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Abstract
The Ross Recovery Theorem [1] challenges the commonly held thought that derivative

prices do not contain useful predictive information about the distribution of financial variables
(such as an equity index). The theorem recovers, under certain hypotheses on the character of
the market, the subjective probability distribution of an equity index from current derivative
prices. In this paper, building on the method of Backwell [2] for extracting state prices from
option prices, we develop a strategy for combining option data with the Recovery Theorem to
estimate the subjective distribution. Using real-world data, we then investigate whether the
Recovery Theorem yields predictive information and has practical value, concluding that the
answer might be no.

1 Introduction

It is generally believed that derivative prices do not contain useful information about the subjective
distribution of financial variables. In the oldest model, people believe that, by the combination of
derivatives with the maturity T , they can get any payoff. In this model, with the assumption that
the market is free from arbitrage and the linearity relationship between derivative prices and the
payoff, derivative prices determine a unique pricing measure. In this model involving derivative
prices, there is no reference to subjective probability or its expectation.

The world-famous Black-Scholes model [7] also involves derivative prices. In this model, it is
believed that if the market is complete, then derivative prices are determined by hedging. In a
Black-Scholes world, derivative prices only carry information about volatilities, not about the drift,
which indicates the future trend. Therefore, we cannot derive any information about subjective
distribution of the future from it. However, the real world is not the Black-Scholes world: in reality,
derivative prices are set by supply and demand. The Black-Scholes model, without considering
the supply-and-demand relationship, could miss some important information when modeling the
real-world situation.

Recently, Steve Ross came out with the Recovery Theorem, which challenges the views of the
previous two models. In his opinion, since derivative prices come from the aggregated actions
of investors with their own opinions about the future, a model involving derivative prices should
also involve the investors’ subjective probability distributions about the future. However, it would
be impractical to include in a model each investor’s subjective distribution, which could be very
different from one another. Therefore, Ross makes a simple assumption: there is a central planner
optimizing a representative agent’s expected utility over consumption. The probability distribution
involved in this optimization problem is the representative agent’s subjective distribution. In this
model, with the help of Perron-Frobenius Theorem, one can deduce the representative agent’s
subjective probability distribution from market data.

After the subjective probability distribution is obtained, some natural questions emerge: is
the subjective distribution meaningful and useful? How well is the Recovery Theorem satisfied
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by real-world prices? And what is the degree of match to market data? The goal of our project
is to investigate how the Recovery Theorem can be calibrated to real-world data and to test its
significance and practical value. In the end, we were able to calibrate the theorem, but we were
not able to find any usefulness of it. This conclusion is different from some other people’s, include
that presented in Audrino el al’s paper [8]. We will compare and contrast the results in this paper.

This paper is divided into four sections. Section 2 introduces the Recovery Theorem, and offers
our own analysis of it. Section 3 summarizes our method to calibrate the theorem, explains in
detail how we arrived at our specific method, and tests the robustness of the method. In section
4, by analyzing the probability distributions we get from our implementation and by applying the
distribution to real-world trading, we explore the meaningfulness and usefulness of the Recovery
Theorem. Section 5 concludes our paper.

It is worthwhile to mention other researchers’ investigations into the Ross Recovery Theorem
here. Walden [9] changes the assumption of a finite state space, and analyzes the possibility of
recovering the probability distribution when the state variable is an unbounded diffusion process,
concluding that in many cases the recovery is possible. Hansen and Scheinkman [10] factorize the
Markovian pricing kernel, and discuss the limitation of Ross’ assumption of transition independence
of the Markovian pricing kernel, showing that transition independence is not always true in some
cases. Qin and Vadim extend Hansen and Scheinkman’s results on factorization, and thus extending
the Recovery Theorem to continuous time. Audrino el al [8] conduct an empirical analysis of the
Ross Recovery Theorem, which we will discuss in the conclusion section.

2 A Summary of the Recovery Theorem

The goal of this section is to introduce readers to some important results of the Recovery Theorem,
upon which the subsequent sections are built. The theorem is due to Ross [1]. We include below
a brief summary of the derivation of the theorem by Backwell, whose treatment of the theorem is
mathematically more rigorous than Ross’. We present the most relevant results, with assumptions
written in bold. For a complete derivation, please refer to section 2 of [2].

Notice that our final goal is to recover the subjective probability distribution of an equity
index, which is a random variable in our context. Usually, an equity index can take any value,
and therefore the probability problem should be in a continuous setting. But to simplify the
problem, we assume that the equity index is discrete and bounded, and can only take values
in Ψ := {w1, w2, ..., wn}. We also consider the problem as a one-step discrete Markov chain,
where we only focus on the movement of the equity index from the current time 0 to the next time
T (and do not consider any future beyond T ).

In this setting, Ψ := {w1, w2, ..., wn} becomes the state space of the Markov chain, and we want
to get the transition matrix F (an n× n matrix with Fij defined as the probability to be in state
wj in the next time period if the current state is wi. Notice that F contains all the information
needed to describe the probabilities of how the system evolves, if we know the initial state.

Now we assume that there exists a representative agent with time-additive intertem-
poral Expected Utility Theory (EUT) preferences over consumption. The agent has an
initial wealth ofW , and he or she can either consume his or her wealth now or invest it to consume
later. The problem he or she faces in the EUT model is to decide how much to consume now, and
how much to invest now (to consume later) to maximize the expected utility over consumption.

The investment tools available in our model are Arrow-Debreu securities. (In our context, an
Arrow-Debreu security for wj is an asset that pays off $1 if the index is wj in the next time step,
and pays off $0 otherwise.) We define P := (pij) as the Arrow-Debreu price matrix. This is an n×n
matrix where pij is the Arrow-Debreu security price, or state price, available in the initial state wi

and expiring in-the-money at T if the state variable takes on some particular wj . Backwell assumes
a complete market free from arbitrage: a full set of Arrow-Debreu securities is available in
the beginning. We treat P as exogenous in this section.

Assume that the index is wi in the beginning. Now define C := {c0i , cTi1, ..., cTin}, where the
initial consumption is c0i , and the consumption at T is cTij (contingent on future state wj). If
the agent wants to consume cTij at T in the case where the index is wj , he needs to invest in cTij
Arrow-Debreu securities for wj , the price of which in the initial state is pij . Therefore
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W = c0i +
n∑

j=1

pijc
T
ij . (1)

Now we continue to formalize the expected utility of consumption. We assume a simple time-
additive extension. Therefore, we want to maximize E[U(c0i ) + δU(cT )] where cT is the random
variable representing the amount of actual consumption at T , U is the utility function, and δ is the
utility discount factor: people generally prefer consumption now to consumption later. Notice that
E[U(c0i )] = U(c0i ) and E[δU(cT )] = δE[U(cT )] = δ

∑n
j=1 FijU(cTij). Therefore, our optimization

problem is

max
C

U(c0i ) + δ
n∑

j=1

FijU(cTij) (2)

such that (1) holds.
By solving the Lagrangian of the optimization problem and by assuming that consumption

is decided by the current state only, not by time or by the previous state, that is
c0i = cTji =: ci (an equilibrium condition on consumption), we get

pij
Fij

=
δU ′(cj)

U ′(ci)
.

Defining D := diag(U ′(cj)), it can be easily derived that

δFD = DP. (3)

In his paper, Backwell proves that F can be uniquely determined by

F =
1

δ
DPD−1

where δ is proved to be the eigenvalue corresponding to a unique positive eigenvector z of P
(uniqueness being up to scaling), and D satisfies z := D−1e. (Therefore, the choice of the utility
function is irrelevant to our problem.) The existence and uniqueness of F is given by the Perron-
Frobenius Theorem. Backwell formalizes the theorem as follows.

Theorem 1:
Assuming

• a discrete and bounded state variable that makes one (Markovian) transition in an arbitrage-
free and complete market,

• the equilibrium condition on consumption,

• the existence of a representative agent with time-additive intertemporal EUT preferences over
consumption,

then, given an irreducible state-price matrix P , we can uniquely recover the real-world transition
matrix F .

Notice that Backwell’s derivation only focuses on one time step: the Markov chain has only one
transition, and the expected utility function to be maximized only concerns consumption at the
initial time and the next time. Backwell himself has remarked that though such a modeling choice
aids tractability and it is sufficient to consider only one step for a Markov chain, it simplifies the
preference aspect of the model and makes decision-making myopic: the agent doesn’t consider the
future beyond T .

We have also considered a model based on Backwell’s by adding one more step to the Markov
chain. Our two-step analysis arrives at the same result as Backwell’s one-step analysis. Carr and
Yu [6] have also examined the Recovery Theorem and obtained an analogue of the result in a
continuous setting.
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3 Finding the Subjective Probability from Market Data

The previous section explains how to derive F from the state price matrix P . The remaining
problem is how to estimate P , which was treated as exogenous in the previous section. The
financial literature provides many methods to derive state prices from option prices. The method
used by Backwell is built on [4] and [5]. We modified Backwell’s method to build a more robust
algorithm to obtain P .

In this section, we will first introduce our method to estimate P . Then, we will go back to
explain our motivation for modifying Backwell’s method. Finally, we test the robustness of our
method.

3.1 Method
First, we consider a subproblem: how to obtain the prices of Arrow-Debreu securities which expire
at time t (we will call them t-dated prices). Suppose, as in the previous section, there are n states
(that is n index levels), and then there are n state prices. We use n × 1 vectors p(t) and S to
represent t-dated state prices and index levels respectively.

Notice that, in a complete market where an Arrow-Debreu security exists for each possible
state, we can obtain the price of any asset once we know the payoff of the asset at each state. For
example, assume that there are 3 states s1, s2, and s3, and AD1, AD2, and AD3 are Arrow-Debreu
securities for states s1, s2, and s3 respectively. Their prices are S1, S2, and S3. If there is an Asset
X which pays off X1, X2, and X3 at state s1, s2, and s3 respectively. Then buying one X is
equivalent to buying X1 numbers of AD1, X2 of AD2, and X3 of AD3. Then the price of X must
be X1S1 +X2S2 +X3S3, otherwise arbitrage is possible.

With this knowledge, we can come out with many equations involving state prices, asset payoffs
at each state, and an asset price. In our model, we choose three types of assets (or investment
tools): t-dated bonds (with continuous yield r(t)), t-dated futures (with price F (t)), and m t-dated
options (each with the price H(t)

i and the strike Xi). Then the following equations must hold

n∑
j=1

p
(t)
j = e−r

(t)t (4)

n∑
j=1

p
(t)
j Sj = F (t)e−r

(t)t (5)

n∑
j=1

p
(t)
j max(Sj −Xk, 0) = H

(t)
k (6)

k = 1, 2, ...,m

.
In equation (4), the bond has a one-dollar payoff no matter what state we will be in at time

t, and the current price of such a bond is just the bond’s current discounted value. In equation
(5), the payoff of a futures will just be the value of the stock at time t, and the current price
of the futures should be discounted. Equation (6) follows the same idea, with max(Sj − Xk, 0)

representing the payoff of the option at each state H(t)
k representing the price.

In his paper, Backwell obtained p(t) by solving an optimization problem

p(t) = arg min
p≥0

n∑
j=1

(pj−1 − 2pj + pj+1)2

such that (4), (5), and (6) hold.
In his optimization problem, equations (4), (5), and (6) are used as constraints. The optimiza-

tion objective introduces a bias toward the smoothness of the discrete distribution of p(t). When we
applied real-world data to his method, we found that equations (4), (5), and (6) were inconsistent
when m was large. This is due, presumably, to the noises in the data. The real-world situation
cannot be ideal and an unreasonable price could occur sometimes. Therefore, the equations could
break down when we have too many inconsistent data. (More details about this will be discussed
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in a subsequent subsection.) Therefore, we only keep (4) and (5) as the constraints, and include
(6) in the function to be optimized. Our optimization problem is

p(t) = arg min
p≥0

n∑
j=1

(pj−1 − 2pj + pj+1)2 +
m∑

k=1

λk(
n∑

j=1

p
(t)
j max(Sj −Xk, 0)−H(t)

k )2 (7)

k = 1, 2, ...,m

such that equations (4) and (5) hold.
The function to be optimized (equation (7)) consists of a term featuring smoothness (the left

term, which we will call the smoothness term) and a term featuring match to the market data (the
right term, which we will call the error term). The smoothness term ensures the smoothness of
the discrete distribution of p(t), and the error term is adapted from equation (6), making sure p(t)
does not deviate too much from the original constraint. Notice the introduction of λk before each
error. In a subsequent subsection, we will test different values of λ to get the one which results in
great smoothness and small error.

Define T as a fixed time horizon. Provided that we know the corresponding asset information,
we can obtain p(T ), p(2T ), p(3T ), p(4T ), p(5T ) by solving the optimization problem above. (In
application, we use Matlab’s quadratic programming function quadprog to solve the optimization
problem.)

Knowing p(T ), p(2T ), p(3T ), p(4T ), p(5T ) , our problem now becomes how to obtain state price
matrix P from them. Ross suggests that, assuming that P is time-homogeneous, then

(p(i+1)T )tr = (piT )trP (8)

i = 0, 1, 2, ...

where p(0) is simply a column of zeros with a one in the middle entry.
Also notice that we can write analogues to equations (4) and (5) to put more restrictions on P

n∑
j=1

pij ≤ 1 (9)

i = 1, 2, ..., n

n∑
j=1

pijSj = Sie
−q(T )T (10)

i = 1, 2, ..., n

Equation (9) is an analogue to equation (4), which involves the bond: as we can only see the
bond price relating to the current state, we cannot write a direct analogue, but we enforce a positive
bond interest rate. Equation (10) is an analogue to equation (5), which involves futures: since we
only know the futures price relating to the current state, we use the implied dividend yield q(T )

times the initial state Si to estimate the futures price.
With equations (9) and (10) as constraints, we now define an optimization problem over P .

The function to be optimized consists of

S(P ) :=
n∑

i=1

n∑
j=1

(pi,j−1 − 2pi,j + pi,j+1)2 (11)

which is a smoothness function similar to the one in the previous subproblem, and

D(P ) :=

4∑
k=1

(p((k+1)T ) − pkTP )(p((k+1)T ) − pkTP )tr (12)

which is adapted from equation (8). We solve

P (t) = arg min
P≥0

(S(P ) +D(P )) (13)

such that equations (9) and (10) hold.

140



The optimization objective ensures that the smoothness is improved as much as possible while
P does not deviate too much from equation (8). Again, we use the Matlab function quadprog to
solve this optimization problem in our implementation.

Now that we get P , we can calculate F by the formula given in the previous section

F =
1

δ
DPD−1

where δ is the eigenvalue corresponding to a unique positive eigenvector z of P (uniqueness being
up to scaling), and D satisfies z := D−1e.

3.2 Data and Variable Choices
This subsection lists what real-world data and variable values we use in our application, and briefly
explains why we have made such data and variable choices.

• State space S = {S1, S2, ..., Sn}: we are interested in the subjective probability distribution
of S&P500; therefore, S is an n×1 vector consisting of n S&P500 index levels. We let n = 21.
At each of the 35 time points, we capture the current index level (data resource: Wharton
Research Data Services, WRDS) , and let it be the middle entry of S (S11). The interval
between each entry is 5% of S11, so S1 = S11

2 and S21 = 3S11

2 . We choose a 5% interval and
let n = 21 to make the state space S include all the possible index levels the SPX might end
up in in the real world at the next time point: it is highly unlikely that the SPX index will
fluctuate more than 50% for a short period of time.

• Time range T : we let the time range T = 3 months, or 0.25 year. This choice comes from
the fact that the expiration time of many assets (such as futures and options) is a multiple
of 3 months.

• Option data: strike price Xi and option price H(t)
i (data resource: WRDS): there

are two types of options in the market: American options, which can be exercised on or before
the expiration date, and European options, which can only be exercised on the expiration
date. Equation (6) assumes that the options can only be exercised on the expiration date.
Therefore, European options on S&P500 must be used as our option data. To obtain the
price of an option, we take the average of its lowest ask price and highest bid price–a common
way to calculate an option price.

• Futures price F (t) (data resource: the Bloomberg Terminal): we use the futures on
the SPX.

• Treasury yield r(t) (data resource: WRDS): our method requires the Treasury yields
for the maturity time of T , 2T , 3T , 4T , and 5T (T =3 months), but there is no Treasury yield
data for 9-month and 15-month maturities. To determine the rates, we linearly interpolate
between quoted maturities.

• Dividend yield q(T ) (data resource: WRDS): we use the dividend yields of the SPX.

• Our method requires getting p(T ), p(2T ), p(3T ), p(4T ), and p(5T ), but sometimes there is no
option data available for 5T . In this case, we simply ignore p(5T ) and remove the term
involving p(5T ) in D(P ) (equation (12)).

3.3 Improvements of Backwell’s Method
When introducing the optimization problems, we mention that we have modified Backwell’s method
to get ours; however, we do not spend much time explaining our motivation for doing so. In this
subsection, we will go back to Backwell’s method, examine its defects, and explain how we start
from Backwell’s method and end up at our own.

For all the tests in this subsection and the next subsection, we use the data on 6/15/2001
as an example. The S&P 500 index at that time is 1214.36. Table 1 shows other relevant data
information.
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Table 1: Information of derivative prices starting at 2001/06/15

pT p2T p3T p4T p5T

Date 2001/09/17 2001/12/17 2002/03/15 2002/06/17 2002/09/16
Futures price 1226 1234.5 1243.5 1255 1267
Interest Rate 0.0352 0.0355 0.0354 0.0353 0.0441

# of Options available 46 36 26 27 0

• Backwell’s optimization problem and its defects
As mentioned in 3.1, Backwell uses the relationship of state prices and prices of invest-
ment tools (i.e. the price of the Treasury bond, futures, and options) as constraints, and
the remaining freedom to maximize the smoothness of the discrete distribution of pt. His
optimization problem is (with m options)

p(t) = arg min
p≥0

n∑
j=1

(pj−1 − 2pj + pj+1)2 such that



n∑
j=1

p
(t)
j = e−r

(t)t

n∑
j=1

p
(t)
j Sj = F (t)e−r

(t)t

n∑
j=1

p
(t)
j max(Sj −Xk, 0) = H

(t)
k

However, we notice two flaws in Backwell’s optimization problem:

– The state space S creates n+1 intervals. Our analysis has shown that if the system uses
more than one option in the same interval, there is a high chance that the constraints
in the optimization problem will contradict each other. Therefore, to obtain a feasible
solution, a large amount of option data has to be discarded. In this case, the
solution p(t) is very likely to be biased by the selection of data. Thus, even if
a combination of options is found, for which the system yields a feasible solution, it
cannot be fully trusted.

– Additionally, real-world data inevitably contain noises. Therefore, using many option
data as constraints makes the solution not very smooth, since the freedom left for
optimization of the smoothness is largely reduced.

The above observations are consistent with the results we got when implementing Backwell’s
method.

• Implementation of Backwell’s method
In order to confirm our analysis on the defects of Backwell’s design, we experiment with his
method of calculating pT , p2T , p3T , and p4T using data on 6/15/2001. Among our tests with
all combinations of option data, there is no feasible solution if one interval contains more
than one option. Beside this, even when no interval is filled with more than one option, there
is often no solution with each entry positive. To find an ideal data set with feasible solutions
which is as smooth as possible, we designed a simple "greedy algorithm" to do so, which

– selects the option in the middle state space interval, with which a feasible solution exists
and the smoothness term is minimized compared to the conditions using other options
in this interval. Fix this option as given in future steps.

– repeats the above process from middle intervals to intervals on the edge.

– skips the interval, if adding any option in this interval does not provide feasible solutions.

Figure 1 plots the solution of Backwell’s optimization problem on 6/15/2001 using the greedy
algorithm. The optimized data combination chosen by the algorithm contains 11 options out
of 46 available options expiring at 2001/09/22 when estimating pT . That is, more than 75%
of data are wasted. However, even if using this selective data set, the optimization problem
offers a solution with poor smoothness, whose distribution oscillates drastically as shown in
the figure.
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It is surprised that our result of Backwell’s optimization problem is less smooth than the result
he provided in his paper, even though we have thrown out the noisy data. We doubt that
it is due to the difference between the South African market (where Backwell has obtained
his data) and the U.S. market (where we have obtained the data). But further research is
needed to confirm our speculation.

Also, our greedy algorithm is designed in such a way that it might be hard to get a result
with small noises. Our greedy algorithm regards the task of choosing as many option data
as possible as its first priority, and then it maximizes the smoothness term. Therefore, even
if a set of data is found, the smoothness of the result could be not good. Additionally, the
robustness test of the greedy algorithm (illustrated in Section 3.5) shows that this algorithm
is very sensitive to the change of the interval length of the current SPX index. Therefore,
we intend to improve Backwell’s optimization problem to take advantage of the data more
efficiently without too much expense on the smoothness of the solution.

Figure 1: pT , p2T , p3T , p4T estimated by Backwell’s method using the greedy algorithm. (# of
state space: 21; interval length: 5% of current SPX index)

• Improvements of Backwell’s method
The previous analysis, as well as the tests, demonstrates that it might not be a good idea to
include option data as a constraint. Therefore, we improve Blackwell’s optimization prob-
lem by treating options as part of the "goal" instead of the "restriction". Our updated
optimization problem with m options is

p(t) = arg min
p≥0

n∑
j=1

(pj−1 − 2pj + pj+1)2 +
m∑

k=1

λk(
n∑

j=1

p
(t)
j max(Sj −Xk, 0)−H(t)

k )2 (14)

such that


n∑

j=1

p
(t)
j = e−r

(t)t

n∑
j=1

p
(t)
j Sj = F (t)e−r

(t)t

This method minimizes the smoothness of the solution and the error of the solution’s devi-
ation from option data at the same time. Each option k has a multiplier λk, which means
our confidence in it. The higher λk is, the more influential the option k will be in this
optimization problem. Therefore, besides the advantage that the solution to this updated
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method always exists, compared to Backwell’s method, this strategy is also able to utilize
all option data and balance the idealization of the state price model and the significance of
the market information. In Figure 2, which shows the estimated pT , p2T , p3T , and p4T by
the improved optimization problem with λk = 10−5, we can see that the smoothness of the
result is improved compared to the Backwell implementation in Figure 1. In this case, the
improved method solves the predicament of data selection and transforms the influence of
data noise into the calibration of multipliers λ. Details of the calibration are discussed in the
following parts.

3.4 Calibration of the Multipliers
When we explain our method in 3.1 and 3.3, we introduced the multiplier λk of each option data k
to balance the smoothness of the solution and its accuracy to real-world data, but did not discuss
the calibration of multipliers. In this section, we explain how we determine the coefficients that
best fit the data and analyze our decision by testing the ourliers. A good selection of λks should
provide satisfying smoothness and not deviate too much from the market data. Our research of λ
contains two aspects, which are finding the appropriate range and the distribution of "good" λks.
The range of the multipliers is a constant, around which the λks balance the smoothness and the
accuracy of the solution. The distribution of λk shows our different confidence in different option
with the same maturity date.

3.4.1 The Range of the Multipliers

In order to balance the relative importance of the smoothness term and the error term in equation
(14), the range of the multipliers should depend on the range of both terms. The smoothness term
is normally around 10−3, and the sum of errors is around 102. Therefore, a constant λ of 10−5 (no
difference between options), which treats the two goals with equal attention, seems a reasonable
start. Figure 2 shows the estimated pT , p2T , p3T , and p4T by the improved optimization problem
with λk = 10−5 (k = 1 . . .m).

Figure 2: pT , p2T , p3T , and p4T estimated by improved method with constant λ = 10−5 (# of
state space: 21; interval length: 5% of current SPX index)

The maximization of the smoothness using λ = 10−5 turns out to work well. As we set
pi,0 = pi,22 = 0, the algorithm drags the distribution down on both sides. However, the left tails
of pT and p4T have peculiar structures of "going up" and p4T seems to provide a distribution
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worse than the rest. This is because the influence of options with further maturity and with strike
prices further from current index is more remarkable than the influence of other options. This
fact could reflect a phenomenon existing in the market, if investors expect extreme events (up or
down). Therefore, it is natural to expect worse performance of the smoothness term on the tails
of distributions and the distribution with further maturity dates.

Figure 2 confirms that λ = 10−5 offers satisfying smoothness of the distributions, but does not
carry information about the error term. Table 2 shows the value of the smoothness term and the
error of the estimation, with different λs. And together with the numbers, Figure 3 shows the
distributions of p4T using λ = 10−6, 10−4, 10−3, and 10−2. We found that the influence of λ is
strongest in p4T ; the reason, we think, is similar to what we wrote above concerning the tails.

Table 2: The smoothness term v.s. the error term with different constant λ (using improved
method; # of state space: 21; interval length: 5% of current SPX index)

λ = 10−3 pT p2T p3T p4T

Smoothness 6.18×10−3 1.35×10−3 4.94×10−4 1.25×10−3

Error 3.58 1.94 1.07 2.67

λ = 10−4 pT p2T p3T p4T

Smoothness 4.95×10−3 1.17×10−3 4.34×10−4 3.28×10−4

Error 9.03 2.68 1.28 5.21

λ = 10−5 pT p2T p3T p4T

Smoothness 3.37×10−3 8.76×10−4 3.67×10−4 1.80×10−4

Error 70.9 14.6 4.11 10.0

λ = 10−6 pT p2T p3T p4T

Smoothness 1.86×10−3 5.48×10−4 2.67×10−4 8.60×10−5

Error 5.98×102 1.52×102 46.0 43.1

Figure 3: p4T estimated by improved method with constant λ = 10−6, 10−4, 10−3, and 10−2 (#
of state space: 21; interval length: 5% of current SPX index)
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In Figure 3, as λ increases from 10−6 to 10−2, the behavior of the state price distribution p is
more unexpected, in that the distribution has larger tails and becomes more bumpy. However, as
shown in Table 2, as λ decreases, the trade off between the improvement of smoothness and the di-
minishing accuracy becomes more remarkable. For example, when λ decreases from 10−3 to 10−4,
smoothness term of p4T improved by 73.8% and errors increased by 94.9%. When λ drops from
10−5 to 10−6, the smoothness term of p4T decreased by 52.1% but the sum of errors increased by
330.3%. Therefore, a small λ provides distributions that are not smooth, and a large λ is inefficient
by discarding too much information in exchange for little improvement of smoothness.

Form Figure 2 and Figure 3, we observe that a λ less than or equal to 10−4 provides tails that
do not violate the set up of the model. And in Table 2, a λ greater than or equal to 10−4 saves
enough information to estimate accurate state price distributions (with error terms less than 10).
Based on the above observations, we choose λ to be 10−4 and keep this choice for experiments
shown in future sections.

3.4.2 The Distribution of the Multipliers

In previous parts, we took λk to be constant for all k and focus on finding the appropriate range
of the multipliers. However, we should expect more noise for long-dated options and therefore the
multipliers should not be constant. Investors’ opinions usually vary when they expect extreme
events; therefore, the further the maturities are and the further the strike prices are away from
the current S&P 500 index, the more noises these option data should contain. Besides, practically
speaking, deep-out-of-money options are not reliable for predicting investors’ expectation of the
future, since their low entrance value and high leverage may lure traders away from rational
judgment in a real market. In Figures 2 and 3, most distributions show large tails, which reveal the
unexpectedly large value of prices of options with strike prices far from the current index, especially
of deep-out-of-money options. Therefore, in order to test the influence of different options with
the same maturity, we design two distributions of λk around 10−4 — a concave distribution and a
convex one:

• Concave distribution: the multiplier of option k depends on the state space interval it belongs
to. The options falling into the same state space interval have the same multipliers. λ of
intervals on the edge is 0.5×10−4 and of central intervals is 1×10−4, where the λ of different
intervals varies linearly.

• Convex distribution: The convex distribution of λ is the same as the concave one, except
that λ of intervals on the edge is 1× 10−4 and the one of central intervals is = 0.5× 10−4.

146



Figure 4: p2T and p4T estimated by improved method with concave and convex around λ = 10−4

(# of state space: 21; interval length: 5% of current SPX index)

Figure 4 plots p2T and p4T using the concave and convex distributions of multipliers. However,
the results using concave and convex distributions are almost identical, meaning that noises do not
seem to have much relationship with the strike prices as we expected. To test if there’s truly no
relationship between them, we compare the results without the top 10%, 20%, and 40% outliers.
The outliers in our context are the options with high errors and the error of each each option k is
calculated by

Errork =
n∑

j=1

p
(t)
j max(Sj −Xk, 0)−H(t)

k (15)

Figure 5 plots the pT , p2T , p3T and p4T dropping the top 10%, 20%, and 40% outliers.
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Figure 5: pT , p2T , p3T and p4T estimated by improved method with λ = 10−2 and outlier drop
rate = 0%, 10%, 20%, 40%. (# of state space: 21; interval length: 5% of current SPX index)

In Figure 5, no significant change is observed after we drop the outliers, not even after dropping
40% of the data. In fact, the distribution of outliers is quite arbitrary and the outliers calculated
by equation (15) are not outliers. In this case, the option data are consistent and the noises they
introduce are acceptable. We have also tested with other ranges of λ, and there’s no clue that
dropping outliers or using different distributions of the multipliers make much difference on the
result. Therefore, we choose λ to be constant and equals to 10−4.

3.5 Robustness Test
So far, we have determined the method for recovering the subjective distributions, the value of co-
efficients in our method, and the real-world data for implementation. Before analyzing the results,
we want to make sure that the method is robust. Notice that a robust algorithm should provide
similar results despite small changes in the implementation. Therefore, we designed a robustness
test by changing the length of state space intervals, ∆S. The test compares two implementations:

• one with interval length is 5% of current SPX index and the number of state space is 21;

• one with interval length is 4% of current SPX index and the number of state space is 27;

The number of states changes in order to let the two discrete state models cover the same range.
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Figure 6: pT , p2T , p3T and p4T estimated by improved method of different interval lengths: 5%
with 21 intervals v.s. 4% with 27 intervals (λ = 10−4; outlier drop rate = 0%)

Figure 6 shows the four state price distributions under the two conditions, after normalizing
the two conditions by multiplying 5%/4% = 1.25 to the distributions with 4% intervals. The
distributions under different conditions coincide with each other, and this result gives us confidence
on the robustness of the algorithm.

To complete the test, we include a similar robustness test on the original Backwell method.
Figure 7 shows the four state price distributions obtained by the greedy algorithm under the same
two conditions after normalization. The distributions under different conditions are not consistent
with each other, especially at indexes that are far from the current index. This result shows that
the algorithm is very sensitive to the change of the length of the index interval and confirms that
our improvement of the method increases the robustness of the model. Further tests might be
useful, but might not be necessary. In the next section, we will move on to the analysis of the
subjective distributions using our method.
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Figure 7: pT , p2T , p3T and p4T estimated by non-improved Backwell method of different interval
lengths: 5% with 21 intervals v.s. 4% with 27 intervals (λ = 10−4; outlier drop rate = 0%)

4 Analysis of the Subjective Distributions

The Ross Recovery Theorem, introduced in Sections 1 and 2, has been controversial since it was
published. It challenges the conventional view that derivative prices contain at best only partial
information about a subjective probability distribution describing the market’s views of the future.
Instead, according to the Ross’s theorem (and under his assumptions on the structure of the
market), derivative prices actually determine the entire subjective probability distribution. This
leads us to ask: does the subjective distribution have predictive value? And does the Recovery
Theorem have practical implications for investors? To explain whether the theorem is satisfied by
real market data and has practical value, in this section, we apply the Ross Recovery Theorem
on data between 2000 and 2008 using the method summarized in section 3. First, we analyze the
properties of the distributions, such as the expectations and skewness, to show what the subjective
probability distributions look like. Then, we design a mock-trading strategy to test whether the
theorem can be useful to an investor.

In the application, we choose a time horizon from 3/15/2000 to 9/15/2008, select 35 dates (time
points) and capture the related data on these dates for implementation. These dates are evenly
distributed, with the interval between each date approximately 3 months, meaning that we collect
the data on 3/15, 6/15, 9/15, and 12/15 of each year. If the market is closed on any of the dates,
we will try the next date until all the relevant data on this date are available.

4.1 Properties of the Distributions
The goal of this subsection is to explore the properties (expectation and skewness) of the 35
recovered subjective distributions, to analyze the trends of the distributions, and to explain the
reasons behind the facts. We also explore whether the subjective distribution has predictive value.

4.1.1 Expectation of the subjective distributions

Expectation is a effective index that measures the investors’ prediction of the future. Figure 8
shows the weighted mean of the current subjective distribution, together with the S&P500 index
at the current time and the next time. We can see the expectations and the current indexes are
closely correlated and the current index is always slightly higher than the expectation. Real-world
information reflects current market knowledge and uncertainty. Therefore, according to how the
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subjective probability distributions are recovered, the distributions appear to reveal information
at current time. In fact, comparing the two graphs, we can see that the expectations of the
distributions reflect only today’s price and knowledge, and have no value in future prediction.

Figure 8: the current(next) indexes v.s. E [price at next step] (estimated by improved method with
λ = 10−4; no dropped outliers; # of state space: 21; interval length: 5% of current SPX index)

Notice that there is a systematic gap between the current indexes and the expectations, which
we think results from the fact that there is a premium for risk. Variances of the subjective
distributions represents the extent of risk contained within the prediction and Figure 9 plots
the relationship between the systematic gap and variance. The correlation coefficient of the two
variables is 0.8461, which confirms a strong uphill (positive) linear relationship. The distribution
with a higher risk tends to provide a higher return, and therefore enlarges the gap between the
current index and the mean of the subjective distribution.

Figure 9: variance of distributions v.s. difference between current indexes and the expectation
(estimated by improved method with λ = 10−4; no dropped outliers; # of state space: 21; interval
length: 5% of current SPX index)

4.1.2 Skewness of the subjective distributions

Besides the expectation of the distributions, skewness is another important property of a probability
distribution. After recovering the subjective distribution, the unexpected structure in the tails of
state space distribution p disappear, and the inclusion of a smoothness term in our optimizations
is successful in keeping the subjective distribution smooth. The subjective probability distribution
on 2001/06/15 is shown in Figure 10, whose shape is typical among the 35 distributions. We will
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analyze more about the shape of subjective distributions in the following paragraph.

Figure 10: The subjective distribution on 2001/06/15 (estimated by improved method with λ =
10−4; no dropped outliers; # of state space: 21; interval length: 5% of current SPX index)

As shown in Figure 11, the subjective distributions are symmetric and concentrate in the
middle. Also, the distributions are a little left-skewed, since all probabilities of larger than the
means are greater than 50%, and the probabilities of larger than mean plus one standard deviation
are greater than the ones of smaller than mean minus one standard deviation. It is natural since
the stock price never goes negative. Additionally, tails represent option data in longer maturity,
and therefore it is not surprising that the recovered distributions have fatter tails than Gaussian.
However, the feature of skewness does not have much use for practical purpose.

Figure 11: The probability of larger than the means of subjective distributions & the probability
of larger(smaller) than the means ±1σ(2σ) (estimated by improved method with λ = 10−4; no
dropped outliers; # of state space: 21; interval length: 5% of current SPX index)

4.2 A Trading Strategy Making Use of the Subjective Distribution
To test the practical value of the Ross Recovery Theorem, we design a simple trading strategy,
which maximizes the expectation of log-return using the recovered probability distributions. We
will first introduce our strategy below.

• Log-Return Optimization
First, we explain why we should maximize the expectation of the log return rate in a trading
strategy.

Let W0 be the initial wealth of the investor, and Wn be the wealth after n time units. Rk is
the random return variable, i.e. Wk = Rk ×Wk−1. Assume that all Rk’s are i.i.d. random
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variables, we can see that Wn = Rn × Rn−1 × ...× R1 ×W0. Then taking the logarithm to
both sides, we get

logWn = logW0 +
n∑

k=1

logRk

By Law of Large Numbers,

log (
Wn

W0
)1/n → E(logR1) =: m

Therefore, to maximize the final wealth, we only need to maximize the expectation of the
log return rate, that is, m.

• Strategy Design
With the above knowledge, we design a trading strategy based on the maximization of log
return. In each time period, we recover the subjective probability distribution F , and let the
probability of going to state i in the next time period be Fi.
Our portfolio contains two assets: the stock index S&P500 and bonds. Let the investor
have W0 at current time period. Then after investing Θ (0 ≤ Θ ≤ 1) of the current wealth
in stock, and the others in bonds, the wealth of the investor in next time period will be
(1−Θ)(1 + r)W0 + W0Si

S0
Θ, with probability Fi. Therefore, the expectation of the log return

rate can be calculated by

m = E(logR1) =
n∑

i=1

Fi log[(1−Θ)(1 + r) + Θ(Si/S0)]

To maximize m, the first derivative of Θ should be zero, Let Θ̂ ∈ [0, 1] satisfy

∂m

∂Θ̂
=

n∑
i=1

Fi
−(1 + r) + Si/S0

(1− Θ̂)(1 + r) + Θ̂(Si/S0)
= 0

(In application, we use Matlab’s equation and system solver with syntax solve to evaluate
Θ̂.) Since Θ should be larger than zero and less than one, we choose Θ, among 0, 1, and Θ̂s,
to be the one with the largest m. (If Θ̂ does not exist, we choose Θ between 0 and 1.)

The strategy repeats the above process using the 35 subjective distributions, and balance the
portfolio each time period, that is trade with the optimized Θ.

Figure 12: Long-term Wealth Growth with different portfolios (distribution estimated with λ =
10−4; 21 intervals with length of 5% of current SPX index)
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Figure 12 compares the wealth evolution using the trading strategy that maximizes the log-
return to the evolution using a constant proportional portfolio between 2000 and 2008. A constant
proportional portfolio is a trading strategy using fixed Θ every time period in our context. When
S&P500 index grows, the optimized strategy performs like the 40% portfolio; when S&P500 index
drops, it performs like a portfolio investing 100% of the wealth in stock every time period. The
trading algorithm does not do much better in practice than a constant-proportion investing policy.
Thus, it is not clear that the subjective probabilities obtained using Ross recovery are useful for
portfolio optimization.

5 Conclusion

The Ross Recovery Theorem is remarkable. It challenges the traditional views that derivative
prices do not carry useful information about the future. However, it is also controversial. Its as-
sumptions, especially the preference metastructure, simplify the real-world situation. Furthermore,
it is almost impossible to test how much the subjective probability distribution obtained from the
theorem coincide with the real-world one: there is no way to test the correctness of the subjective
distribution.

In our paper, we introduced the Recovery Theorem, calibrated it to real-world data, and tested
its practical value. The obstacles to calibration were identified and overcome. The significance and
practical value of the theorem were discussed. Audrino et al. [8] conduct an empirical analysis
of the recovery theorem, but their conclusion is opposite to ours – they suggest that a useful
trading strategy based on the theorem indeed exists. We speculate that the difference of the
conclusions results from (1) how Audrino et al. and we handle the ill-posed system of (4), (5), and
(6) differently, and (2) different trading strategies. Faced with the ill-posed optimization problem,
while we choose to relax certain constraints in the problem, Audrino et al. choose Tykhonov
Regularization. When conducting the empirical analysis, they design a trading strategy which
makes a new decision every week based on the changes in risk-neutral volatility and recovered
skewness. We believe that these two differences lead to different results.

In our analysis, we found that the subjective distribution seems to only present the current
market situation and barely contains any future information. Also, the performance of a trading
strategy based on the subjective distribution was mediocre.

In fact, the result is not surprising. The assumption that there is only one representative agent
whose behavior gives rise to unique prices might be an oversimplification. Real-world prices come
from the aggregated actions of different types of investors. This simplification might prevent the
theorem from achieving a good distribution. Furthermore, current information reflects current
knowledge and attitudes of the financial market, and it might barely contain useful information
about the future, which is unpredictable. For instance, before the financial crisis, investors actually
held optimistic attitudes toward the market: based on their attitudes, one could hardly conclude
that a financial crisis would happen. Even if Ross Recovery does obtain the market’s subjective
probabilities, it is unreasonable to expect this to provide useful information about the future.

We conclude by saying that the Ross Recovery Theorem is mathematically correct, but we
doubt its significance and value in the real financial world.
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