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Abstract. The study of infectious disease dynamics is an ongoing challenge, particularly due to the varied
life-history strategies that pathogens exhibit. The ongoing COVID-19 pandemic has emphasised the
importance of studying the dynamics of pathogens that allow for an asymptomatic stage (termed
latency in this paper) and direct recovery from said asymptomatic stage. Here, we expand on a simple
epidemiological model, introduced by Saad-Roy et al. (2020), in order to understand the evolutionary
dynamics of allowing for direct recovery of infected, latent individuals. In this model, there are two
infectious stages; in the first infectious stage, hosts are fully or partially asymptomatic, and there is
a trade-off between transmission and progression. We consider arbitrary trade-offs and the specific
case of power-law trade-offs. Through introducing the added parameter of direct recovery from latent
infection (hence termed r), we show that there are 4 possible evolutionary stable strategies (ESSs)
a pathogen can adopt, depending on the values of other parameters. However, when direct recovery
is fast (i.e. at high values of r), the ESSs eventually collapse into one where there is zero latency
(i.e. no asymptomatic stage). Overall, our findings suggest that more importance should be given to
studying the role of asymptomatic individuals in infectious disease outbreaks and the rate at which
they can recover without developing any symptoms.

1. Introduction. Understanding disease dynamics has and continues to remain a chal-
lenge, particularly as various pathogens can take on different life-history strategies. These
life-history strategies are shaped by the selection pressures pathogens are under, and can re-
sult in pathogens being able to switch to a new host species, and/or evolve to form new strains
in current host species [18][8], which in turn can give rise to epidemics or pandemics, such as
the ongoing Coronavirus Disease 2019 (COVID-19) pandemic.

One life-history strategy a pathogen could take involves a latent stage before the main
infectious period, where the latent stage is defined as the period from when a host is first
infectious to when they first start showing symptoms. These latent stages can potentially
provide selective advantages to pathogens by increasing the likelihood of spreading among
more hosts, particularly since hosts will exhibit no to few symptoms (thus reducing symptom
avoidance behaviours and increasing contact with other susceptible individuals) [12]. However,
latency itself is also subject to trade-offs with other factors like viral load and transmission; for
example, it is likely that asymptomatic and/or less symptomatic individuals would transmit
a lower viral load and/or with a lower transmission rate [18]. Therefore, understanding the
evolutionarily stable strategies (ESSs) and the role of trade-offs in evolutionary outcomes of
pathogens can provide insights into disease dynamics and control, so that future outbreaks of
infectious disease could be better understood and controlled [1][11].

Compartmental modelling has been used extensively to study and predict disease dynamics
since its conception by Kermack and Mckendrick in 1927 [10]. These models, known as the
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Susceptible-Infectious-Recovered  (SIR)  models,  are  typically  a  deterministic  system  of  non-
linear ordinary differential equations that have been useful in not only predicting how a disease  
can  spread  and  the  relevant  epidemiological  parameters,  but  also  in  informing  public  health  
action in curbing the spread of infectious diseases [14].

Saad-Roy  et  al.  (2020)  had  previously  formulated  an  epidemiological  model  and  studied  
the  evolutionary  stable  strategies  (ESS)  of  latency  based  on  trade-offs b etween transmission  
and  progression,  and  found  that  there  were  4  possible  ESSs:  fully  asymptomatic,  less  symp-
tomatic, fully symptomatic or bistability between fully symptomatic and fully asymptomatic  
first s tages [ 18]. H owever, t his model d id n ot c onsider c ases i n which p atients i n t he latent  
stage  could  directly  recover  from  the  infection  and  how  that  would  affect t he evolutionary  
pathway  taken  by  a  pathogenic  agent  with  respect  to  latency.  This  is  especially  pertinent  
in  light  of  the  COVID-19  pandemic,  where  asymptomatic  and  mildly  symptomatic  patients  
have  been  found  to  not  only  be  infectious,  but  also  recovery  directly  from  being  infectious  
but  asymptomatic  [13].  Here,  we  define s ymptoms a s t hose t hat would b e r ecognised by a  
host  without  the  need  for  detection.  As  there  are  diseases  like  COVID-19,  where  ”asymp-
tomatic”  patients  might  nevertheless  incur  physiological  problems  that  can  only  be  detected  
upon further diagnostic scans [3], there is a need for this definition to be specified.

That  hosts  can  recover  directly  from  being  infectious  but  asymptomatic  is  a  plausible  
stage in the natural history of SARS-CoV-2 has meant that controlling the spread of the dis-
ease  outbreak  has  been  particularly  challenging  and  required  the  usage  of  strong  mitigation  
measures  like  contact  tracing  and  so-called  lockdowns  [17],  which  refer  to  a  set  of  restric-
tive,  government-imposed non-pharmaceutical interventions such as stay-at-home orders and  
movement  restrictions.  Furthermore,  variants  have  been  developing  at  a  comparable  rate  
since the first emergence of the initial SARS-CoV-2 variant in Wuhan, China, [6][7], and these  
variants  in  turn  have  been  characterised  to  be  more  transmissible  and  resulting  in  more  se-
vere  disease  [4].  As  various  public  health  measures  continue  to  be  imposed  and  vaccination  
programmes  are  underway  in  several  countries,  this  has  led  to  concerns  about  what  needs  to  
be  done  in  response  to  the  new  variants  and  the  potentially  different d isease dynamics they  
can  bring  about.  Therefore,  understanding  the  role  of  asymptomatic  individuals  and  what  
happens when they can recover without developing symptoms could be essential for informing  
subsequent disease control strategies in response to future outbreaks.

Here, we investigate how the rate of direct recovery from an asymptomatic stage affects the  
evolutionary dynamics of an infectious disease, as well as ESSs of latency, directly building on  
the model developed by Saad-Roy et al.  (2020) [18].  We show that while the 4 ESS outcomes  
presented  by  Saad-Roy  et  al.  can  be  attained  in  our  model,  this  is  only  possible  when  direct  
recovery  from  asymptomatic  infection  occurs  at  very  low  rates.  At  higher  rates  of  direct  
recovery, we observe that the ESS is more likely to be that of a no initial asymptomatic stage.

2.  Model.  Our model is based on the model formulated by Saad-Roy et al.  (2020), where  
they studied the evolutionary dynamics of a disease with an initial asymptomatic stage where  
all  hosts  eventually  progressed  to  a  fully  symptomatic  second  stage  [18].  Our  goal  in  this  
study  is  to  study  how  these  evolutionary  dynamics  are  affected when some hosts a re able to  
recover directly from the initial asymptomatic infectious stage and hence, bypass progression  
to the fully symptomatic second infectious stage [19].
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Parameter Definition

δ natural demographic birth and death rate
ω loss of immunity rate
β1 rate of infectivity from first infectious stage
β2 rate of infectivity from second infectious stage
v1 rate of progression from first infectious stage to second infectious stage
r recovery rate, from first infectious stage only
v2 recovery rate, from second infectious stage

Table 1: Model parameters and their definitions. Refer to Figure 1 for a schematic of the
model. Adapted from Saad-Roy et al. (2020).

Our model is formulated in terms of fractions, such that all of the compartments add up
to 1, which represents the total population. For simplicity, we do not consider death due to
disease and therefore assume that the population is at demographic equilibrium [18]. The
host population is partitioned into four classes, where we denote the fraction of individuals
susceptible to the disease by S, infectious hosts in the initial asymptomatic stage by I1 and
in the fully symptomatic stage by I2, and the recovered fraction by R.

We assume the natural demographic rate (birth and death) to be δ > 0 and the rate of
loss of immunity to be ω ≥ 0, meaning that a host is immune for time 1

ω when ω > 0. We
also assume that a host in I1 transmits at rate β1, progresses to I2 at rate v1, and progresses
to R at rate r. When a host is fully symptomatic and at compartment I2, we assume that
the host stays in it on average 1

v2
and transmits at rate β2. We formulate the epidemiological

model, also visualised in Figure 1, known as the Susceptible-Infectious(I1, less symptomatic)-
Infectious(I2, fully symptomatic)-Recovered (SIIRS) model, as such [16][18]:

(2.1a)
dS

dt
= δ − δS − β1SI1 − β2SI2 + ωR

(2.1b)
dI1
dt

= β1SI1 + β2SI2 − (v1 + r + δ)I1

(2.1c)
dI2
dt

= v1I1 − (v2 + δ)I2

(2.1d)
dR

dt
= v2I2 + rI1 − (ω + δ)R

3. Epidemiological and Evolutionary Dynamics of the Model.

3.1. Epidemiological Dynamics of the model. The basic reproduction number, R0, of a
disease  is  defined as the average number o f s econdary c ases that a rise f rom a s ingle primary  
case  in  a  completely  susceptible  population.  R0  is  often  an  important  indicator  in  determin-

ing  epidemiological  dynamics,  and  has  been  used  as  a  reference  for  informing  public  health  
responses to infectious diseases.  R0  = 1 serves as a threshold, where R0  < 1 normally implies  
that  a  disease  will  die  out  and  R0  >  1  implies  persistence.  However,  in  some  cases  R0  <  1  
can lead to a coexistence of equilibria (one unstable, one locally stable) with disease and the  
disease-free equilibrium [19].
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Figure 1: Schematic of the SIIRS model and its compartments, where S = susceptible indi-
viduals, I1 = infectious but asymptomatic/less symptomatic individuals, I2 = infectious and
fully symptomatic individuals, R = recovered individuals. Refer to Table 1 for the definition
of model parameters.

We compute R0 using the next-generation matrix approach [19], which gives

R0 =
β1

v1 + r + δ
+

v1β2
(v1 + r + δ)(v2 + δ)

where β1

v1+r+δ and β2

(v2+δ) represent the average number of infections arising from a host in

I1 and I2 respectively, and v1
(v1+r+δ) represents the probability of a host progressing from I1

to I2.
In this SIIRS model, when there are no cases or when R0 < 1, a disease-free equilibrium

exists such that all the population falls under S, i.e. S=1. When R0 > 1, a unique endemic
equilibrium Ê with a positive fraction of infections exists where

Ŝ = 1
R0

,

Î1 =
(1− 1

R0
)

1+
v1

v2+δ
+ r

μ+δ
+(

v2
ω+δ

)(
v1

v2+δ
)
,

Î2 =
v1

v2+δ Î1, and

R̂ = (( v2
ω+δ )(

v1
v2+δ ) +

r
ω+δ )Î1.

3.2.  Evolutionary  Dynamics  of  the  model.  Having  established  the  epidemiological  dy-
namics  of  our  model,  in  this  section,  we  study  the  evolutionary  dynamics  of  our  model  with 
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respect to latency, λ. λ = 0 denotes that the first stage of infection is fully symptomatic, that
is I1 and I2 are indistinguishable, and λ → ∞ means that the first stage is fully asymptomatic.
Similar to Saad-Roy et al., we study the conditions under which an initial asymptomatic or
mildly symptomatic stage is advantageous to an infectious pathogen, particularly when there
is an additional parameter r, the rate of transition from I1 to R (in other words, some mildly
asymptomatic or asymptomatic patients recover without becoming fully symptomatic).

As in Saad-Roy et al. (2020), the following assumptions hold in this model: a host cur-
rently infected with an existing pathogen cannot be coinfected with the invading mutant,
and a host resistant to the endemic pathogen is also resistant to the mutant pathogen. Ad-
ditionally, it is assumed throughout the section that R0 > 1 and that the population is at
the equilibrium Ê. Given all these assumptions, in our model, maximising fitness would be
equivalent to achieving a maximum value of R0, since R0 is a measure of the number of suc-
cessful infections by an infectious host. This would be equivalent to achieving a minimum
fraction of susceptibles (S) at endemic equilibrium as Ŝ = 1

R0
. Thus, for a mutant pathogen

(with strategy λ) to successfully invade and replace the resident pathogen (with strategy λ̄),
the mutant pathogen strategy must lead to a lower number of susceptibles than the resident
pathogen strategy, i.e. a higher value of R0.

At the I1 stage, we consider a trade-off between progression to stage I2 and transmission,
due to both traits being functions of λ. For instance, a lower pathogenic load could mean
having an initial stage with decreased transmissibility, but could also result in having an
initial stage where there are fewer or no symptoms but a longer infectious period (potentially
allowing for a larger number of infections).

Hence, R0 can be represented as a strategy of λ as such:

(3.1) R0[λ] =
β1[λ]

v1[λ] + r + δ
+

β2v1[λ]

(v2 + δ)(v1[λ] + r + δ)

where β1 and v1 are functions of λ.

3.3. General Forms of Trade-offs. Here, we consider general forms of trade-off between
transmission and progression, and simply assume that transmission and progression approach
a fixed value as λ → ∞ [i.e. β1[∞] and v1[∞] are fixed constants] (see Appendix A.1 for
detailed calculations). We consider a general trade-off form in order to elucidate what condi-
tions would give rise to different evolutionarily stable strategies and use this to explore specific
trade-off functions, such as that of Subsection 3.4, as well as the effect of r on the evolutionary
dynamics of the model.

Let R0[0] represent R0 when there is no latency and R0[∞] represent R0 when there is
full latency.

If

R0[0] > R0[∞]

and

β
′
1[0] >

v
′
1[0]

v1[0] + r + δ
(β1[0]− β2

v2 + δ
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there exists at least one local fitness maximum, which is representative of an evolutionary
stable strategy, λ∗. Note that the condition on β

′
1[0] above corresponds to the case where R0

is increasing in λ at λ = 0.
Else, for

β
′
1[0] >

v
′
1[0]

v1[0] + r + δ
(β1[0]− β2

v2 + δ
(r + δ)),

and

R0[0] < R0[∞]

R0[0] is not an ESS, and if β
′
1[0] is additionally positive for all λ between 0 and ∞, then

R0[λ] is a strictly increasing function with ESS λ∗ → ∞.
Conversely, if

β
′
1[0] <

v
′
1[0]

v1[0] + r + δ
(β1[0]− β2

v2 + δ
(r + δ))

and

R0[0] < R0[∞],

there exists at least one local minimum (unstable evolutionary singular strategy), resulting
in bistability between λ = 0 and some/full latency.

Else, if

β
′
1[0] <

v
′
1[0]

v1[0] + r + δ
(β1[0]− β2

v2 + δ
(r + δ))

and

R0[0] > R0[∞],

then λ∗ = 0 is an ESS. If R0[λ] is strictly decreasing, then λ∗ = 0 is the only ESS.

3.4. Specific Trade-Offs. In this case, we assume that the rates of change of transmission
rates (β1[λ], v1[λ]) increase as latency decreases, and this can be represented by the assumed
functional forms below:

(3.2) β1[λ] = b1(λ+ 1)−b2 + β1[∞]

(3.3) v1[λ] = c1(λ+ 1)−c2 + v1[∞]

where all coefficients, exponents and constants are positive real numbers.
There  are  a  number  of  cases  to  consider,  which  in  turn  give  rise  to  a  number  of  possible 

evolutionary  stable  strategies  depending  on  the  relationships  between  the  parameters  (see 
Appendix A.2 for detailed calculations and explanations).
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3.4.1. Case 1: β2

v2+δ − β1,∞
r+δ ≥ 0. Suppose the average number of infections caused by

individuals in the second stage ( β2

v2+δ , which will also be referred to as k (see also Figure 3)) is
greater than or equal to the maximally latent rate of transmission times the duration spent in
I1 without progressing to I2 (

β1,∞
r+δ ), i.e. the average number of infections caused by individuals

in the maximally latent first stage who did not progress to the second stage:
If

(3.4)
b1b2
c1c2

<
β1,0 − β2

v2+δ (r + δ)

v1,0 + δ + r

then R0[λ] has a local maximum, i.e. there is a unique positive ESS. Conversely, if (3.4)
does not hold, then R0[λ] is strictly decreasing and the ESS is when λ = 0.

3.4.2. Case 2: β2

v2+δ − β1,∞
r+δ < 0. Conversely, supposing that β2

v2+δ − β1,∞
r+δ < 0, the evolu-

tionary outcomes are dependent on how fast transmission rate (b2) and progression rate (c2)
decay relative to each other.

Sub-case 2a: c2 > b2
In this case, transmission rate decays more slowly than progression rate, and the outcomes

are similar to that of Case 1, depending on whether equation (3.4) holds. If (3.4) holds, then
there is a unique positive ESS, otherwise, R0[λ] is strictly decreasing and the ESS is when λ
= 0.

Sub-case 2b: c2 < b2
In this case, progression rate decays more slowly than transmission rate. If equation (3.4)

holds, then R0[λ] is strictly increasing, and ESS is λ∗ → ∞. Conversely, if (3.4) does not hold,
then R0[λ] has a local minimum, which is an unstable evolutionary singular strategy. This
therefore gives rise to bistable ESSs at zero and maximal latency.

A summary of all possible ESSs described above and the necessary conditions can be found
in Figure 2.

Figure 2: A summary table of the possible ESSs with respect to latency and the conditions 
in which they can be attained, as described in Subsection 3.4. Conditions are summarised in 
white cells and ESSs are summarised in grey cells.

4. The effect of r on the evolutionary dynamics of the M odel. In the previous sections, we  
show  that  the  addition  of  an  additional  parameter,  r  (the  rate  of  direct  recovery  from
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the initial latent stage), can still produce the ESS outcomes determined for the various cases
and sub-cases determined by Saad-Roy et al. (2020). Here, we further discuss the effect of
changing the value of r on ESS outcomes and evolutionary pathways with respect to Specific
Trade-Offs.

Figure 3 depicts a pictorial representation of how changing the value of r affects the
possible ESS outcomes across different parameter regimes. In general, for the same set of
parameters and fixed value of latency, as r increases in value, the value of R0 decreases, thus
suggesting that in the specific trade-off condition (transmission vs latency) of this model,
allowing for direct recovery from a latent/less symptomatic stage might have some negative
effect on fitness of the infectious agent.

Figure 3: Pictorial representation of how, under specific trade-off conditions, different values of
r affect the evolutionary pathways of R0[λ]; the left column (a, c) show cases where b2 > c2, the
right column (b, d) where c2 > b2. Here, the term β2

v2+δ will be represented by the parameter,
k. Values of r used = 0 (black), 1 (darkest red), 2, 4, 8 (long dashed line), 16 (lightest red,
short dashed line). For a, values of other parameters used: β1,∞ = 1, v1,∞ = 0.75, δ = 0.5,
k = 1.5, b1 = 0.2, b2 = 3, c1 = 100, c2 = 1.5. For b, values of other parameters used: β1,∞ = 1,
v1,∞ = 0.75, δ = 0.5, k = 1.5, b1 = 0.2, b2 = 1.5, c1 = 100, c2 = 3. For c, values of other
parameters used: β1,∞ = 10, v1,∞ = 0.75, δ = 0.5, k = 1.5, b1 = 10, b2 = 1.5, c1 = 100,
c2 = 1.5. For d, values of other parameters used: β1,∞ = 0.5, v1,∞ = 0.75, δ = 0.5, k = 1.5,
b1 = 10, b2 = 1.5, c1 = 100, c2 = 10.

There are a number of possible pathways on how ESS might shift as r increases:
1. If the initial ESS is λ∗ → ∞, the ESS will eventually shift to bistable ESSs at zero and
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maximal latency and then eventually to λ = 0 (Fig. 2a),
2. If there are initially bistable ESSs at zero and maximal latency, the ESS will eventually

shift to λ = 0 (Fig. 2c),
3. If there is a unique positive ESS when r = 0 initially, the ESS will shift to λ = 0 as the

value of r increases (Fig. 2b),
and finally,
4. If the initial ESS is λ = 0 when r = 0, the ESS will remain at λ = 0 (Fig. 2d).
In other words, as r increases, (3.4) is less likely to hold true and Case 1 is more likely to

hold  true,  resulting  in  the  ESS  eventually  shifting  to  λ  =  0  beyond  certain  values  of  r.  This  
seems  to  hold  true  regardless  of  the  parameter  regime  and  the  initial  ESS  when  r  = 0.  The  
model would effectively reduce to an SIRS epidemiological model, and r would be incorporated  
into the rate of recovery from the (single) infectious stage.

Thus,  while  Subsection  3.2  demonstrates  the  possibility  of  4  ESS  outcomes  (similarly  
outlined in Saad-Roy et al.  (2020)), here, we show that having any one of the 4 ESS outcomes  
is  only  possible  at  low  values  of  r,  and  the  4  outcomes  collapse  into  1  ESS  outcome  (i.e.  no  
latency), at higher values of r.

5.  Discussion.  Several  infectious  diseases  have  a  less  symptomatic  or  even  completely  
asymptomatic stage, during which the infected host is still able to transmit the disease before  
progressing  to  a  fully  symptomatic  stage  or  even  directly  to  recovery.  Identifying  such  a  
stage  in  infectious  diseases  is  important  as  it  forms  an  essential  part  of  the  natural  history  
of  the  disease,  which  in  turn  is  required  to  designing  appropriate  intervention  and  control  
mechanisms.

Here, we studied how introducing a pathway of direct recovery from a mildly symptomatic/
fully asymptomatic stage (represented by the parameter r) in an SIIRS epidemiological model  
developed  by  Saad-Roy  et  al.  (2020)  could  affect t he e volutionary s table s trategy ( ESS) of  
an  infectious  disease  with  respect  to  latency,  λ,  i.e.  how  asymptomatic  the  initial  stage  of  
infection is.

Through  the  addition  of  the  parameter  r,  we  found  that  the  findings o f S aad-Roy e t al.  
are  most  likely  to  be  applicable  only  when  the  value  of  r  is  not  too  large.  Instead,  at  very  
high  values  of  r,  the  ESS  tends  to  be  λ  =  0  regardless  of  the  values  of  other  parameters.  
This  suggests  that  there  might  be  some  form  of  evolutionary  trade-off b etween l atency and  
direct progression into recovery from an initial less symptomatic stage.  In the epidemiological  
context of the disease, a higher rate of direct recovery would mean that upon entering the first  
infectious stage, infected individuals spend a shorter time remaining infectious (and thus being  
able to infect more susceptibles).  Therefore, selection should favour increasing and prolonging  
the  infectiousness  of  infected  individuals  and  hence  increase  the  number  of  infections  in  the  
population.  In  the  specific e xample o f o ur s pecific tr ade-off cas e, dec reasing the latency  
would  result  in  an  increase  in  transmission  and  progression  rates  (see  Equation  (3.2)  and  
Equation (3.3)) of I1  individuals, thus prolonging infectiousness of infected individuals.

Furthermore,  viral  load  and  shedding  may  also  be  lower  in  I1  individuals  compared  to  
I2  individuals  [16].  If  I1  individuals  are  clearing  the  infection  at  a  faster  rate  than  they  
are  producing  secondary  infections,  it  would  be  evolutionarily  advantageous  for  a  pathogen  
to  have  to  low  latency  or  even  no  latency  at  all.  However,  given  the  confusion  over  the
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true  infectiousness  of  asymptomatic  compared  to  symptomatic  infected  individuals  and  the  
variation  in  different p athogens [ 16][20][15], m ore n eeds t o b e d one t o u nderstand t he true  
infectivity  of  asymptomatic  infectious  carriers  and  more  accurately  model  their  behaviour  
and  interactions.  Regardless,  the  findings o f our model h ighlight the importance o f studying  
asymptomatic  carriers  and  their  recovery  without  further  progression  to  full  symptomaticity  
even  at  low  levels  of  occurrence,  as  the  evolutionary  outcomes  of  the  pathogen  can  vary  and  
accordingly, the type of public health interventions that are useful and necessary to implement.

Asymptomatic carriers have been understood to significantly propagate the spread of sev-

eral diseases such as influenza, Ebola virus, community-mediated methicillin-resistant Staphy-
lococcus  aureus  (MRSA),  and  more  recently,  COVID-19.  Particularly  in  the  context  of  the  
ongoing COVID-19 pandemic, studies have estimated the percentage of asymptomatic carriers  
to  be  at  least  15%,  and  that  the  infectiousness  of  these  asymptomatic  carriers  is  similar  to  
that of fully symptomatic patients[20].

However, asymptomatic carriers are often difficult to detect unless they are actively tested.  
This  means  that  in  most  cases,  only  symptomatic  cases  (or  initially  asymptomatic/mildly  
symptomatic  cases  that  later  developed  all  clinical  symptoms)  are  detected,  which  makes  
interpreting the natural history of the disease accurately more difficult. Therefore, epidemio-
logical  models  such  as  the  one  we  have  presented  here  can  be  useful  in  providing  predictions  
about how future strains are likely to evolve, and this information can be used to inform public  
health  decisions  to  control  the  spread  of  infectious  diseases.  In  fact,  predicting  the  parame-
ters of so-called Susceptible-Asymptomatic-Infected-Removed (SAIR) models, such as the one  
used in this paper, have been able to explain how the course of the COVID-19 pandemic took  
place  across  different c ountries [ 2]. A dditionally, a s tudy by Gumel e t a l. (2021)[9], which  
modelled  the  ongoing  COVID-19  pandemic  using  a  similar  compartmental  model  to  the  one  
used  in  this  paper  showed  that  the  rate  at  which  asymptomatic  individuals  recovered  from  
infection (i.e.  r in our model) was one of the parameters that had the most effect on and was  
negatively correlated to R0, similar to what our model suggests.

Nevertheless,  there  still  runs  a  risk  of  incorrectly  modelling  diseases  and  therefore  incor-
rectly  assessing  the  viability  and  effectiveness o f a n i ntervention i n p reventing d isease out-
breaks  [5].  All  of  this  makes  it  all  the  more  important  that  more  data  is  collected  about  
asymptomatic  carriers,  and  the  COVID-19  pandemic  is  only  one  such  example  to  illustrate  
this importance.

5.1.  Future  Directions.  In this model, direct recovery rate from an initial asymptomatic  
stage  (r)  was  treated  as  an  arbitrary  constant;  however,  it  is  likely  that  r  itself  has  some  
sort  of  trade-off r elationship w ith r espect t o l atency a nd o ther f actors. T herefore, i t would  
be  interesting  to  model  the  effect o f r o n t he e volutionary p athways, w here r a ssumes a  
functional form demonstrating some trade-off relationship with l atency. To understand what  
sort  of  relationship  r  might  have  with  latency,  such  an  extension  of  this  model  could  also  be  
compared with empirical data from infectious pathogens with a life-history including a latent  
stage.

Future extensions of our model could also include modelling social behaviours, such as con-
tact tracing and/or quarantine immediately after diagnosis, and studying the effect these be-
haviours have on r and other parameters, and how that, in turn, affects transmission trade-offs
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and evolutionary pathways. It would also be interesting to consider how vaccine or treatment
regimes can alter the evolutionary pathways with respect to latency, so that informed public
health decisions can be made accordingly in response to future epidemic and/or pandemic
outbreaks.
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Appendix A. Evolutionary Dynamics. In all sections, when finding the maxima for R0,
we set the first derivative to 0.

A.1. General Trade-Offs. In the case of general trade-offs,

R0[λ] =
β1[λ]

v1[λ] + r + δ
+

β2v1[λ]

(v1[λ] + r + δ)(v2 + δ)

dR0[λ]

dλ
=

1

v1[λ] + r + δ
(β

′
1[λ] +

β2v
′
1[λ]

v2 + δ
)− v

′
1[λ]

(v1[λ] + r + δ)2
(β1 +

β2v1[λ]

v2 + δ
)

At the evolutionarily stable strategy (ESS) for a particular viral strain, R0 is a maximum

in the evolutionary landscape. For that, dR0[λ]
dλ = 0 at a particular value(s) of latency, which

could be 0, ∞, or a positive real number, denoted as λ∗.
Therefore, for the ESS to exist at a particular value of latency, λ∗ > 0,

dR0[λ]

dλ
= 0

and

dR0[λ]

dλ

∣
∣
∣
λ=0

> 0

This will occur iff
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1

v1[0] + r + δ
(β

′
1[0] +

β2v
′
1[0]

v2 + δ
) >

v
′
1[0]

(v1[0] + r + δ)2
(β1[0] +

β2v1[0]

v2 + δ
)

which simplifies to:

β
′
1[0] >

v
′
1[0]

v1[0] + r + δ
(β1[0]− β2

v2 + δ
(r + δ))

Suppose that limλ→∞ β
′
1[λ] = 0 and limλ→∞ v

′
1[λ] = 0

if R0[0] > R0[∞] and β
′
1[0] >

v
′
1[0]

v1[0]+r+δ (β1[0]− β2

v2+δ (r + δ)), there exists at least one local

maximum, which is representative of an evolutionary stable strategy, λ∗.

Else, for β
′
1[0] >

v
′
1[0]

v1[0]+r+δ (β1[0]− β2

v2+δ (r+ δ)), R0[λ] is a strictly increasing function with

ESS λ∗ → ∞.

Conversely, if β
′
1[0] <

v
′
1[0]

v1[0]+r+δ (β1[0]− β2

v2+δ (r+δ)) and R0[0] < R0[∞], there exists at least

one local minimum (unstable evolutionary singular strategy), resulting in bistability between
λ = 0 and some/full latency.

Else, if β
′
1[0] <

v
′
1[0]

v1[0]+r+δ (β1[0] − β2

v2+δ (r + δ)) and R0[0] > R0[∞], then R0[λ] is a strictly

decreasing function with λ∗ = 0.

A.2. Specific Trade-Offs. For the specific case where trade-offs take on power-law or
exponential functional forms,

R0[λ] =
1

(c1[λ+ 1]−c2 + v1,∞ + r + δ)
(b1[λ+ 1]−b2 + β1,∞ +

β2
v2 + δ

(c1[λ+ 1]−c2 + v1,∞))

dR0[λ]

dλ
= − 1

(c1[λ+ 1]−c2 + v1,∞ + r + δ)
(b1b2[λ+ 1]−b2−1 +

β2
v2 + δ

c1c2[λ+ 1]−c2−1)

+
c1c2[λ+ 1]−c2−1

(c1[λ+ 1]−c2 + v1,∞ + r + δ)2
(b1[λ+ 1]−b2 + β1,∞ +

β2
v2 + δ

(c1[λ+ 1]−c2 + v1,∞))

which, after multiplying by

((c1[λ+ 1]−c2 + v1,∞ + r + δ)2 · (− [λ+1]b2+c2+1

b1b2
))

and rearranging simplifies to:

c1 − c1c2
b2

+ (v1,∞ + r + δ)[λ+ 1]c2 +
c1c2
b1b2

(r + δ)(
β2

v2 + δ
− β1,∞

r + δ
)[λ+ 1]b2

= f [λ]

f [λ] = A0+ A1[λ+ 1]c2+ A2[λ+ 1]b2

159



S. N. MANIVANNAN

where:

A0 = c1 − c1c2
b2

, A1 = v1,∞ + r + δ, A2 =
c1c2
b1b2

(r + δ)(
β2

v2 + δ
− β1,∞

r + δ
)

dR0[λ]
dλ = −K[λ]f [λ], K[λ] > 0 for all λ,

where K[λ] = (c1[λ+ 1]−c2 + v1,∞ + r + δ)2 · (− [λ+1]b2+c2+1

b1b2
)

This means that at λ = 0, f [0] = A0 +A1 +A2 < 0 for dR0[λ]
dλ > 0 to hold true.

There are a number of conditions in which this condition can be satisfied.
Case 1: β2

v2+δ − β1,∞
r+δ ≥ 0

A2 ≥ 0, hence f [λ] is strictly increasing from A0 + A1 + A2 to ∞. If f [0] < 0, then f [λ]
crosses the λ-axis once, and there is a max R0 at λ∗, where 0 < λ∗ < ∞.

For that, A0 +A1 +A2 < 0, which when rearranged, gives rise to the following condition
that needs to be satisfied for 0 < λ∗ < ∞:

b1b2
c1c2

<
β1,0 − β2

v2+δ (r + δ)

v1,0 + δ + r

Else, if f [0] = 0, then dR0[λ]
dλ

∣
∣
∣
λ=0

= 0, and λ∗ = 0. Similarly, if f [0] > 0, then dR0[λ]
dλ

∣
∣
∣
λ=0

< 0

and R0[λ] is a strictly decreasing function, thus λ∗ = 0.

Case 2: β2

v2+δ − β1,∞
r+δ < 0

In this case, A2 < 0, so there are additional cases to consider:
Sub-case 2a: A0 < 0, i.e. c2 > b2
rearranging f [λ] = 0 and multiplying each side by [λ+ 1]−b2 gives:

A1[λ+ 1]c2−b2 = −A0[λ+ 1]−b2 −A2

where A1,−A0,−A2 > 0
let

g1[λ] = A1[λ+ 1]c2−b2

g2[λ] = −A0[λ+ 1]−b2 −A2

g1[λ] is a strictly increasing function from A1 to ∞, while g2[λ] is a strictly decreasing
function from −(A0 +A2) to −A2.

If g1[0] < g2[0], then both g1 and g2[0] will intersect at least once ⇒ such an intersection
is a root of f [λ] = 0, and is thus an ESS. g1[0] < g2[0] means that A1 < −(A0 + A2), which
when rearranged gives A0 +A1 +A2 < 0.

Hence, similar to Case 1, a unique λ∗ exists only if A0 +A1 +A2 < 0, and that λ∗ is the
ESS; otherwise, λ∗ = 0.

Sub-case 2b: A0 > 0, i.e. c2 < b2

 160



MODELLING THE EVOLUTIONARY DYNAMICS OF AN INFECTIOUS DISEASE WITH AN INITIAL
ASYMPTOMATIC INFECTION STAGE WITH RECOVERY

rearranging f [λ] = 0 and multiplying each side by [λ+ 1]−c2 gives:

−A2[λ+ 1]b2−c2 = A0[λ+ 1]−c2 +A1

where A1, A0,−A2 > 0
let

h1[λ] = −A2[λ+ 1]b2−c2

h2[λ] = A0 +A2[λ+ 1]−c2

h1[λ] is a strictly increasing function from −A2 to ∞, while h2[λ] is a strictly decreasing
function from A0 +A1 to A1.

If h2[0] < h1[0], then both h1 and h2[0] will intersect at least once to give a unique
root λ∗ > 0 ⇒ h2[0] < h1[0] means that −A2 < A0 + A1, which when rearranged gives
A0 +A1 +A2 > 0, i.e.

b1b2
c1c2

>
β1,0 − β2

v2+δ (r + δ)

v1,0 + δ + r

But under these conditions, dR0[λ]
dλ

∣
∣
∣
λ=0

= −K[0]f [0] < 0, thus λ∗ > 0 is a local minimum,

and hence an unstable evolutionary singular strategy instead ⇒ ESS are at the two extremes
λ∗ = 0 and λ∗ → ∞, which are bistable.

Conversely, if h2[0] > h1[0] and A0 + A1 + A2 < 0, then h2[0] and h1[0] do not intersect,

resulting in no unique root λ∗. However, dR0[λ]
dλ

∣
∣
∣
λ=0

= −K[0]f [0] > 0 and R0[λ] is strictly

increasing, thus ESS is λ∗ → ∞.
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