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Abstract

Thin layers of slow-moving, viscous fluids coating hydrophobic surfaces are shaped
by the competing forces of disjoining pressure and surface tension. These forces form
the fluid layer into an array of discrete droplets connected by an ultra thin layer. How-
ever, the droplet array is unstable, and the droplets will interact with one another. To
determine the structure and properties of steady droplets, we use the Reynolds’ PDE
in one dimension and phase-plane methods. We can then analyze the unstable droplet
system by utilizing paired ODEs. Numerical solutions show how the droplets interact
to produce movement and mass exchange, giving rise to coarsening events which reduce
the number of droplets in the system. These events occur when a droplet collapses into
the ultra thin layer or when two droplets collide, and thus, merge. Using numerical
simulations and statistical analysis of their results, we aim to gain a better under-
standing of the dynamics of this system including the factors that influence coarsening
events such as parameters and initial conditions.

1 Introduction

In past studies [10, 11], viscous, slow-moving fluids which coat hydrophobic solid sur-
faces have shown evidence of instability characterized by a nearly uniform layer break-
ing up into an array of droplets connected by an ultra thin layer. This particular
phenomenon is called dewetting, and it occurs in many fluid dynamics systems. For
example, experiments on different polymer solutions [2,6] have attempted to pin down
the peculiar nature of dewetting. More simply however, this behavior is also exhibited
in everyday materials such as printing ink, paint, and lubricant. Clearly this action
can have negative effects due to the complicated and somewhat unpredictable patterns
it creates. For this reason, the changing shape of these fluid layer has been the subject
of research, yet many aspects are not yet fully understood.

Additionally, dewetting is not the final instability that many of these systems ex-
perience. For materials that do not evaporate (such as lubricant), the droplets, which
are connected by a thin layer of fluid, are still unstable and will continue to interact
with one another by means of fluid flux. These interactions can create movement and
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mass exchange that occur over long time scales. Moreover, these droplets can also
experience certain critical “events”. In particular, a droplet can become so small that
it collapses into the ultra thin layer, or two droplets can get close enough that they
collide and merge into a larger drop. These actions are called coarsening, and lead to
a system which contains a smaller number of larger drops (since mass is conserved).

We will begin by using a phase-plane system to show how the shape of droplets is
derived from equations of fluid dynamics. Next, we describe the differential equations
that will govern the dynamics of the system of droplets and see how we will be able to
simulate this system, keeping in mind the changes we must make when certain “events”
occur. After this foundation is built, we will aim to explain the factors contributing
to the evolution of the number of droplets throughout a simulation. Lastly, we narrow
this focus to specifically how these factors contribute to either collapses or collisions of
droplets.

2 Formulation of the thin film problem

We describe dynamics occurring for fluid systems that all share a number of charac-
teristics. The fluids are thick and very viscous and hence will have strong dissipative
friction. They are also slow-moving, which we will understand to mean they have a
very low Reynolds number. They are also non-volatile, so they do not evaporate. In
addition, the fluid will be in a hydrophobic container with no-flux boundary conditions.

We have mentioned that physical experiments have shown that a nearly uniform
layer of a thin film will break up due to instabilities [2, 6]. Our first step will be to
write the governing equations that model this dewetting.

The dynamics of viscous fluids are given by the Navier-Stokes partial differential
equations. The Reynolds number of a fluid is a parameter in the Navier-Stokes systems
that describes the speed versus the dissipation of a fluid. Because we are modeling
very slow moving fluids, this parameter is close to zero, which reduces the PDEs to
the Stokes equations [1]. Further reducing the problem, we will be analyzing thin-
films in one dimension. This leads to the Reynolds equation in one dimension, which
is reduced from the Stokes equations and describes the evolution and conservation of
mass of thin-films [3, 7–9]. This is

∂h

∂t
+

∂

∂x

(
h3

∂p

∂x

)
= 0 (1)

where h is the height or thickness of the fluid layer, t is the time, p is the pressure, and
x is the position in the layer with 0 ≤ x ≤ L. Also h3 ∂p

∂x ≡ J is defined as the flux.
The forces acting on the fluid are represented by contributions to the pressure;

these are the surface tension of the fluid and intermolecular forces, or what is also
called the disjoining pressure. The former depends on the curvature of the surface and
the latter depends on the forces between the particles of the fluid with one another
and between the fluid molecules and the hydrophobic solid. We denote the disjoining
pressure as Π(h). Because |hx| ≪ 1 for thin-films, curvature in two dimensions, where
our dimensions are position and height can be reduced to a one-term approximation,
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Figure 1: Graph of typical thin-film fluid.

or

κ = − hxx

(1 + h2x)
3/2

≈ −∂2h

∂x2
(2)

The fluid’s pressure can be written as a sum of these two terms [10, 11]. Thus, we
write pressure as

p = Π(h)− ∂2h

∂x2
. (3)

One particular equation for the Π(h) term that describes a non-wetting or partially
wetting fluid on a water repellent coated solid is (from [4,11])

Π(h) =
δ2

h3

(
1− δ

h

)
(4)

where δ is the height of the ultra thin layer that coats the region between separated
droplets.

2.1 Droplet Solutions to the Steady-State Equations

We now derive the properties of steady droplet solutions existing in an idealized infinite
domain. If the fluid is steady then (1) reduces to

∂

∂x

(
h3

∂p

∂x

)
= 0 (5)

on a fixed length domain with no-flux boundary conditions (so J = 0 at the boundaries).
In order for (5) to hold with h > 0, the mass flux, J = h3 ∂p

∂x must be a constant with
respect to x. However, J = 0 on the boundary so the constant is 0. Because h ̸= 0,
∂p
∂x = 0. This implies that pressure is a constant.

Keeping in mind that a steady system implies pressure is constant, we can rewrite
the steady form of (3) as

d2h̄

dx2
= Π(h̄)− p̄ (6)

(where the bar indicates independence of time), or equivalently

d2h̄

dx2
=

δ2

h̄3
− δ3

h̄4
− p̄. (7)
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If we write z̄ = dh̄
dx then the above equations reduce to the first order system

dh̄

dx
= z̄ (8a)

dz̄

dx
=

δ2

h̄3
− δ3

h̄4
− p̄. (8b)

Solving for the x-independent solutions, we find that this system has two equilib-
rium points with z̄ = 0. Using linear stability analysis, the solution near h̄ = δ is a
saddle while the other equilibrium is a center point (see Figure 2(a)).

At this point, we know that at the maximum of a droplet, dh̄
dx = z̄ = 0. By using

the ode45 solver in MATLAB, we can compute numerical solutions to this phase-plane
system of differential equations by trying out various initial heights for a given p̄ while
keeping δ fixed. Using this shooting approach, we can obtain the solutions that are of
interest to us. In particular, if h̄(0) is too large, the solution will yield an h̄ that gets
near the saddle point, but reverses direction, creating a solution with a diverging slope.
This singularity is not exhibited by the drops and is, thus, not physically relevant. If
h̄(0) is initially too small, then the solution will be periodic, orbiting around the center
equilibrium point. This would indicate an infinite number of droplets along a domain.
In between these two, there is a homoclinic solution that approaches the saddle point
of the system along the asymptotes. This homoclinic solution to the system is the only
solution that respects physical properties of an isolated individual drop in an infinite
domain— having h̄ ∼ δ and z̄ → 0 as |x| → ∞, see Figure 2(b). To deduce the
homoclinic solution and the appropriate initial maximum height, we use a bisection
search to find the unique value for the maximum of h̄ for a given p̄.
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Figure 2: The homoclinic solution.

From (7), when δ is much smaller than h, the differential equation can be approxi-
mated by

d2h̄

dx2
= −p̄. (9)
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Therefore the droplet profile is approximated by a parabola. On the other hand, when
h̄ gets close to δ, we can approximate h̄ as just that, h̄ ∼ δ. By using the h̄(0) from the
bisection search and solving (9), we can find a width w of the drop. This also allows
us to write an approximation of the profile of the drop as (see Figure 2(b))

h̄ ∼

{
1
2 p̄(w̄

2 − x2) if |x| < w̄

h̄min = δ else.
(10)

We can vary the value of p̄ when solving for the homoclinic solution to find good
approximations for the width, in which case we observe the value of x in the solution
when h gets close to δ. We then can graphically observe the relationship between p̄
and the width, as shown in figure 3(a). This relationship is very close to

w̄ ∼ A

p̄
. (11)

where A is a constant determined by the form of the disjoining pressure. Clearly, if
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puted solutions of phase plane equation (data
points)(8).

Figure 3: Width and mass dependence on pressure.

density = 1, then the mass m̄ of a droplet is the area under the height function h̄,
which is

m̄ =

∫ w

−w
h̄ dx ∼ 2A3

3p̄2
(12)

as shown in figure 3(b). With equation (12) and (11), we can rewrite the mass as a
function of pressure. In particular

w̄(m̄) =

√
3m̄

2A
. (13)
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3 Coarsening Dynamical System

Now that we have the equations for some of the basic characteristics of droplets, given
X, the position of a droplet, and M , the mass of a drop, we can write the height profile
for each drop as

h = h̄(x−X,M). (14)

Now we have built the basics of a droplet system. The next step is to determine how
systems of interacting droplets change over time, and for this we will need equations
that govern the evolution of positions and masses X = X(t) and M = M(t).

While the above steps show that a single droplet is steady and takes the approximate
shape of parabola, in general, an array of multiple droplets does not form a global steady
solution. In particular, the droplets may move horizontally or exchange mass, resulting
in growth or shrinkage as described in the equations derived in [10, 11]. From [5], a
modified version of simplified ODEs, which have been reduced from (1), are, for droplets
i = 1, 2, ..., N

dMi

dt
= (Ji+1,i − Ji,i−1) (15a)

dXi

dt
= Cx(Mi)(Ji+1,i + Ji,i−1) (15b)

where Xi−1 < Xi, Mi is the mass of the ith droplet, and Ji+1,i is the flux J between
the i + 1th and ith droplet. Here Cx(Mi) is a coefficient that depends on a droplet’s
mass and, from [5], is approximated as inversely proportional to ln(Mδ/Mi), and Mδ

is the limit of the mass of a droplet whose height approaches the height of the ultra
thin layer. Normally Cx(Mi) > 0 for all M > 0, but this approximation has this Mδ

cutoff. As mentioned with (1), the flux is

J = h3
∂p

∂x
. (16)

If we recognize each droplet as having a uniform value for pressure (because they are
relatively locally stable), and if we let the distance between two droplets be defined as
the distance between the inside edges of adjacent drops, we can rewrite (16) as [5, 11]

Ji+1,i = h3
∂p

∂x
≈ h3(pi+1 − pi)

(Xi+1 −Wi+1)− (Xi +Wi)
(17)

where Xi is the position and Wi is the width of the ith droplet. Using (12) and (10)
and recognizing that mass flux happens via the ultra thin layer (h = δ) we can write

Ji+1,i =
kδ3(M

−1/2
i+1 −M

−1/2
i )

(Xi+1 −Wi+1)− (Xi +Wi)
(18)

and k = (2A3/3)1/2 will be treated as a parameter for the influence of the disjoining
pressure. Now, using (15), we can write the ODEs that govern mass exchange and
movement as

dMi

dt
= kδ3

(
M

−1/2
i+1 −M

−1/2
i

(Xi+1 −Wi+i)− (Xi +Wi)
−

M
−1/2
i −M

−1/2
i−1

(Xi −Wi)− (Xi−1 +Wi−1)

)
(19a)
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dXi

dt
= − Bδ2

ln
(
Mδ
Mi

) ( M
−1/2
i+1 −M

−1/2
i

(Xi+1 −Wi+i)− (Xi +Wi)
+

M
−1/2
i −M

−1/2
i−1

(Xi −Wi)− (Xi−1 +Wi−1)

)
(19b)

where B is the proportionality constant for Cx.
We will approximate solutions to initial value problems of this system of 2N equa-

tions for N droplets numerically using the ode45 solver via MATLAB. The initial
conditions refer to the initial masses Mi and positions Xi of the droplet array for
i = 1, 2, ..., N . Also, the system will depend on which type of boundary conditions
we choose to use. One type of boundary condition is unbounded, so the droplets are
free to move along a domain that is infinitely long, and because no droplet leaves the
domain, there is no flux at the edges. Although this is not necessarily what occurs
physically, it can be considered a good approximation in the case that each droplet
is very small when compared to the total length of the domain. The other type of
boundary condition we use is a periodic boundary condition, where the left edge and
right edge are essentially connected. The leftmost and rightmost drop will be adjacent,
or, if Xl and Xr are the positions of the leftmost and rightmost drops respectively,
the distance between their drop edges is (Xl −Wl) + (L − (Xr +Wr)). Physically, a
periodic domain can be thought as a circle with circumference L.

These boundary conditions can be compared to the boundary condition of a simple
finite domain where no flux of fluid leaves through the boundaries. An equivalent
manner in which to imagine this condition is to create reflected drops across x = 0 and
across x = L. In other words, the leftmost drop will be influenced by an equal sized
drop that lies to its left and the rightmost drop will be influenced by at equal sized
drop that lies to its right. In our simulations, this means we create two auxiliary drops,
0 and n+ 1 such that Mn+1 = Mn and M0 = M1. Thus, from (18), J1,0 = Jn+1,n = 0.
Therefore we have no flux at the boundaries on a simple 0 ≤ x ≤ L domain.

3.1 Droplet Singularity Events

Mathematically, the equations (19) remain defined and valid as long as the right-hand
sides are uniformly bounded. This condition holds (and the flux will not blow up)
provided that the solution does not produce a finite time singularity, which happens if

(i) (Xi+1 −Wi+i)− (Xi +Wi) → 0 or (20)

(ii) Mi → Mδ = Mc

for any i in the array. Physically, condition (ii) means the mass of a droplet approaches
a critical minimum value Mc. Condition (i) means the distance of separation between
adjacent droplets goes to zero. In (19b), Mδ represents the mass of a droplet that is
very close to collapsing into the ultra thin layer. Therefore, we set Mc = Mδ.

3.1.1 Events and an example

The solutions to these equations are calculated numerically until an event occurs that
necessitates a change in the system. More precisely, events for our purposes are pre-
determined conditions such that if the numerical solutions to the differential equation
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meet one of these conditions, the solving halts, changes to the system are made, and
then the numerical solving restarts. This idea describes how the system of droplets
“coarsens”; when one of the conditions in (20) occurs, we halt the system, N → N − 1
by removing a drop that caused this condition, and the system is restarted. We call
this phenomenon coarsening because it describes the film’s evolution toward a smaller
number of drops.

For an illustration of an event, we will look at the behavior of a simple differential
equation for a single droplet collapse. If we consider the evolution of mass of a drop
that is much smaller than its neighbors and whose position remains relatively constant,
then (19a) is well approximated by the piecewise-defined differential equation

dM

dt
=

{
− 2√

M
if M > Mc

0 else
(21)

where Mc = 0 will be our critical mass and the separation between drops has been
normalized. The second case in (21) is written in the case that the mass is 0. Namely
if the drop has vanished its mass will remain at 0.

If we start with an initial positive mass M0, we use the first case of the differential
equation. This has the analytic solution

M = (−3t+M
2/3
0 )

3/2
(22)

The mass will continue to get smaller at an increasing rate until M = Mc, or when

tc =
M

2/3
0 −M

2/3
c

3
(23)

When Mc = 0, the condition above is met at a critical time tc = M
2/3
0 /3.

In (21), the rate at which the mass is decreasing diverges as M → 0 (representing a
finite time singularity). However, when this occurs, the MATLAB events option within
the ode45 function recognizes that at this moment, M = 0 and halts the solution. The
second case of the differential equation then comes into effect with restart mass Mr = 0.
This solution is shown in figure 4.

In (21) if we set the event function to halt when when M = Mc = 0, then a few data
points generated by the numerical solutions in MATLAB might overshoot this value
and create computational problems. Since this is the case, we define a small positive
threshold ϵ in order to halt the system before this error occurs. For this system, the
difference in the mass at the halting was only off by about most 1/500, so using a small
threshold did not create a significant difference in the system. We estimate that the
same is true when we use small thresholds for our coarsening dynamical system with
many droplets and that the value difference will not significantly affect our results.

For this system and using a small positive threshold, there is also the question of
how much the time at which the critical event occurs differs from the true value. We
saw tc = M

2/3
0 /3 so if instead we solve for when ϵ = (−3t + M

2/3
0 )3/2, we find that

tthreshold = (M
2/3
0 − ϵ2/3)/3. Thus, the bias of the threshold time is −ϵ2/3/3. We notice

that as ϵ gets small, the error of the threshold time gets small.
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(a) Profile of a shrinking droplet at various
times.
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(b) Solution to (21) with initial mass M0 = 2.

Figure 4: Simple one-drop system with events.

3.1.2 Events in our system

Numerically, a collapse event is detected if Mi ≤ (Mδ + ϵ1) for some i from the set of
N drops being described by equations (19). At that moment of time, drop i is deleted
from the array, and for all 1 < j < N , j ̸= i, if j < i, drop j is unchanged, and if j > i,
drop j is renumbered to become drop j − 1. After this shifting, the numerical solving
continues with N − 1 pairs of equations.

Ideally, our system would have ϵ1 = 0 because a mass collapse should coincide with

the moment when Mi = Mδ. However, when Mi gets close to this value, ln
(
Mδ
Mi

)
in

(19b) gets arbitrarily large. As mentioned before, the numerical solutions have finite
accuracy, and it is possible that the numerical solutions might overshoot the correct
answer and create problems. For this reason, we consider ϵ1 to be a small positive
threshold so such problems do not arise. By doing this, there will be some small errors
because mass will not necessarily be conserved—droplets are deleted from the system
before they lose all of their mass. However these errors are small and predictable in
size and will decrease when ϵ1 is reduced.

A similar method is used in the case that (Xi+1 −Wi+i)− (Xi +Wi) ≤ ϵ2 for some
small ϵ2 > 0 (Here, ϵ2 > 0 for the same reason ϵ1 > 0). If this threshold is crossed for
any 0 < i < N , this physically means that two adjacent droplet edges are overlapping.
When this occurs, because mass is conserved, the two drops are replaced by a single
drop with mass Mi + Mi+1. To decide the new position of the merged droplet, we
imagine that when the two edges collide, the outer edges stay relatively fixed while the
inside equilibrate from a two-hump drop to a one-hump drop. Once this is done, we
can think of the outer edges adjusting to the new mass. For this reason, we let the
new position of two merged droplets be [5, 11]

Xi,new =
(Xi+1 +Wi+i) + (Xi −Wi)

2
.
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When a merging event occurs, if j > i+1, drop j is renumbered to become drop j− 1,
and we then continue solving the system with N − 1 paired equations. Similarly, the
number of drops in the system after either of the two cases mentioned above will drop
from N to N − 1. We will keep track of these numbers and denote N(t) as the number
of drops remaining in a particular simulation at any given time t where N0 = N(0).

4 A First Look at Simulations

Figure 5, which plots the droplet paths over time of 20 initial droplets, helps give intu-
ition on how these systems coarsen and depend on system parameter values. In figure
5(a), the B parameter is lower and consequently about 75 percent of the events are col-
lapses. On the other hand, in figure 5(b), the B parameter is higher and consequently
only about 25 percent of the events are collapses. We will study this phenomenon in
depth in the next section.
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(a) Droplet paths for simulation with N0 = 20
and periodic boundary conditions with k =
1, B = 5.5.

0 20 40 60 80

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

Position

T
im

e

(b) Droplet paths for simulation with same 20
droplets and periodic boundary conditions with
k = 1, B = 11.

Figure 5: Droplet paths over time with different parameter values.

4.1 Evolution of number of droplets

Over time the number of drops in the simulation will continue to decrease. One question
that immediately arises is how quickly this action will happen. To get an idea, we
plot the number of drops versus time for a simulation with 1000 initial drops with
average mass 1 and average separation distance 5 with periodic boundary conditions.
In particular, the ith drop has initial mass Mi = 1+0.2αi and position Xi = 5i+0.1βi
where αi and βi are uniform random variables on the range [−1, 1] that are different
for each simulation.
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with N0 = 1000 and periodic boundary condi-
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Figure 6: Number of drops over time.

Figure 6(a), the plot of time versus N(t) for this simulation, shows that over time
N(t) seems to trend toward some curve proportional to t−2/5 as found in [5, 10,11].

It is informative to examine is what might change if the initial conditions are mod-
ified. In figure 6(b) we simulate three different initial arrangements of the same drops.
The solid curve “U” corresponds to the simulation with the original unsorted randomly
generated drops. This curve seems to quickly approach a −2/5 power law after some
time (as seen in figure 6(a)). The dashed curve “S” represents the number of drops
remaining in a simulation when the same drops are arranged from smallest to largest
before the solving begins. The drops perish at close to the same rate eventually. How-
ever, initially the sorted drops’ behavior is different. In particular, there is a delay
before it starts to match up with the unsorted simulation.

Lastly, the dotted-dashed curve “A” represents a simulation in which the sorting
aims to create large differences in mass between adjacent droplets (we will call it
alternating sorting). To describe the sorting pattern we first label droplets 1 to N ,
with 1 being the smallest drop and N0 being the largest drop. The sorting then follows
the pattern: N0, 1, N0−2, 3, N0−4, 5, ..., 6, N0−5, 4, N0−3, 2, N0−1. The simulation,
as seen in figure 6(b) shows that relative to the other initial sortings, this sorting causes
drops to perish more quickly at the start. However, soon after this initial decrease, the
simulation experiences a long delay before the number of droplets starts to fall again.
Eventually, however, this simulation approaches the −2/5 power law just like the other
two simulations.

For the linearly sorted droplets, one reason for this delay is that, because the drops
are sorted, they are adjacent to drops with similar mass. From (19) we see that
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smaller differences in the masses of adjacent drops yield smaller fluxes and may tend
to slow down both the mass and position differential equations—the numerators will
be smaller. Once many events happen, however, it is likely that the simulation has
become sufficiently randomized, and will then become uncorrelated with the influence
of the initial ordering.

For the alternating sorting, we see a relatively fast decrease in number of droplets.
Here, the differences in drop masses is large between neighboring drops that are located
at the edges of the domain. From (19) once again, large differences tend to speed up
the dynamics of the system and the small drops quickly perish. However, after these
small droplets are gone, the remaining droplets are large and have similar masses. The
similarity in mass, like in the simulation with linear sorting, slows down the system,
which creates the plateau effect as seen in figure 6(b). Eventually, however, the system
sufficiently randomizes the droplets enough to again become uncorrelated with the
initial ordering.

5 Collapse Ratio

When a drop vanishes into the ultra thin layer, we will call such an event a mass or
collapse event and denote µ(t) as the number of mass events that have occurred in a
simulation up to time t. Otherwise, if the second type of event occurs, we will call it a
collision event and denote σ(t) as the number of droplet collisions that have occurred
up to time t. Clearly at any time the original total number of drops can be partitioned
into N0 = µ(t) + σ(t) + N(t). We will denote the “collapse ratio” as R(t) = µ(t)

µ(t)+σ(t)
and examine this quantity under different conditions.

One question that arises about the collapse ratio is whether there exists time in-
tervals during a drop simulation during which the the collapse ratio differs noticeably
from the collapse ratio over any other interval or over the entire simulation. Generally
it was the case that, in fact, the ratio varied greatly during many different intervals.
When we examine the mass events and the collision events over time, as seen in Figure
7(a) which was a run with 1000 drops with periodic boundary conditions, we see that
collisions appear to level off over time, while collapses continue to occur throughout
the entire droplet simulation.

5.1 Conjecture on the collapse ratio

One possible explanation for this system’s favoring of collapses later is the tendency
for the average distance between drops to increase, leading to less of a chance that
drops will collide. To gain intuition on this, we assume that we can estimate all drops
having equal mass M with drop centers differing by length L (This is never exactly the
case, but should be a good approximation in an average sense). Then, using equation
(13), the average distance between the drops is L− 2

√
3M/2A. If we imagine however

that half of the drops are gone, and drops are equally spaced and have equal mass,
then, because mass is conserved, each drop has mass 2M . However, each drop now has
separation 2L− 2

√
3M/A, or the separation has increased by L− (

√
2− 1)

√
3M/2A.

This increase in separation will make collisions less likely. As drops become larger, the
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ln
(
Mδ
Mi

)
term in equation (19b) becomes larger in absolute value and thus slows down

the movement of drops, contributing to collisions being less likely. Thus, we believe
that this increase in distance and slow-effect outweigh the time needs for the larger
droplet to collapse, causing the trend that the graph shows.

5.2 Time-Independent Intervals

Figure 7(b) shows the collapse ratio during each of 9 intervals of the drop simulation
where the 1st is the first 10 percent of events, the 2nd is the next 10 percent of events,
and so on. This is the average over 10 runs with k = 1 and B = 5 in (19) and with
open boundary conditions. These graphs were generated for multiple values of k and
B. However, they were nearly identical if k and B varied between two different sets of
simulations, but k/B was the same. Thus, from this data, it appears that the collapse
ratio depends only on k/B and not on k and B independently. This can be understood
by rescaling time as t = t̃/B; this would normalize the coefficient in (19b) and give
k/B as the rate coefficient in (19a).
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Figure 7: Collapse ratio over different portions of simulations.

One thing to keep in mind is that even if the number of drops in a simulation
changed, the average collapse ratio looks to stay unchanged during each interval. Be-
cause the choice of 10 percent was arbitrary, we cannot extrapolate too much informa-
tion from the graphs of Figure 7(b), but we certainly observe a general upward trend
that appears to be N0-independent provided that distributions of initial mass and drop
distances have the same mean and variance.
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5.2.1 Moving average

Another way to view this increasing tendency of collapses during a simulation is to
use a moving average. This uses a sliding window that recognizes a certain number of
events and takes the ratio of the events in this window. In figure 8(a) we use data from
a simulation with N0 = 1200, k/B = 1/5 and periodic boundary conditions to create
a moving average with a time window containing 200 events. Here, we see that there
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Figure 8: Collapse ratio-moving average with window of 200, N0 = 1200, with k/B = 1/5.

is still clearly an overall upward trend. However, it does not appear to be increasing
at a constant slope. We hypothesize that the cause of this lies in the distribution of
the droplet masses throughout the simulation—It is not likely that after half of the the
droplet events, the drop masses are uniformly distributed as they were at the beginning
via initial conditions. We believe it is this phenomenon that creates the non-uniform
increase.

5.3 Collapse Ratio Over Entire Simulation

For various values of k and B, the overall collapse ratio was examined for multi-
ple droplet simulations with different initial conditions and boundary conditions. We
found, similar to our finding earlier, that this collapse ratio did not depend on the val-
ues of k and B, but only on the value of k/B. In particular, each circle of Figure 9(a)
represents the average collapse ratio of 10 simulations each with N0 = 250 and initial
conditions of Mi = 1 + 0.1αi and Xi = 5i + 0.1βi where αi and βi are uniform ran-
dom variables on [−1, 1] that are different for each simulation. This was created with
unbounded boundary conditions (an infinitely-long thin layer left of drop 1 and right
of drop N) although the same pattern was found for periodic boundary conditions.
From this graph, it appears that the k/B ratio is a strong predictor of the simulation’s
collapse ratio.
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(a) Logistic function fitted to data. Each data
point corresponds to the average of 10 runs with
N0 = 250.
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(b) Collapse Ratio with different average initial
drop separation distances.

Figure 9: Collapse Ratio Graphs-Over Entire Simulation.

In figure 9(a), we use a variation of the logistic function

F (x) =
eβx

eβx + α
(24)

as a fit for the data. Here β = 25.09 and α = 92.48 and we can think of the overall
collapse ratio R in Figure 9(a) as R = R(tf ) where tf is a time after which nearly all
drops have perished. Although this variant of the logistic function fits very well to this
graph, it is not obvious why this is the case, other than the fact that both the function
and the data have range [0, 1]. For now, we will leave as an open question for future
work if there is a mathematical reason for why this function gives a good fit.

Figure 9(b) shows how the data change when the average distance between each
drop increases. Here, each data point is a single drop simulation with 1000 drops with
average mass 1.1 and average separation length ranging from 5 to 6.6 with increments
of 0.2. The right most curve has average distance 5 while the curves further to the left
represent greater drop separation distances. Clearly as the average distance between
drops increases, collisions become less likely which is what we expected (it is harder
to collide when drops are farther apart). Observing this, an interesting question is if
the collapse ratios over a simulation can be simplified into one curve by using some
scaling for the horizontal axis in the form Mγ

s L
ζ
s(k/B) for some scaling constants γ and

ζ where Ms is the average initial mass and where Ls is the average initial separation
distance.

5.4 Scaling

For different k/B ratios, we run drop simulations with 1000 drops each with initial
average mass ranging from 0.5 to 1.5 in increments of 0.2 and with initial average drop
separation distance ranging from 5.0 to 6.6 in increments of 0.2. In figure 10(a), we see
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that if we scale the horizontal axis as (k/B)L
4/3
s , then the six different initial average

masses each seem to lie on separate curves. Moreover, we see in figure 10(b) that if

we scale the horizontal axis as M−1
s L

4/3
s (k/B) then all 540 simulations collapse onto a

single curve.
The fact that these simulations can be made to lie on a single curve despite differing

initial conditions is very essential to the simplification of the thin-film dynamics prob-
lem. The high number of parameters and initial conditions within the problem creates
enormous complexity. However, if we can understand something like the collapse ratio
in terms of a function that is just determined by initial conditions and parameters, we
can greatly reduce the difficulty of the problem for further work.
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(a) Collapse Ratio graph scaled by initial aver-
age separation distance.
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(b) Collapse Ratio graph scaled by both initial
average separation distance and mass.

Figure 10: Scaled Collapse Ratio.

6 Conclusion

In the general sense, understanding the behavior of fluids through the use of the Navier-
Stokes partial differential equations is extremely complicated. By using simplified and
workable models of the coarsening dynamical system of thin films, we have gained
some insight on some of their important properties in the context of this problem.
Nonetheless, even the simplified models have presented many more questions that we
have yet to answer. For example, we have observed that the k/B is all that matters
(not k or B) when looking at quantities like the collapse ratio. Likewise, we have a good
guess at what causes the trending towards more collapses over collisions throughout
a simulation but we have not been precise with this. In particular, the complicated
behavior in figure 8 suggests that the droplet distribution may be more of a factor in
determining the collapse ratio than we expected. Although many questions still remain
unanswered about this system, we believe that the reductions we have made and the
ideas we have expressed will allow future research on the subject to gain an even better
understanding of these systems.
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