output as a piecewise con-
stant function (average price values) for all houses within that partition:
p̂(x) = 1

|Partition(x)|
∑
c∈Partition(x) pc

Trained using CART algorithm for determining the best split predictor at each
node and maximum number of splits (randomly searched between 1 and 17,290)
and minimum leaf size (randomly searched between 1 and 8,645) optimized with
Bayes Optimizer over 3-fold Cross Validation alotted 27 objective function eval-
uations.
See Breiman et al. [1984], Loh [2002], or more recently Chapter 15 of Mont-
gomery et al. [2013] for more details.

svr-linear

Linear combination of features with intercept term and using ε-insensitive loss
function and structural risk minimization (akin to regularization). Tuned us-
ing Bayes Optimizer with an allotment of 27 objective function evaluations
on 3-fold Cross Validation over the parameter space of ε ∈ (1

100 , 2000) and
C ∈ (10, 5e + 6). See Vapnik [1998] for details of the SVR formulation and
Platt [1998] for a description of the SMO solver.

svr-polynomial-order2

Combination of features using polynomial kernel with intercept term, ε-
insensitive loss function and structural risk minimization, with function form:

p̂(x) = β0 +

N∑
i=1

βi(xi · x+ 1)2

where xi refers to the i-th data point. (Same settings as ‘svr-linear’)

svr-gaussian

Combination of features using Gaussian kernel with intercept term and using
ε-insensitive loss function and structural risk minimization with functional
form:

p̂(x) = β0 +

N∑
i=1

βi exp{−γ‖xi − x‖2}

(Same settings as ‘svr-linear’ in addition to kernel scale settings, γ ∈ [1, 5e+6])

Table 4: Definitions and settings for each model.

373

Accuracy

We use several, common accuracy measures since they each tell us something different about goodness of fit and allow
for comparison with the reported results of others. Table 5 introduces each these measures. In the following notation,
p(xi) refers to the true price for the i-th house; p̂(xi) refers to the estimated price for the i-th house; pavg refers to the
average true price within the given split of the data set (training or testing); N refers to the number of houses in a
given split; n refers to the sample size (size of the training set); k refers to the number of features.

The RMSE can be understood as an unsigned average error, but this value is susceptible to outliers. This motivates
the use of some median based measures such as MAE and MAPE. However, the MAE has the disadvantage that the
reported error is not placed into relation with the true house price. Since a slightly larger error is expected as the house
price increases, the MAPE is typically a more useful, relative measure. Recall also that this is the main value reported
by Zillow.com. Next, the adjusted R2 is also used, as is done in many Kaggle kernels. The adjustment to the regular
R2 is required since, as is well known, this measure is biased towards overestimation when the number of features
increases. While the adjustment allows for negative values, the R2 measure has the advantage of interpretability,
roughly on a scale from 0 to 1, as a measure of how well the variability of the dependent variable has been accounted
for in terms of the independent variable, and is also a relative measure as the sum of the squared errors is scaled by
the sum of the squared deviation of prices from their mean. These advantages make R2 a promising accuracy measure
for this data, because we are interested in the overall performance, including at the extrema of the price range, and
the [0, 1] scaling abstracts away the initial scaling in terms of price units to a scaling more suitable to interpretation of
accuracy. In other words, R2 combines the best features of RMSE and MAPE for our purposes. Finally, to evaluate
how well models generalize, we take these measurements on both the training and the testing set.

Accuracy Measure Formula

Root Mean Squared Error (RMSE)
√

1
N

∑N
i=1(p(xi)− p̂(xi))2

Median Abs. Error (MAE) median({|p(xi)− p̂(xi)|}Ni=1)

Median Abs. Percentage Error (MAPE) median({|p(xi)−p̂(xi)
p(xi)

|}Ni=1) ×100%

Adjusted R2 1− (1−R2) n−1
n−k−1 where R2 = 1−

∑N
i=1(p(xi)−p̂(xi))

2∑N
i=1(p(xi)−pavg)2

Table 5: Formulas for accuracy measures used

4 Results and Discussion

There are several takeaways that can be made from the results. We organize these results in the order which they
appear in the ML pipeline, first with the effect of pre-processing, then the aspects of models that contributed to higher
performance, and finally, we compare the rankings of MAPE vs. adj. R2. Given the 3 pre-processings and 10 models,
there was a total of 30 pre-processing-model combinations. Training for each was timed and these accuracy measures
were computed on both training and testing sets.5 Of these 30 combinations, 6 lacked convergence including all 3 ‘lasso’
cases, and the versions of ‘ridge’, ‘svm-linear’ and ‘svm-polynomial-order2’ which used unprocessed data. This lack of
convergence is evidenced by their longer training time and exceptionally low accuracy. All analyses were performed
using the available toolboxes and scripts written by the author in MATLAB R© 2017a on a personal computer. A
complete tabulation of the numerical results can be found in Table 6 in the appendix.

Feature Pre-processing

We found that feature pre-processing improved model performance. More precisely, an improvement in performance
was registered in all cases with the only exceptions being ‘linear-ols’ and ‘linear-bisquare’, which were unaffected
(with respect to both MAPE and adj. R2). Although both ‘lasso’ and ‘ridge’ suffered from lack of convergence, it is
noteworthy that in the one case when ‘ridge’ successfully converged and achieved comparable performance to ‘linear-
ols’, it was on feature scaled data, as seen in Figure 2 on Page 9. While the quadratic and tree regression models only
saw modest improvements due to pre-processing, these pre-processings proved very important for SVR. The Support
Vector Regressions exhibited poor performance on unprocessed data and, in particular, failed to converge in the case

5The value of n in the adj. R2 is kept constant when calculating accuracy across training and testing.

374

of ‘svr-linear’ and ‘svr-polynomial-order2’ on unprocessed data. While standardization and feature scaling were both
reliable, the feature scaling provided a minor, albeit practically insubstantial, advantage for the ‘svr-gaussian’ and
‘svr-polynomial-order2’, and standardization, a minor advantage for ‘regressiontree’ with respect to their MAPE.
Since these pre-processings have the same time complexity, O(Nk), and provide practically equivalent improvements
to model performance, they are equally suitable for use in normalizing the features of a house for value estimation.

lasso

lin
ear-b

isquare

lin
ear-o

ls

quadratic
-bisquare

quadratic
-ols

regressiontre
e

rid
ge

svm-gaussian

svm-lin
ear

svm-polynomial-o
rder2

-0.2

0

0.2

0.4

0.6

0.8

1

A
d
ju

s
te

d
 R

2

Unprocessed

Feature Scaled

Standardized

Figure 2: Bar chart of adj. R2 for each Model-Pre-processing Combination (Testing Set)

The need for pre-processing comes from a variety of factors. One possible explanation may be the numerical
conditioning of the problem. For example, in the OLS and bisquare quadratic regression models, we expect that the
performance of an exact solution should not depend on the relative scaling of features since there is always a suitable
scaling of the parameters to adjust for differently weighted inputs. However, the empirical results for ‘quadratic-ols’
show slight improvements due to the pre-processing (testing adj. R2 of 0.81 for unprocessed data and 0.83 for both
feature scaled and standardized data), i.e. the weightings did not adjust in the expected way. It may be the case that
when the data is unprocessed, there are relatively higher rounding errors or similar effects acting as a bottleneck to
optimal model performance.

The second need arises in the cases where the model includes regularization. Regularization assumes a prior on
the model. In the case of Ridge Regression’s L2 regularization, there is an assumption of a Gaussian prior with equal
variance across the features. Other forms of regularization make similar assumptions regarding the variance. While
‘lasso’ and ‘ridge’ had problems with convergence more generally (possibly related to the stochastic gradient descent
solver), there was a unique lack of convergence, in the cases of ‘svr-linear’, and ‘svr-polynomial-order2,’ whenever this
assumption was violated, as in when the features were unprocessed.

Finally, SVRs are a special case where the construction of the kernel matrix depends on computing pairwise
distances between points and thereby requiring one to find the sum of squares of the difference between those points.
When the data are not pre-processed, features which naturally take on a higher order of magnitude such as the area of
the lot, living space or basement will dominate lower order features, such as the number of bedrooms or bathrooms, in
the Gaussian kernel. The same may be said of the polynomial kernel which is based on the dot product—changes in
lower order features do not register as strongly as those in the higher order ones. This is problematic since the human
readable units on higher magnitudes do not necessarily translate into greater importance for the model. One way to
ameliorate the problem could be to use a more sophisticated kernel which while resembling the standard Gaussian
kernel or polynomial kernel nonetheless has an individual “bandwidth” parameter for each feature, but since there are
over 80 features and we assume no a priori domain knowledge of the real estate market, one would have to resort to
numerically optimizing these prohibitively expensive hyperparameters. Hence, the approach of bringing features on to
the same scale is most practical.

Models

The best nonlinear models outperformed the best linear models. Linear least squares models had about 15.5% MAPE
while the replacement of a robust loss (bisquare re-weighting or ε-insensitive) further reduced the MAPE to about
12.5%. However, this robustness corresponded to a trade-off on overall test set performance since ‘linear-ols’ achieved
an adj. R2 of 0.78 (the same as ‘regressiontree’) while ‘linear-bisquare’, only 0.69. These values applied across all forms
of pre-processing. From here nonlinear models such as quadratic OLS regression, quadratic kernel SVR and Gaussian

375

SVR were able to approach an adj. R2 above 0.80 on pre-processed data (both feature scaled and standardized). Due
to its faster training time compared to ‘svr-polynomial-order2’ and high accuracy, ‘svr-gaussian’ is the best of the
three.

Feature Scaled

lasso

lin
ear-b

isquare

lin
ear-o

ls

quadratic
-bisquare

quadratic
-ols

regressiontre
e

rid
ge

svm-gaussian

svm-lin
ear

svm-polynomial-o
rder2

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
d
ju

s
te

d
 R

2

Training

Testing

Standardized

lasso

lin
ear-b

isquare

lin
ear-o

ls

quadratic
-bisquare

quadratic
-ols

regressiontre
e

rid
ge

svm-gaussian

svm-lin
ear

svm-polynomial-o
rder2

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
d
ju

s
te

d
 R

2

Figure 3: Bar chart of adjusted R2 for the Training vs. Testing

All models saw a reduction in accuracy in generalizing to the testing set, but the effect was most pronounced for
the regression trees. In Figure 3, we compare the training set and test set performance of each model. Even with
hyperparameter optimization, the regression tree appeared to overfit, since on standardized data, it managed to achieve
a training set MAPE of about 8%. Yet, this translated to about 15.5% on the testing set, and as shown, the adj. R2

dropped from 0.93 down to 0.73. The ‘quadratic-ols’, and ‘quadratic-bisquare’ generalized relatively well. This may
be attributable to our design of using fewer terms, relative to the combinatorial blow-up in parameters via inclusion
of all the possible quadratic/interaction terms. This generalization may be contrasted with the quadratic kernel SVR
which naturally involves more complicated variable interactions and saw a wider drop on feature scaled data of about
3% on MAPE and a 0.06 drop in adj. R2. Similar remarks may be said of the Gaussian SVR on pre-processed data.

To compare the ‘svr-gaussian’ and ‘quadratic-ols’, Gaussian SVRs took 3 orders of magnitude longer to train while
having comparable testing adj. R2 to ‘quadratic-ols’ (0.85 vs. 0.83). However, once the costly, optimal hyperparameters
have been found once, future retraining becomes simpler. One approach to narrowing the gap may be to estimate
optimal hyperparameters on a tiny sampling of the training data, bringing the training time down to a more reasonable
level. Another major advantage of ‘quadratic-ols’ is that with the relatively small set of estimated parameters and
functional form, the parameters are easier to interpret compared to the Gaussian SVR which used a total of 17,242
support vectors (from the training set size of 17,289). As such, when timing or interpretability are paramount, the
combination of high adj. R2, fast training time and human-interpretable parameters confirm the attractiveness of
quadratic OLS as a candidate model in hedonic pricing. However, if accuracy of prediction is the only concern, then
the Gaussian SVR’s more opaque functional form should not inhibit its use since, in principle, better hyperparameters
could be found to improve our ‘svr-gaussian’ even more.

376

Acccuracy Measures

Following the discussion of accuracy measures in the section on methodology, MAPE and adj. R2 were the most useful
for interpreting the results due to their properties. However, in the empirical results, these two measures did not agree
on the ranking of models. While it is clear that the Gaussian SVR outperformed all other models with respect to
each of the given measures, we narrow the scope here to a discussion of the two nonlinear models which demonstrate
fast training time along with goodness of fit, ‘quadratic-ols’ and ‘quadratic-bisquare’, but for which there is a dispute
about superiority of performance. The robust bisquare model had a lower error in terms of the MAPE (11.70 vs.
12.54), while the OLS model had a superior adj. R2 (0.83 vs. 0.77). These values applied for both feature scaling and
standardization. In Figure 4, we compare the two models by plotting the predicted house prices against the true price
to visually inspect the spread of results from the line of perfect fit where p̂(x) = p(x). These plots indicate that the
OLS model had a slightly tighter fit for the entire test set as predicted by the adj. R2 which is a function of the mean
squared error. There is further indication that, for the robust model, the magnitude of errors grew larger as the true
price increased.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

10
6

-1

0

1

2

3

4

5
10

6

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

10
6

-1

0

1

2

3

4

5
10

6

Figure 4: Comparison of quadratic regression models performance on the feature scaled testing set

For ‘quadratic-bisquare’, additional analyses showed that while the average house price for the testing set was
about $550,000, the average true house price for the worst 50% predictions (absolute errors above the median) was
about $650,000. This shows that the higher errors were for more expensive houses. On the other hand, ‘quadratic-ols’
had an average of $630,000 on the worst 50% of predictions, which means that it performed slightly better than its
robust counterpart on the higher end houses.

In the value estimation problem, we would ideally like to consider the entire distribution of errors. The analysis of
the quadratic regression models shows empirically that accuracy measures based on the MSE such as RMSE and adj.
R2 would be the most appropriate measure by which to rank the models. As such, ‘quadratic-ols’ should be considered
the better of the two models for our purposes.

When reporting the accuracy of a model, accessibility for a wide audience is important. However, the measures
based on MSE may not satisfy this requirement. For example, Zillow reports the MAPE in addition to values such
as the percentage of predictions falling within 5%, 10%, and 20% of the true price. These values are intuitive to
understand for a home buyer who may not have domain expertise about housing value estimation. Therefore, it may
be appropriate to select models based on the MSE, while reporting accuracy of prediction in percentiles.

5 Conclusion

The flexibility of machine learning models makes them applicable to a variety of use cases. Our findings indicated that
for the housing value estimation problem, Gaussian SVR achieved top performance among candidate models when the
King County, Washington housing sales data were suitably pre-processed. However, the results also suggested that

377

classical parametric models such as the quadratic OLS regression can achieve out-of-sample generalization nearing that
of more sophisticated machine learning models, with faster training times, insensitivity to the relative scaling of features
and more easily interpreted parameters—confirming their attractiveness for use in hedonic pricing. Nonetheless,
pre-processing of features, both feature scaling on to the range [0,1] and standardization, was helpful for numerical
conditioning, hyperparameter optimization, and the use of kernel methods, across candidate models. The best nonlinear
models outperformed the best linear models, in general, and robustness in the loss function or regularization on model
parameters were not absolutely necessary for their accuracy nor out-of-sample generalization.

Limitations

The experiments relied on readily available data which may not be representative of all housing markets. Future
work could employ additional procedures such as bootstrapping that would allow statistically significant comparisons.
Nonetheless, the methodology taken should be useful for the task of comparing models on a large data set with
comparably small number features.

Acknowledgments

I would like to thank my advisor, Dr. Igor Griva, for his mentorship during my research training in EXTREEMS-GMU
2017 and for his encouragement and guidance throughout the process of preparing this paper. I would also like to
extend special thanks to faculty of the GMU Mathematics Department, Ms. Wendy Mann of GMU Data Services
and the referees and editor for their constructive and insightful comments. This research was supported under NSF
Grant DMS-1407087.

References

L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Boca Raton, FL: CRC Press,
1984.

Carlos Del Cacho. A comparison of data mining methods for mass real estate appraisal. MPRA Paper 27378, University
Library of Munich, Germany, December 2010. URL https://ideas.repec.org/p/pra/mprapa/27378.html.

W. H. DuMouchel and F. L. O’Brien. Integrating a robust option into a multiple regression computing environment.
Computer Science and Statistics: Proceedings of the 21st Symposium on the Interface, 1989.

V. Gan, V. Agarwal, and B. Kim. Data mining analysis and predictions of real estate prices. Issues in Information
Systems, 6:30–36, 2015.

P. W. Holland and R. E. Welsch. Robust regression using iteratively reweighted least-squares. Communications in
Statistics: Theory and Methods, A6:813–827, 1977.

P. J. Huber. Robust Statistics. NJ: John Wiley Sons, Inc., 1981.

W.Y. Loh. Regression trees with unbiased variable selection and interaction detection. Statistica Sinica, Vol. 12:
361–386, 2002.

D. W. Marquardt and R. D. Snee. Ridge regression in practice. The American Statistician, 29(1):3–20, 1975.

Douglas Montgomery, Elizabeth Peck, and G. Vining. Introduction to Linear Regression Analysis. Wiley, 5th edition,
2013.

L. Nesheim. Hedonic price functions. Center for Microdata Methods and Practice (CEMMAP), University College
London and Institute for Fiscal Studies, 2006.

T. Oladunni and S. Sharma. Hedonic housing theory - a machine learning investigation. In 2016 15th IEEE
International Conference on Machine Learning and Applications (ICMLA), pages 522–527, Dec 2016. doi:
10.1109/ICMLA.2016.0092.

John Platt. Sequential minimal optimization: A fast algorithm for training support vector machines. 1998.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine Learning. MIT Press, 2006.

378

https://ideas.repec.org/p/pra/mprapa/27378.html

J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian Optimization of Machine Learning Algorithms. ArXiv
e-prints, June 2012.

J. O. Street, R. J. Carroll, and D. Ruppert. A note on computing robust regression estimates via iteratively reweighted
least squares. The American Statistician, Vol. 42:152–154, 1988.

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, (1):267–288,
1996.

V. Vapnik. Statistical Learning Theory. Wiley, 1998.

379

A Numerical Results

In Table 6, all the metrics for model performance are reported. Table cells are color coded so that for each column the better models are darker green. The
scale ranges from white (meaning the worse model in this category) to the darkest shade of green (meaning the best for that category). There were exceptional
cases with lack of convergence (all 3 ‘lasso’cases, and the unprocessed data versions of ‘ridge’, ‘svm-linear’ and ‘svm-polynomial-order2’) that had metrics which
were too high to include in the color coding and so take the default of white.

Pre-processing Model Run-time (s) Train RMSE Train MAE Train MAPE Train Adj. R2 Test RMSE Test MAE Test MAPE Test Adj. R2

unprocessed linear-ols 0.27 1.58e+05 6.42e+04 14.18 0.81 1.72e+05 7.28e+04 15.38 0.78
feature-scaling linear-ols 0.27 1.58e+05 6.42e+04 14.18 0.81 1.72e+05 7.28e+04 15.38 0.78

standard-scoring linear-ols 0.27 1.58e+05 6.42e+04 14.18 0.81 1.72e+05 7.28e+04 15.38 0.78
unprocessed linear-bisquare 2.70 1.87e+05 4.73e+04 11.02 0.74 2.05e+05 5.45e+04 12.42 0.69

feature-scaling linear-bisquare 2.26 1.87e+05 4.73e+04 11.02 0.74 2.05e+05 5.45e+04 12.42 0.69
standard-scoring linear-bisquare 2.23 1.87e+05 4.73e+04 11.02 0.74 2.05e+05 5.45e+04 12.42 0.69

unprocessed lasso 199.05 3.67e+05 1.86e+05 37.54 -0.00 3.68e+05 1.80e+05 35.80 -0.01
feature-scaling lasso 60.06 6.26e+05 4.44e+05 90.67 -1.92 6.24e+05 4.40e+05 88.02 -1.89

standard-scoring lasso 34.52 1.33e+06 7.73e+05 171.49 -12.12 1.37e+06 7.98e+05 171.12 -12.97
unprocessed ridge 109.12 6.90e+05 2.19e+05 46.49 -2.55 8.73e+05 2.13e+05 42.08 -4.65

feature-scaling ridge 29.36 1.66e+05 5.99e+04 13.36 0.79 1.77e+05 6.56e+04 14.21 0.77
standard-scoring ridge 29.44 1.95e+05 8.40e+04 18.42 0.72 2.07e+05 9.20e+04 19.63 0.68

unprocessed regressiontree 66.75 9.71e+04 3.69e+04 7.97 0.93 1.92e+05 6.91e+04 15.31 0.73
feature-scaling regressiontree 60.73 1.27e+05 5.52e+04 11.80 0.88 1.90e+05 7.75e+04 16.29 0.73

standard-scoring regressiontree 64.05 9.86e+04 3.80e+04 8.23 0.93 1.92e+05 6.92e+04 15.32 0.73
unprocessed quadratic-ols 0.93 1.42e+05 5.35e+04 12.01 0.85 1.61e+05 6.16e+04 13.62 0.81

feature-scaling quadratic-ols 0.91 1.27e+05 4.83e+04 11.01 0.88 1.51e+05 5.57e+04 12.54 0.83
standard-scoring quadratic-ols 0.99 1.27e+05 4.83e+04 11.01 0.88 1.51e+05 5.57e+04 12.54 0.83

unprocessed quadratic-bisquare 7.39 1.74e+05 4.66e+04 10.82 0.77 1.88e+05 5.53e+04 12.43 0.74
feature-scaling quadratic-bisquare 7.13 1.49e+05 4.32e+04 9.99 0.84 1.75e+05 5.17e+04 11.70 0.77

standard-scoring quadratic-bisquare 7.67 1.49e+05 4.32e+04 9.99 0.84 1.75e+05 5.17e+04 11.70 0.77
unprocessed svm-linear 31060.02 2.86e+05 1.14e+05 24.26 0.39 3.19e+05 1.18e+05 24.19 0.25

feature-scaling svm-linear 1980.55 1.73e+05 4.96e+04 11.33 0.78 1.89e+05 5.67e+04 12.59 0.73
standard-scoring svm-linear 18686.82 1.72e+05 5.05e+04 11.45 0.78 1.88e+05 5.79e+04 12.77 0.74

unprocessed svm-polynomial-order2 28102.06 3.31e+13 3.21e+13 7.12e+09 -8.18e+15 3.97e+13 3.21e+13 6.81e+09 -1.17e+16
feature-scaling svm-polynomial-order2 7790.06 1.07e+05 3.48e+04 7.93 0.91 1.42e+05 4.68e+04 10.62 0.85

standard-scoring svm-polynomial-order2 17280.07 1.06e+05 3.47e+04 7.96 0.92 1.41e+05 4.62e+04 10.56 0.85
unprocessed svm-gaussian 2328.67 2.00e+05 8.32e+04 18.86 0.70 2.45e+05 1.02e+05 22.03 0.55

feature-scaling svm-gaussian 2231.27 1.05e+05 3.24e+04 7.42 0.92 1.40e+05 4.61e+04 10.34 0.85
standard-scoring svm-gaussian 1773.68 1.14e+05 3.46e+04 7.94 0.90 1.42e+05 4.60e+04 10.53 0.85

Table 6: Complete results table for each pre-processing-model combination

380

	Introduction
	Data
	Methodology
	Results and Discussion
	Conclusion
	Numerical Results

