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By Justin Sirignano

The finance literature has historically 
focused on stochastic models and their 

mathematical analysis. However, unlike in 
physics or other sciences, there are no fun-
damental laws in finance (such as Newton’s 
laws) from which to derive models; there-
fore, some assumptions must be made. 
A purely data-driven approach, such as 
machine learning, is potentially superior 
for some applications. Opportunities exist 
for both the development of new machine 
learning models for financial applications 
and the mathematical analysis of these sta-
tistical learning algorithms.

Deep learning, a subfield of machine 
learning that uses “deep neural networks,” 
has achieved state-of-the-art results in fields 
such as image and text recognition. A deep 
neural network is a neural network with 
many hidden layers, which allow it to model 
complex nonlinear functions more effec-
tively than single-layer neural networks. 
Deep learning focuses on the development 
of specific model architectures and train-
ing methods to enhance the performance of 
multilayer neural networks. Deep neural net-

works, which have a large number of param-
eters, are typically trained on large amounts 
of data to avoid overfitting. Training is very 
computationally expensive due to the com-
plexity of the deep neural network model 
and the large amount of data. Models are 
often trained for multiple days on clusters of 
graphics processing units.

Deep learning research has made con-
tinual advances over the last decade. 
Researchers have designed new optimiza-
tion methods (Adam, RMSprop, and others) 
to better train the highly nonconvex neural 
networks. Regularization methods such as 
dropout help reduce overfitting [14], and 
ever deeper neural networks are trained. For 
example, [7] trains a neural network with 
1,000 layers. Deep reinforcement learn-
ing has successfully combined deep neural 
networks with reinforcement learning algo-
rithms to learn complex tasks. For example, 
researchers have trained deep neural net-
works to play a range of Atari video games 
using only the raw pixels from the screen 
(similar to how a human watches the game) 
[10]. An overview of deep learning models 
and methods can be found in [3].

See Deep Learning on page 3

Electricity Demand Response 
and Optimal Contract Theory
By René Aïd, Dylan Possamaï,   
and Nizar Touzi

Part of the equation to achieve the 
2015 United Nations Climate Change 

Conference (COP21) objective of limit-
ing climate change effects to a 2-degree 
Celsius increase relies on the design of car-
bon-free electric systems. According to the 
International Energy Agency’s 2015 report 
on carbon emission from fuel combustion, 
more than a third of the world’s carbon 
emission for energy systems comes from 
power generation. The massive development 
of renewable energy sources worldwide, 
particularly solar and wind power, is help-
ing us reach the COP21 objective. However, 
these sources are simultaneously reshaping 
the management of power systems. 

Decarbonation of Power Systems
Renewable energy sources are non-dis-

patchable and highly intermittent. The root 
mean square of the error forecast for the pro-
duction of a wind farm in six hours can reach 
20% of its installed capacity. These increases 
in uncertainty of power generation have put 
flexibility at the heart of system design for 
large-scale renewable energy sources.

One can increase the flexibility of power 
systems in two possible ways: acting on 
the generation side by adding batteries, or 
acting on the demand side by developing 
new demand response programs. We are 
interested here in the second tool. Many 
Organisation for Economic Co-operation 
and Development countries have made 
significant investments in the development 
of smart meters. Better communication 

with consumers is necessary to implement 
efficient demand-response programs. 45 
million smart meters have already been 
deployed in Italy, Sweden, and Finland; 
there is an ongoing investment of 45 bil-
lion euros to reach the level of 200 mil-
lion appliances in the EU-27, based on 
the European Commission’s Energy 
Efficiency Directive.1 Nevertheless, pro-
posed demand-response schemes are gener-
ally used to shave peak-load demands. The 
need for flexibility in new power systems 
calls for a continuous assessment of large 
variations of net consumption over time 
addressed to the grid.

Recent progress in the theory of incen-
tives and optimal contract allows research-
ers to design mechanisms that adapt demand 
to the flexibility capacity of power systems 
by incentivizing consumers to reduce the 
volatility of their consumption.

Contract Theory and Electricity 
Demand Response

Contract theory is a field of microeconom-
ics that analyses the interaction of economic 
agents linked by contract. This framework 
covers situations as different as relation-
ships between stockholders and managers, 
managers and employees, and land owners 
and farmers. In each case, one side of the 
contract relation—the principal—is looking 
for an incentive mechanism that will lead 
the other side—the agent—to act within the 
principal’s best interests. The problem is 
complicated by the fact that the principal can 
only observe and contract on the results, and 
not on the agent’s efforts. Contract theory 
is thus about finding the optimal incentive 
mechanism to maximize the principal’s util-
ity, while knowing that the agent will take 
advantage of the contract design only in her 

1 https://ec.europa.eu/energy/en/topics/
energy-efficiency/energy-efficiency-directive 
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René Aïd, Dylan Possamaï, and Nizar Touzi.

See Electricity Demand on page 4

Deep Learning 
Models in Finance

On Earth Day, April 22, 150,000 supporters attended the March for Science 
on the National Mall in Washington, D.C. Attendees braved the rain to 

advocate for climate science and evidence-based facts that uphold the common 
good. Satellite marches, rallies, and events took place in 600 cities around the 
world. Read a report of the march by Hans Kaper and Hans Engler on page 8, 
and view additional photos on page 9.

Standing Up for Science

After a morning of speeches, teach-ins, and rallies, March for Science participants 
marched from the Washington Monument to Capitol Hill. Photo credit: Nicholas Higham. 
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Behind the Scenes of SIAM’s Prize Program
And Why You Should Nominate for Prizes
The call for nominations for SIAM priz-

es opened on May 1, as announced by 
the A3 poster included with last month’s 
SIAM News. The open prizes range from 
student and early-career prizes to awards 
recognizing lifetime achievements. Why are 
prizes important, and why should you make 
a nomination?

I see three main reasons. First, prizes 
recognize and reward outstanding accom-
plishments, bringing honor 
to the recipients and their 
departments and institutions. 
Second, they demonstrate 
the importance of their field 
(and of applied mathematics 
in general) to everyone from administrators 
to funders to potential graduate students. 
Third, they help advance careers, especially 
for early career researchers, and can be step-
ping stones to further success.

In order to function successfully, prizes 
need a reasonable number of nominations. 
SIAM’s prize policy1 requires a prize to 
receive a minimum of three new nomina-
tions in response to an open call in order for 
the prize to be awarded, and it directs that 
a prize be terminated if it fails to achieve 
this minimum for two consecutive cycles. 
The message it clear: if a prize is valued, 
the relevant community should ensure that 
nominations are made, or the prize could be 
lost. Ideally, one would hope for two to three 
times the minimum number of  nominations. 
Additionally, the nominations for a healthy 
prize should reflect the pool of eligible 
candidates, in terms of subject area, gen-
der, affiliation (university, lab, or industry), 
geography, and underrepresented groups. 
Ensuring diversity of the nominations helps 
to produce diversity in prize winners.

Prize committees, which select win-
ners, are appointed by the president, or 
for SIAM Activity Group (SIAG) prizes, 
by the SIAG with the approval of the vice 
president at large. In my experience, col-
leagues are generous in volunteering their 
time to serve on prize committees and 
regard it as an honor to be asked.

1  https://www.siam.org/prizes/policy.php

Administering SIAM’s 14 major prizes 
and 25 SIAG prizes is a significant task. 
It involves issuing prize calls; forming 
selection committees; collecting nomina-
tions (including rollovers from previous 
cycles) and checking eligibilities; commu-
nicating this information to the committees 
(hundreds of files are in play in any given 
year); getting recommendations approved; 
and notifying winners. SIAM recently 

invested in prize manage-
ment software to streamline 
these processes. The soft-
ware provides a better way 
for selection committees to 
access nominations, offers 

easy reporting of relevant statistics, and will 
ultimately save staff time.

The vice president at large—currently Ilse 
Ipsen—and the Major Awards Committee 
oversee the SIAM Prize Program. One 
thing I learned during my time as vice 
president at large (2010-2013) is that there 
is always work to do on prizes: tweaking 
specifications, considering proposals for 
new prizes, and so on. This year, we have 
been revising conflict of interest guidelines 
for prize selection committees in order to 
clarify what constitutes a conflict and how 

to handle one. The new guidelines will go to 
the Council for approval at the 2017 Annual 
Meeting in Pittsburgh, Pa., this July.

Some prizes have an associated lecture, 
which provides an opportunity for a con-
ference audience to hear the winner speak 
about his or her work. A prime example is 
the John von Neumann Lecture, SIAM’s 
premier award. At the 2016 Annual Meeting 
in Boston, Mass., last year’s winner, Donald 
Knuth, gave a spellbinding lecture2 on 
the satisfiability problem. Recordings of 
many of these prize lectures are available 
on SIAM Presents,3 which also contains 
recorded plenary invited talks and mini-
symposia from select SIAM conferences 
— most recently from the 2017 SIAM 
Conference on Computational Science and 
Engineering. I encourage readers to make 
use of this excellent resource.

Nicholas Higham is the Richardson 
Professor of Applied Mathematics at the 
University of Manchester. He is the current 
president of SIAM.

2  h t tps : / /www.pa th lms .com/s iam/
courses/3028/sections/4140

3  h t tps : / /www.s iam.org /meet ings /
presents.php

Cartoon created by mathematician John de Pillis.

FROM  THE  SIAM 
PRESIDENT

By Nicholas Higham

Deep Learning Effects in Detroit Auto and Beyond
I ’m a SIAM member and a Ph.D. compu-

tational multibody dynamicist working at 
Detroit Auto and truck transportation. I also 
worked for a company that made a modeling 
and simulation software called 
Adams, fueled and solved by 
former SIAM President C. 
William Gear’s stiff differential 
equation integration algorithm.

I was happy to read Michael Elad’s review 
of deep learning and the growing applica-
tion of success versus governing equation-
controlled results. In the auto world, I call 

this “business” engineering versus “science” 
engineering. Harvard MBA CEOs tend to 
support the former over the latter, and costs 
are the controlling direction. Will this driven 

intention of making huge 
wealth for a small amount 
of people result in over-
turning scientific rigor and 
precise process? And do 

humans learn anything here, or does that 
matter anymore, given the advent of robots 
and autonomous “vehicles of knowledge”? 
I know a lot of low academic types who 

favor the business engineering approach 
and would gladly accept the answer from 
a neural network algorithm. I remember 
this methodology using feedback control 
devices, and I’m sure the concepts are being 
arranged and addressed for future autono-
mous vehicle developments.

Yet, I’m sad to see how science is being 
battered, if not ignored, in the matter. But 
it’s also like the mathematics of finite ele-
ment analysis, where too many degrees of 
freedom are being reduced using a variety 
of projection methods to remove all the 
computational noise, getting to the essential 
mechanics equations that yield the critical 
solutions with great accuracy. In this case, 
the large computational problem is being 
slimmed down. Will this happen in deep 
learning, with its excessive data collection 
and analysis approach?

Very good article provided here by asking 
more about the philosophy of human value 
in what transpires on the planet. I mean at 
what point do humans, even the very rich 
ones, become inconsequential debris in the 
way of much deeper thinkers that are not 
human? Deep learning could be writing a 
new science fiction to fact-scripted plot.

— Al Kovacs, South Lyon, MI

Read Michael Elad’s article, “Deep, Deep 
Trouble,”1 in the May issue of SIAM News.

1  https://sinews.siam.org/Details-Page/
deep-deep-trouble

LETTER TO  
THE  EDITOR 
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Despite the immense success of machine 
learning in other fields, there is very little 
published research on its application to 
finance, and almost none on deep learning.

Applications of Deep         
Learning in Finance

Today, stocks are frequently traded via 
electronic exchanges (e.g., NASDAQ and 
NYSE Arca). Traders continuously submit, 
cancel, and execute buy and sell orders in 
the exchange’s limit order book. Market 
events are often reported at the nanosecond 
granularity, and therefore the limit order 
book data generated over time is very large 
(terabytes to petabytes). Deep learning can 
model key quantities, such as the probability 
distribution of future price movements given 
the current state of supply and demand in 
the market. An example is presented in [11].

The limit order book represents the 
known supply and demand for a stock at 
different price levels at any particular point 
in time. It consists of all existing orders at 
all prices. The “bids” are the buy orders and 
the “asks” are the sell orders. The best ask 
price is the lowest sell order, while the best 
bid price is the highest buy order. The mid-
price (the average of the best bid and best 

ask prices) is often called the “price” of the 
stock. However, it is an artificial quantity, 
since one cannot buy or sell a stock at the 
mid-price. The best ask price and best bid 
price are the actual prices at which one can 
respectively buy or sell the stock.

Figure 1 shows an example of the limit 
order book for Microsoft. The size at level k 
is the number of shares available in the limit 
order book to be bought/sold at k discrete 
price levels from the best ask price. Over 
time, the limit order book (and the best ask 
and best bid prices) will evolve due to new 
limit orders, cancellations, and market orders.

A recent paper [11] trains deep learning 
models to predict the movement of the best 
ask and best bid prices. It uses a dataset of 
489 stocks and tests on a three month out-
of-sample period. The histogram in Figure 
2 shows an example of a neural network’s 
performance gain compared to a logistic 
regression model across the 489 stocks. 
Figure 2 presents the results for predicting 
the next price move of the best ask price. 
See [11] for details.

Another promising application of deep 
learning is for modeling loan risk. [6] 
develops and tests a deep learning model for 
mortgage risk on data from tens of millions 
of loans. Besides loan-level predictions, 
the model can be used to select mortgage 
investment portfolios. Other examples of 
deep learning in finance include [2] and [8].

Mathematical Analysis in Machine 
Learning and Deep Learning

There are also opportunities for the 
mathematical analysis of machine learning 
and deep learning algorithms (not necessar-
ily specific to finance). Although success-
ful in practice, deep learning methods are 

often ad hoc and therefore present an excit-
ing opportunity for more rigorous analysis. 
A recent example is [9], where Stéphane 
Mallat develops a mathematical approach 
to understand the success of deep convolu-
tion neural networks. A convolution neural 
network is a type of neural network archi-
tecture that has proven incredibly success-
ful at image classification. Examples closer 
to the field of mathematical finance include 
[1], [4-6], and [13].

[13] studies stochastic gradient descent 
in continuous time (SGDCT). SGDCT pro-
vides a computationally efficient method 
for statistical learning of continuous-time 
models, which are widely used in finance, 
engineering, and science. The algorithm 
follows a (noisy) descent direction along a 
continuous stream of data. [13] proves con-
vergence of the continuous-time stochastic 
gradient descent algorithm. The analysis 
relies upon describing the parameter behav-
ior for large times using a type of Poisson 
partial differential equation. Besides model 
estimation, SGDCT can also be used for the 
optimization of high-dimensional continu-
ous-time models, such as American options. 
High-dimensional American options have 
been a longstanding computational chal-
lenge in finance. [13] successfully combines 
SGDCT with a deep neural network to solve 
American options in up to 100 dimensions.

Future Opportunities
 There are a broad range of opportuni-

ties for (1) the development of new deep 
learning models and methods for financial 
applications and (2) mathematical analysis 
of these machine learning approaches. It 
is the hope of this article to highlight some 
of these opportunities and encourage future 
research in these areas.
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Figure 2. Increase in out-of-sample accuracy of neural network over logistic regression. Accuracies are measured in percentages. Results are 
depicted for the marginal distribution of the best ask price at the time of the next price move. Image courtesy of [11].

Deep Learning
Continued from page 1

Figure 1. Bid and ask sizes for the first 15 bid and ask prices for Microsoft. Level 0 is the best 
ask price. Image courtesy of [11].
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own interest. Of note is the 2016 Nobel Prize 
in economic sciences, which was awarded to 
Bengt Holmström and Oliver Hart for their 
crucial contribution to the theory of contract 
in continuous time.

We show here how contract theory con-
cepts and methods can help successfully 
design efficient demand-response programs. 
We concentrate on a situation in which the 
principal is a power producer and the agent 
is a consumer. The power producer has to 
satisfy the consumer’s electricity demand for 
the following day. The key variable is the 
deviation from the predicted or baseline elec-
tricity demand; we denote it with X

t
,  where 

t is an instant of the next day. This deviation 
procures a utility to the consumer f X

t
( ).  

Moreover, the consumer can act on this devi-
ation by reducing her mean consumption and 
volatility. In mathematical terms, this means 
that the process X

t
 satisfies the following 

stochastic differential equation:

  
dX a ds b dW

t
a b

i s
i

i
i s s

i,
, ,

,= − +∑ σ

		  (1)

where a
i
 represents the agent’s effort on 

the mean consumption of electricity usage i, 
and b

i
 denotes the effort on the volatility of 

usage i. A positive a
i
 represents a reduction 

of demand on usage i, while b
i
<1  indicates 

a reduction of the volatility of usage i.  
These efforts induce a cost represented by 
the function c a b( , ).

For the producer, the deviation X
t
 gen-

erates an extra cost ( )X>0  or an econo-
my ( ),X<0  denoted g X( ).  Moreover, 
variation of the deviation X

t
 over time 

also induces costs on the producer, whose 
flexibility capacity is limited. Figure 1 
(on page 1) illustrates this point. Both 
consumptions are equal in energy, but the 
blue consumer presents a quadratic varia-

tion 〈 〉 = −∑ +X X X
t

t t
: ( )

1
2  of 650 while 

the
 
red has a quadratic variation of only 12. 

These variations incur a cost on the produc-
er, whose generation plants are not flexible 
enough to follow such erratic behavior. We 
suppose that this cost is proportional to the 
quadratic variation with constant h.

The producer needs to find an incentive 
scheme, denoted x,  that will prompt the 
consumer to reduce the average consump-
tion and its variation. But the producer 
has no knowledge of what is happening 
in the house, being able to merely observe 
the total consumption. The contract x  can 
only depend on the observed values of X 
and not on the efforts a b, .  When exposed 
to x,  the consumer aims to maximise the 
expected utility f X

t
( )  minus the cost of 

effort c a b( , )  plus the payment x.  Namely, 
its purpose is to solve

sup ( ) ( , ) .
,

,[ ( ) ]
a b

T

s
a bf X c a b ds ξ + −∫0  

		  (2)

The optimal controls of consumer a ( )x  
and b ( )x  are functions of the contract 
scheme x.

On the other hand, the objective of the 
producer is to maximise his own utility. In 
mathematical terms, the producer is the fol-
lowing objective function:

      

sup ( )[ (
ξ

ξ U g X ds
T

t
− −∫0



    
(3)   
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where X X
t s
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: ( ), ( )= ξ ξ  represents the 
consumer optimal electricity deviation 
induced by contract x.  The producer first 
has to determine the optimal responses 
a b ( ), ( )x x  of the consumer for any given 
x,  and then generate his own optimization 
knowing these responses. Contract x 's  
dependence on the observation of the whole 
trajectory X complicates the problem. The 
producer will use all the available infor-
mation contained in the variations of X to 
determine whether—and to what extent—
the agent is making an effort, or if the obser-
vations are just subject to random outcomes.

Optimal Contract and      
Numerical Simulation

Possamaï and Touzi, along with Jakša 
Cvitanić, provide a general methodology 
to solve (3). They show that the optimal 
contract can be written as
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t
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where Z and G  are two stochastic processes 
to be chosen by the principal, and H z( , )g  
is the Hamiltonian of the agent:
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This result brings the problem of the prin-
cipal back to a standard stochastic control 
problem, where the objective function is 
given by (3), (4) replaces x,  the controls 
are the two processes Z and G,  and the 
dynamics are given by (2) for X and (4) for 
Y. The principal’s problem thus admits a 
nonlinear partial differential equation rep-
resentation whose solution is approachable 
by numerical techniques.

We illustrate the resulting interaction 
between a producer and a consumer with 
numerical simulations on a one-day period. 
Figure 2 represents the consumption (left) 
and the payment (right) to a rational con-
sumer (blue) who has signed and applied the 
contract, and a passive consumer (red) who 
has signed the contract but not applied it. We 
notice that the rational consumer reduces 
both the deviation and its volatility when 
compared to the passive consumer, mean-
ing that the contract produces the desired 
outcome. Moreover, the rational consumer 
receives a positive payment in all cases, 
while the passive consumer receives no pay-
ments and may face a penalty. As time goes 
by, the expected payment for the passive 
consumer becomes less and less volatile as 
the producer observes the consumption and 
infers that the consumer is making no effort.

Perspectives
The model presented in this article is the 

first step towards a practical implementa-
tion of a demand-response contract at a 
large scale. Indeed, one should consider the 
case when a large number of agents must 
be controlled. Possamaï, Romuald Elie, and 
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Thibaut Mastrolia have already investigated 
the instance of a single principal and a large 
number of agents, indicating that demand-
response could possibly extend to more 
realistic situations. Despite its infancy, our 
model opens the door to the social engineer-
ing of power systems. Indeed, behavioral 
sciences are necessary to provide realistic 
yet tractable models of response function to 
price signals for a large population of con-
sumers. Demand-response is on the list of 
required technologies to achieve an efficient 
zero-carbon electric system, and we hope to 
contribute to its development.

This article is based on René Aïd’s presen-
tation of his joint work with Dylan Possamaï 
and  Nizar Touzi  at  the 2016 SIAM 
Conference  on  Financial Mathematics  and  
Engineering, held last fall in Austin, Texas.
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René Aïd is a professor of financial eco-
nomics at Université Paris-Dauphine. Dylan 
Possamaï is an assistant professor of applied 
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Figure 2. Left. Electricity deviation X   of a rational consumer compared to a passive consumer ˆ.X  Right. Associated payment Y   for the 
rational consumer and Ŷ  for the passive consumer. Image credit: René Aïd, Dylan Possamaï, and Nizar Touzi.

SIAM Committee on Science Policy 
Discusses Priorities in Current Political Climate
By Karthika Swamy Cohen, Miriam 
Quintal, and Eliana Perlmutter

A key objective of SIAM is to promote 
the value of applied mathematics 

research and ensure its application in 
solving real-world problems. To this end, 
the SIAM Committee on Science Policy 
monitors developments in the federal and 
state governments that are of interest to 
SIAM and its members.

The committee meets biannually in 
Washington, D.C., and held its spring 
meeting in April to discuss SIAM policy 
goals and advocate for these priorities in 
Congress. Representatives from relevant 
offices at the National Science Foundation 
(NSF), Department of Energy (DOE), and 
Department of Defense (DoD) offered 

updates on their respective agencies. 
Additionally, the committee met with staff 
in the offices of key members of Congress 
and congressional committees to highlight 
the value of federal investment in applied 
mathematics and scientific computing at 
the NSF, DOE, DoD, and the National 
Institutes of Health (NIH). 

Lewis-Burke Associates, the organiza-
tion that supports SIAM’s government 
affairs in Washington, hosted the meeting. 
They kicked off the session with an over-
view of the latest updates from Washington. 
Representatives from the firm discussed 
the likelihood of an omnibus bill to fund 
government agencies and programs for the 
last five months of fiscal year (FY) 2017, 
which has since been passed by Congress 
and signed into law (Public Law 115-31).  

Despite the cuts proposed by the Trump 
administration, the omnibus increases fed-
eral investments in many research areas. 
Congress appropriated $7.472 billion—
essentially flat funding—for the NSF 
and $5.392 billion for the DOE Office of 
Science, an increase of $42 million, or 0.8 
percent, over the FY 2016 enacted level. 
Advanced scientific computing research at 
the DOE will receive an increase of $26 
million over FY 2016 levels, for a total of 
$647 million for FY 2017. Basic research 
at the DoD was allocated $2.3 billion, a 1.4 
percent decrease from the FY 2016 level. 
The NIH was appropriated $34 billion, 
an increase of $2 billion, or 6.2 percent, 
above the FY 2016 enacted level. In the 
end, the administration relented on its top 
priorities, such as funds for a border wall, 

and increased defense spending to avoid a 
government shutdown.

The president’s full budget proposal 
for FY 2018, anticipated the week of 
May 22nd (after this issue went to press), 
is expected to mirror the skinny budget 
released by the administration in March. 
For projected increases in national secu-
rity, the budget would make steep cuts 
to federal research agencies, targeting 
programs focused primarily on research, 
the environment, international assistance, 
housing, and loans and grants. The propos-
al is expected to diminish DOE research 
programs by $3.1 billion and NIH funding 
by $5.8 billion. NSF and DoD research 
programs have not been discussed pub-
licly by the administration, and the budget 

See Science Policy on page 6
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Nonsmooth Dynamical Systems in Neuroscience
By Wilten Nicola and 		
Sue Ann Campbell

Large-scale models of the human 
brain, which help researchers under-

stand humans’ rich plethora of potential 
behaviours, consist of millions of indi-
vidual neurons coupled into large-scale 
networks. The Blue Brain Project,1 a 
European initiative that utilizes state-of-
the-art computing resources, models large 
circuits of the brain in exquisite detail 
[6]. The Semantic Pointer Architecture 
Unified Network (SPAUN),2 a large func-
tional network of 2.5 million model neu-
rons, can even solve problems from the 
standardized IQ test [2].

1 http://bluebrain.epfl.ch/
2 http://nengo.ca/build-a-brain/spaunvideos/ 

While existing simulations replicate cer-
tain behaviours or experimental observa-
tions and thus provide an important step in 
understanding brain function, exhaustive 
parameter searches, additional simulations, 
and costly computing resources are neces-
sary for real insight. A functional under-
standing of the behaviour of these large-
scale models is needed to comprehend the 
human brain’s internal dynamics.

Fortunately, the macroscopic behaviour 
of large networks of identical (or even het-
erogeneous) subunits is often low-dimen-
sional. We may derive a model, commonly 
called a mean-field or firing rate model, for 
macroscopic behaviour from the large-scale 
model. The derivation of mean-field equa-
tions frequently leads to models with dis-
continuities [3, 7], which arise because—at 
the most fundamental level—neurons have 

two states: quiescence (off) and firing (on). 
Analysis of the mean-field model can yield 
predictions and insights into the large-scale 
network that simulations alone would not 
provide. Prediction of the emergence of 
network-induced behaviour such as burst-
ing, a special type of neuronal oscillation, 
is one such example. We may also derive 
mean-field models from first principles 
using knowledge of the underlying system 
or experimental data [10]. This approach 
helped to create a large-scale brain model 
that focusses on biologically-realistic con-
nectivity [4]. In the mean-field approach, 
firing rate models represent the behaviour 
of a whole population of neurons, and can 
also be used as simplified models for indi-
vidual neurons [3].

Firing rate models have led to applica-
tions both within and beyond neuroscience. 
For example, we can use firing rate equa-
tions to design networks of more compli-
cated model neurons that display arbitrary 
dynamics [8]. This is the fundamental idea 
behind the brain simulator SPAUN; it pres-
ents a powerful potential application in 
the field of neuromorphic research, which 
aims to create engineered physical sys-
tems that process information in a manner 
similar to the human brain. Furthermore, 
networks of nonsmooth firing rate equa-
tions have surged in popularity with the 
growth of machine learning. In particular, 
deep learning uses networks of piecewise-
smooth continuous nonlinearities to train 
large networks to solve what were once 
intractable machine learning problems. 
Examples include AlphaGo’s recent victory 
over world Go champion Lee Sedol [9].

The presence of nonsmooth nonlineari-
ties in the models is the common theme 
of these applications. The analysis of non-
smooth dynamical systems has recently 
undergone rapid expansion due to the prev-
alence of phenomena in mechanical and 
electrical systems most easily explained by 
the assumption of switching behaviour in 
the underlying model [1]. The time is ripe to 

use these tools to understand the nonsmooth 
dynamical systems that arise in neurosci-
ence and related applications.

Nonsmooth Dynamical Systems
An example of a nonsmooth dynami-

cal system is the simple impacting system 
given by the following model:

   x x y F t= − − +2h ( ) 	  (1)
                  

y x=
		   

(2)
            

x t b( ) ,− = ⇒	  			    (3)
x t b y t ry t( ) , ( ) ( ),+ + −= =−

where F t t( ) ( )= sin w  is a simple peri-
odic forcing function for an otherwise linear 
oscillator. Each time the oscillator impacts 
the surface x b= ,  the velocity changes 
discontinuously from y t( )-  to - -r y t( ).  
If we were to remove the impacting bound-
ary, the resulting system could only display 
oscillations. However, an impacting bound-
ary radically alters the dynamical repertoire 
that this system can display, and even allows 
the system to exhibit chaotic behaviours for 
the right parameter regimes (see Figure 1).

In the aforementioned example, the dif-
ferential equation describing the system is 
smooth, but the impulses cause a discon-
tinuous solution of the dynamical system. 
A dynamical system can also be nons-
mooth if the right-hand side of the system 
itself is discontinuous. Such systems are 
defined via a set of differential equations 
with smooth right-hand sides, F

i
,  each 

valid on a different subset, Si,  of the phase 
space. We represent this mathematically as

           x F x µ x S
i i

= ∈( , ), ,            (4)
  i n x µn p= ∈ ∈1,..., , , , 

where we assume that the boundary S
ij

  
between regions S

i
 and S

j
,  common-

ly known as the switching manifold or 
discontinuity boundary [1], is a smooth 

Figure 1. Impact oscillator. 1a. The simple impact oscillator is derived from a cart attached 
to a spring with an external forcing term F t( ).  The equations of motion for the position x t( )  
and velocity x t( )of the cart form a nonsmooth system when accounting for interactions with 
the boundary. The impact oscillator can display behaviours that are not present for the sys-
tem without an impacting boundary, such as chaotic dynamics. 1b. An example attractor. 1c. 
Trajectory on the attractor shown in 1b. Image credit: Wilten Nicola.

Beyond UQ: Dealing with Deep Uncertainty
By Hans Kaper

Most SIAM News readers are famil-
iar with the concept of uncertainty 

quantification (UQ). But when I received 
an invitation to participate in a work-
shop on “Decision Making Under Deep 
Uncertainty,” I was unsure of what made 
“deep uncertainty” special.

The workshop, organized by the 
Society for Decision Making Under Deep 
Uncertainty (DMDU) and officially the 
society’s 2016 Annual Meeting, was host-
ed by the World Bank in Washington, 
D.C., last November. It was preceded by a 
day of training for novices (like me) who 
wanted to learn more about the concepts 
and tools of DMDU.

DMDU differs from UQ. It plays an 
important role in the development of policy 
and business strategy under an extreme 
degree of uncertainty, i.e., when multiple 
plausible alternatives exist that cannot be 
ranked in terms of their perceived likeli-
hood. This incapacity for ranking may be 
due to a lack of data, or a lack of knowledge 
of the mechanisms or functional relation-
ships that govern the behavior of the sys-
tem under consideration. In the worst-case 
scenario, all we know is that we are dealing 
with unknowns. But—and this is the essen-
tial element in DMDU—this ignorance is 
factored into the decision-making process. 
Think of a so-called “black swan” event — 
an event that lies outside the realm of regular 
expectation and is explainable only after the 
fact. Such events are more common than we 
think, and their impact can be catastrophic. 
One example is the level 9.0 earthquake that 

hit Japan in 2011. A tsunami and a nuclear 
catastrophe followed, which then led to sup-
ply chain disruptions (of automobile parts, 
for example) around the world.

UQ’s premise is that uncertainty can be 
reduced, e.g., by gathering more informa-
tion. With DMDU, probabilities are fun-
damentally unknowable and unpredictable. 
Yet decision-makers must make decisions 
under this level of uncertainty, and these 
decisions often concern major infrastruc-
ture projects that have long life spans and 
require significant investments. Consider 
the World Bank and infrastructure projects 
in developing countries.

When faced with uncertainty, decision-
makers generally emphasize one of the 
following:

• Resistance: plan for the worst con-
ceivable case

• Resilience: develop a strategy that 
results in quick recovery after an unan-
ticipated event

• Robustness: develop and implement a 
policy that will perform reasonably well in 
all conceivable situations.

A policy based on resilience does not 
account for black swan events and may 
therefore be costly, while one focused on 
recovery may lead to possibly significant 
short-term losses. A robust policy, on the 
other hand, yields outcomes that are satis-
factory across a wide range of scenarios, 
according to some predetermined assess-
ment criteria. This is in contrast to an 
optimal policy, which may achieve the best 
results among all possible plans but carries 
no guarantee of doing so beyond a narrowly 
defined set of circumstances.

Robust strategies are appropriate when 
uncertainty is deep or decision-makers face 
a rich array of options. Instead of attempting 
to characterize uncertainty in terms of prob-
abilities, as is done in UQ, deep uncertainty 
explores the possible effects of different 
assumptions about future values of the 
uncertain variables for the decisions actual-
ly at hand. As one of the workshop speakers 
noted, if something seems worth doing, it is 
worth doing first superficially. An explor-
atory approach might reveal options and 
provide an initial assessment of pathways 
for future considerations.

Workshop participants presented several 
case studies concerning major infrastruc-
ture projects where decision-makers faced 
deep uncertainty. The projects ranged from 
water and energy systems planning, flood 
risk management, infrastructure develop-
ment, transportation networks, forest man-
agement, and public health to policy nego-
tiations and security cooperation. The most 
important drivers of uncertainty in these 
projects were found to be climate change, 
rising sea levels, population growth, tech-
nology breakthroughs, and social choices.

A pitfall in all of DMDU is so-called “pre-
sentism” — a bias toward the present that too 
often results in “regrets” when prior commit-
ments block decision paths. Another disad-
vantage, especially in the design of dynamic 
adaptive strategies, is a focus on the wrong 
indicators to monitor progress. Presenters 
gave examples where indicators did not align 
with a project’s overall objectives, resulting 
in unintended consequences.

The workshop program also featured 
hands-on sessions about hypothetical deci-

sion-making problems and a fascinating 
plenary TED Talk by Andrew Revkin titled 
“Conveying Wicked Climate and Energy 
Realities in an Uncertain Communication 
Climate.” Revkin was trained as a biolo-
gist but made a career shift to investigative 
journalism. He writes the Dot Earth blog1 
about science and environmental issues for 
The New York Times and recently moved to 
ProPublica, where he focuses on how coun-
tries and companies are—and are not—
responding to climate change.

The workshop left me with some food 
for thought. Did I learn any new math-
ematics? No, but I discovered that DMDU 
touches on several areas of interest to the 
SIAM community, namely UQ and the 
mathematics of planet Earth. Thus, here is 
a new opportunity for collaboration with 
our community, with potentially signifi-
cant benefits for society.

More information about the Society for 
Decision Making Under Deep Uncertainty 
can be found on their website.2

Acknowledgments: Some of the mate-
rial in this article is based on the document 
“Deep Uncertainty” by Warren E. Walker, 
Robert J. Lempert, and Jan H. Kwakkel 
(2016), distributed at the “Decision Making 
Under Deep Uncertainty” workshop.

Hans Kaper, founding chair of SIAG/
MPE and editor-in-chief of SIAM News, 
is an adjunct professor of mathematics at 
Georgetown University.

1  https://dotearth.blogs.nytimes.com/
2  http://www.deepuncertainty.org

See Neuroscience on page 7
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blueprint provides no details on the science 
and technology programs at these agencies.

Congress has the power of the purse to 
control funding levels in appropriations 
bills, and is likely to reject the deep cuts 
proposed by the administration. For exam-
ple, the administration’s budget blueprint 
proposes cutting the NIH by close to $6 
billion, but NIH funding has bipartisan 
support and received a $2 billion increase 
in the omnibus. The most likely appropri-
ations scenario for FY 2018 is a full-year 
continuing resolution (CR), which would 
continue to fund the government at FY 
2017 levels. If Congress is able to pass 
appropriations bills for the next fiscal 
year instead of a CR, evidence indicates 
that such bills would be considerably dif-
ferent from the president’s budget request 
to reflect congressional priorities.  

Barbara Helland, associate director of 
Advanced Scientific Computing Research 
at the DOE Office of Science, updated the 
committee on DOE priorities and chang-
es. She talked at length about the Exascale 
Computing Project (ECP), emphasizing 
the project’s role in providing strategic 
leadership and a foundation for capable 
exascale systems. The ECP identifies and 
supports research ventures to expedite 
applications, software, hardware plat-
forms, and architectures imperative to 
the development of a capable national 
exascale ecosystem to support key DOE 
missions and contribute to the nation’s 
economic competitiveness.

Michael Vogelius, director of the 
Division of Mathematical Sciences (DMS) 
at the NSF, reported on activities in his 
division. As Vogelius is nearing the end 
of his term as division director, he urged 
the mathematical sciences community to 
suggest replacement candidates. The job 
posting is available on USAJOBS.1 

Vogelius described four types of 
solicitations comprised in the DMS 
Workforce Program: Mathematical 
Sciences Postdoctoral Research 
Fellowships, Enriched Doctoral Training 
in the Mathematical Sciences, Research 
Experiences for Undergraduates Sites, 
and Research Training Groups in the 
Mathematical Sciences. He emphasized 
the division’s commitment to continuing 
the mathematics institutes, underscored the 
importance of mathematics in biology, and 
expressed interest in making mathemati-
cal biology more quantitative. He added 
that the DMS is working with the NSF 
Directorate for Biological Sciences (BIO) 
on a new initiative to support collabora-
tions between biologists and mathemati-
cal scientists to advance the NSF “Rules 
of Life” big idea on predicting pheno-
type from genotype and environmental 
inputs. Vogelius also stated his interest 
in involving data science more heavily in 
the DMS portfolio, and noted that the new 
Transdisciplinary Research in Principles of 
Data Science program enhances collabora-
tion on fundamental data science among 
mathematicians, theoretical computer sci-
entists, and statisticians. 

As part of SIAM’s effort to con-
nect with the international applied 
math community, Michael Günther, the 
European Consortium for Mathematics 
in Industry (ECMI) representative 
of the European Service Network of 
Mathematics for Industry and Innovation 
(EU-MATHS-IN), spoke to the commit-
tee. EU-MATHS-IN aims to leverage the 
impact of mathematics on innovations in 
key technologies by fostering commu-
nication among stakeholders in Europe. 
Günther explained that EU-MATHS-IN 
is a unique network of networks with 

1 https://www.usajobs.gov/GetJob/
ViewDetails/468213600?org=NSF  

members in each European country. The 
ECMI—which is itself a network of 97 
institutional members in 22 European 
countries and Israel—focuses on using 
excellent science and industrial leader-
ship to address societal challenges. 

Günther referred to a Deloitte report,2 
which assesses the economic impact of 
mathematics on the Dutch economy at 
the request of the board of Platform 
Wiskunde Nederland, an organization 
representing the Dutch mathematics com-
munity. The Dutch report found that the 
mathematical sciences yield significant 
value for the economy, supporting a quar-
ter of the Dutch national income and 
26% of all jobs in the Netherlands, and 
contributing to 30% of gross value added. 
It also determined that almost a million 
Dutch employees use mathematical sci-
ences, with many occupations requiring 
math as part of daily work routines. The 
report concluded that a coordinated effort 
is needed to enhance cooperation between 
mathematics and business/society.

2 http://euro-math-soc.eu/system/files/
uploads/DeloitteNL.pdf

Frederica Darema, director of the 
Air Force Office of Scientific Research 
(AFOSR), updated committee members on 
her office, framing the AFOSR as the 
“NSF for the Department of Defense.” She 
described the agency’s “find, fund, for-
ward” mission, explaining that the AFOSR 
aims to identify breakthrough research 
opportunities, foster evolution of all basic 
research for AFOSR needs, and transi-
tion technologies to the DoD and indus-
try. Program ideas are shaped by program 
managers, professional societies, and the 
community, she said. Darema spoke of the 
36 programs in the basic research division 
and 20 programs in the international office. 
The current emphasis includes programs on 
computational biology, quantum biology, 
and quantum computing.  

On the second day of the meeting, 
members of the committee met with staff 
from key congressional offices to convey 
support for robust federal investment in 
applied mathematics and computational 
science. Discussion included the impor-
tance of basic research through the NSF, 
the DOE, the DoD, and the NIH, as well as 
the role of applied mathematics and compu-

tational sciences in strengthening national 
security and preserving U.S. leadership in 
biomedical research, energy science, and 
computing capabilities.

Interested in learning more about the 
future of science and math under the Trump 
administration? Attend a minisymposium 
on Thursday, July 13th at the SIAM Annual 
Meeting, during which speakers from the 
National Science Foundation, Department 
of Energy, and Department of Defense will 
analyze the current administration’s plans 
for implementation of national priorities 
and the potential contributions of major 
mathematics funding agencies.3 Lewis-
Burke will also be present to answer ques-
tions about the Trump administration and 
moderate the session.

Karthika Swamy Cohen is the managing 
editor of SIAM News. Miriam Quintal is 
SIAM’s Washington liaison at Lewis-Burke 
Associates LLC. Eliana Perlmutter is a 
Legislative Research Assistant at Lewis-
Burke Associates LLC.

3  http://meetings.siam.org/sess/dsp_
programsess.cfm?SESSIONCODE=62405
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( )n-1  dimensional manifold. Unlike more 
standard differential equations, nonsmooth 
differential equations can display differ-
ent degrees of “nonsmoothness.” We clas-
sify the systems by the right-hand side’s 
smoothness, or equivalently, the solu-
tions’ smoothness as they pass through the 
switching manifold. In Filippov systems, 
the solutions are continuous but have dis-
continuous time derivatives; in piecewise 
smooth-continuous (PWSC) systems, the 
discontinuity arises in the second order or 
higher time derivatives [1].

Nonsmooth systems described by (4) 
often display novel and exotic dynami-
cal behaviours and bifurcations that the 
underlying smooth systems (which are 
separated by the switching manifold) can-
not display themselves. While the current 
literature classifying and describing these 
nonsmooth dynamical behaviours is exten-
sive [1], much work remains to generate a 
general bifurcation theory of nonsmooth 
dynamical systems that is as applicable and 
illuminating as the theory for smooth ones.

Nonsmooth Dynamics and 
Bifurcations in Neural Models

Depending on the underlying model, 
the dynamics of a single neuron can be 
quite complicated. Thus, the analysis of a 
network of neurons’ dynamical repertoire 
quickly becomes intractable. However, we 
can formally derive a low-dimensional 
system of differential equations describ-
ing the network behaviour in the large 
network or thermodynamic limit [3, 7, 
10]. Due to their low dimensionality, these 
equations—called a mean-field model or 
firing rate model—are often much more 
tractable than the original network of neu-
rons. Derivation of such a model from 
the original network is usually predictive 
of the behaviour of a sufficiently large 

network of model neurons. The bifurca-
tion that causes the neuron to change 
from quiescence (a steady state equilib-
rium) to spiking (an oscillatory behaviour) 
plays a key role in these low-dimensional 
approximations, and can be represented 
by firing rate function f I( ),  which gives 
the frequency of the oscillation as a func-
tion of the current input into the neuron. 
When these curves are often nonsmooth 
(see Figures 2a and 2c), the resulting mean 
field or firing rate model is a nonsmooth 
dynamical system.

Consider a generic network of type I 
model neurons, i.e., neurons that undergo a 
saddle-node on invariant circle (SNIC) bifur-
cation in their transition from quiescence to 
firing. Under appropriate conditions, we can 
formally show that the resulting mean-field 
model is approximately given by:
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with a

ij  determined by the parameters 
of the original model neurons [7]. The 
variables s  and w  correspond to network 
average values of currents in the neurons. 
In particular, s  corresponds to excitatory 
synaptic coupling and w  to inhibitory self-
coupling, commonly referred to as spike 
frequency adaptation.

The system of equations governed by (5)-
(6) is PWSC. A pair of local, nonsmooth, 
codimension 2 bifurcation points largely 
determines the entire bifurcation structure 
of this system. These points correspond 
to the collision of a saddle-node and Hopf 
bifurcation equilibrium point with switch-
ing manifold, H s w( , ) ,= 0  respectively. 

As such, they act as organizing centers 
from which smooth saddle-node and sub-
critical Andronov-Hopf bifurcations and 
several nonsmooth, codimension 1 bifur-
cations emerge. This system also exhibits 
interesting nonsmooth limit cycle bifurca-
tions, such as when a limit cycle becomes 
homoclinic with a boundary equilibrium 
bifurcation point [7] (see Figure 2b).

We can also derive a nonsmooth mean-
field system using a Heaviside step function 
for the nonlinearities in the classic Wilson-
Cowan model [10], leading to the following 
equations [5]:

				     (8)
 

′ = − + + +u u f u v( )a a
0 1

 
				     (9)τ β β′ = − + + +v v f u v( )

0 1      

 			                   (10)
       
f x

x

x
( )

.
=

>
<








1 0

0 0

Unlike system (5)-(6), which only 
has a single switching manifold, equa-
tions (8)-(9) have a pair of switch-
ing manifolds (a a

0 1
0+ + =u v  and 

b b
0 1

0+ + =u v ).  Here we interpret the 
variables u  and v  as the firing rates of two 
groups of neurons in the network (excit-
atory and inhibitory neurons, respectively).

System (8)-(9) is a Filippov system. 
In one of the first analyses of a system 
with multiple switching manifolds, [5] 
demonstrates the existence of a nonsmooth 
analogue of the Hopf bifurcation occur-
ring at the intersection points of these two 
switching manifolds for critical values of 
time constant t t=

HB
.  Furthermore, the 

authors illustrate the existence of nons-
mooth analogues to the homoclinic and 
SNIC bifurcations.

Besides demonstrating interesting and 
novel nonsmooth bifurcations, the analy-
sis of systems (5)-(6) and (8)-(9) yields 
substantial insights into the behaviour 
of the underlying neuron networks. We 
derived system (5)-(6) from a network of 
model neurons; simulations of the large 
network model [7] directly demonstrated 
the nonsmooth bifurcations. For exam-
ple, the emergence of a nonsmooth limit 
cycle in the mean field model predicts 
when bursting will emerge in the net-
work. System (8)-(9) demonstrates a link 
between the pseudo-focus occurring at the 
intersection of two switching manifolds 
and the inhibitory stabilized network 
(ISN) state [5] (see Figures 2c and 2d). 
In this state, feedback inhibition balances 
strong recurrent excitation to maintain 
stability. As we vary the parameters in the 
model equations, the ISN state loses sta-

bility via the nonsmooth Hopf analogue. 
Thus, nonsmooth analysis of these sys-
tems can yield substantial insights into the 
functioning of networks of neurons while 
simultaneously expanding the theory of 
nonsmooth dynamical systems.
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Figure 2. Nonsmooth neural model examples. 2a. The firing rate curve for type-I excitability 
often has a square-root type discontinuity. This leads to mean-field equations that are piecewise 
smooth-continuous (PWSC). 2b. The resulting mean-field systems display novel nonsmooth 
bifurcations, such as a saddle node on invariant circle (SNIC) boundary equilibrium bifurcation 
where a nonsmooth fold bifurcation collides with a nonsmooth limit cycle. 2c. A Heaviside 
function often approximates the firing rate curve for the Wilson-Cowan equations. This trans-
forms the Wilson-Cowan equations into a Filippov system. 2d. The Filippov system features 
an intersection of two switching manifolds, which creates a new equilibrium in the plane. This 
equilibrium corresponds to the inhibitory stabilized network state in the related biological neural 
network. Image credit: Wilten Nicola.
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Counting Crowds at the National Mathematics Festival
By Blake Reichmuth, Ratna Khatri, 
Rachel Neville, and Suzanne Weekes

The National Mathematics Festival, 
held on April 22 in Washington, D.C., 

brought an incredible mixture of education, 
entertainment, mathematics, and science to 
the nation’s capital. The festival was orga-
nized by the Mathematical Sciences Research 
Institute, in cooperation with the Institute for 
Advanced Study and the National Museum 
of Mathematics. Events included more than 
a dozen short films, games and activities for 
younger audiences, geometric balloon bend-
ing, and over 50 presentations ranging from 
standup mathematics comedy and magic to 
quantitative analysis and hurricane storm 
surge modeling. However, the long duration 
of the event, use of multiple entrances at 
the venue, and lack of tracking due to free 
admission made estimating the number of 
individual attendees quite a challenge.

The Festivals Working Group of the 
SIAM Education Committee, comprising 
of three graduate student leaders of SIAM 
student chapters—all pursuing Ph.D.s in 
applied mathematics—were tasked with the 
responsibility of orchestrating the crowd 
counting. Team chair Rachel Neville 
(Colorado State University), Ratna Khatri 
(George Mason University), and Chong 
Wang (George Washington University) 
recruited graduate and undergraduate stu-
dent volunteers from their three respective 
schools, as well as Shippensburg University. 
Volunteers stood out in the crowd thanks 
to special SIAM buttons pinned to their 
National Math Festival shirts.

The total count of attendees at this year’s 
festival was an estimated M unique indi-
viduals.1 The team settled on this estimate 
using a step-by-step process. Volunteers 
took cell phone pictures of crowds from 
various vantage points with the help of 
67-inch selfie sticks. They snapped photos 
of attendees in assigned rooms, hallways, 
and concourses every hour for the duration 
of the festival. After these pictures were col-
lected and heads counted, the total number 
of heads counted, i.e., “people hours” — an 

approximation to # ( )
0

T

t dtò people  was 

calculated to be 20,350.
The team then set to work determining 

the number of unique individuals attending 
the event by filtering out people accounted 
for in earlier tallies. During their off hours, 
SIAM volunteers polled the crowd to get 
a sense of how long attendees expected 
to stay. This polling information on atten-

dance duration offered insights into the 
number of people who would appear more 
than once in the hourly photos. 

Let us consider the process in more detail. 
Take the “hour 1” count of the number of 
people in attendance. The distribution of 
predicted attendance times allows us to 
estimate the number of these people who 
would show up in each of the later photos. 
The number of new people in the second 
round of photos is the “hour 2” head count 
minus the number of heads we estimate were 
already present in the first count, i.e., those 
folks who indicated they were staying at the 

1 Since crowd counts cause so much contro-
versy these days, we will leave this as just M.

festival for more than an hour. The number 
of new people at “hour 3” is the head count 
at hour 3 minus both those people who 
arrived in time for the hour 2 photos and 
stayed at the festival for longer than an hour, 
and the hour 1 people who stayed at least 
two hours. And so on. The number of people 
who attended the festival is the total of all 
the new people present in the hourly photos.

In mathematical terms, let h
k

 be the 
number of individuals that have joined 
the crowd between hour k-1  and hour 
k, and let’s define h max h

k k
= ( , ).0  Let 

H
k

 be the total number of people counted 
at hour k. Then h

0
0= ,  and h H

1 1
=  is 

the total number of attendees that entered 
the festival from the time the festival 
began to the moment the first pictures 
were taken. Therefore, h H h

2 2 1 1
= − d  ,  

where d
k

 is the fraction of people that 
plan to stay more than k hours, according 
to our polling of attendance times. Next, 
h H h h
3 3 2 1 1 2
= − +( )d d   is the approximate 

number of new attendees between the sec-

ond and third hour of the festival. In gen-
eral, h H h

n n i
n

n i i
= − =

−
−Σ

1
1d   and the total 

number of unique individuals who attended 
the festival, h h

i
* .= Σ  We assume that 

d
k

 is not time-dependent, whereas in real-
ity the fraction of people who plan to stay 
two+ hours will certainly be smaller near 
closing time than in the early hours of the 
festival. While our process is only an esti-
mate, we do believe it provides a good start 
to determining the number of attendees at 
this year’s National Math Festival.

If you happen to be one of those indi-
viduals who attended and enjoyed the 
event, we hope you were able to keep 
your balloon-edged cube or tetrahedron 
safe from sharp corners, like those of your 
business card tetrahedra. Or perhaps you 
were able to meet famous mathematicians 
and science media experts. Either way, the 
festival will return in two years packed 
with math fun for all ages.

Blake Reichmuth is a master’s student 
in mathematical sciences at George Mason 
University. He is a member of the AMS, 
the MAA, and the AWM and SIAM student 
chapters. Ratna Khatri is an applied math-
ematics Ph.D. student at George Mason 
University. She is an active member of the 
university’s AWM and SIAM student chap-
ters. Rachel Neville will receive her Ph.D. 
in applied topology from Colorado State 
University this June, and will begin her 
position as the Hanno Rund Postdoctoral 
Research Associate at the University of 
Arizona in the fall. She is chair of the 
Festivals Working Group of the SIAM 
Education Committee. Suzanne Weekes 
is professor of mathematical sciences at 
Worcester Polytechnic Institute. She is 
chair of the SIAM Education Committee.

From left to right: Chong Wang (George Washington University), team chair Rachel Neville 
(Colorado State University), and Ratna Khatri (George Mason University) comprised the 
Festivals Working Group of the SIAM Education Committee at the National Mathematics 
Festival. Photo credit: Steven Neville.

Student volunteers at the National Mathematics Festival snapped photos of crowds to esti-
mate the total number of attendees. Photo used with permission.

Special SIAM buttons identified student 
crowd-counting volunteers. Photo credit: 
Ratna Khatri.

Marching for Science
By Hans Kaper and Hans Engler

On April 22, science went public in a 
major way. For the first time, thou-

sands of scientists gathered in Washington, 
D.C., and transformed Earth Day into a 
tribute to science.

The concept of a March for Science1 
originated in social media discussions, 
similarly to the Women’s March on 
Washington in January. Support grew rap-
idly. The American Association for the 
Advancement of Science (AAAS) part-
nered with the march, which evolved into a 
mass movement within the scientific com-
munity in the U.S. and around the world. 
Numerous professional organizations, 
including SIAM, endorsed the goals of 
the march: to call for science that upholds 
the common good and for political leaders 
and policy makers to enact evidence-based 
policies in the public interest. What started 
locally grew into a global phenomenon, 
with events held in more than 600 cities 
on six continents. The following are some 

1  https://satellites.marchforscience.com/

of our impressions of the events that took 
place in Washington, D.C.

At an early morning pre-rally at AAAS 
headquarters, AAAS CEO Rush Holt—
former Democratic congressman from N.J. 
who holds a Ph.D. in physics—introduced 
representatives of professional societ-
ies involved in the march’s organization, 
such as the American Geophysical Union, 
Oceanographic Society, American Physical 
Society, and Optical Society, among oth-
ers. He also acknowledged numerous 
noteworthy attendees, including William 
Phillips (National Institute of Standards 
and Technology, 1997 Nobel Laureate in 
Physics), Shirley Malcolm (director of 
Education and Human Resources, AAAS), 
and Congressman Bill Foster (D-IL, the 
only Ph.D. scientist remaining in the U.S. 
Congress).

The rally itself kicked off at 10 a.m. at 
the Washington Monument on the National 
Mall. The four-hour program featured an 
impressive lineup of prominent speakers 
representing a broad range of ages, back-
grounds, and expertise, including Denis 
Hayes (co-founder of the first Earth Day 

in 1970), Bill Nye the Science Guy, and 
YouTube star Tyler DeWitt. The program 
concluded with a Twitter message from 
none other than Pope Francis.

The collective events offered several 
powerful take-home messages, some of 
which we outline here. Science is at a criti-
cal juncture. The scientific method is under 
attack, and individuals and interests with 
the power to do real harm are threaten-
ing the very idea of evidence, logic, and 
reason. We, as members of the scientific 
community, must go public and explain our 
work to general audiences. It behooves us 
to make people aware of our research and 
its benefits to society. Scientists should talk 
to people, instead of at them. We should 
not complain about slashed funding if we 
cannot tell taxpayers why science matters.

Following the rally, the crowd marched 
down Constitution Avenue, from the 
Washington Monument to the foot of 
Capitol Hill. While a rally is more or less a 
static affair, participants of the march dem-
onstrated solidarity — vocally by chanting 
in unison or in waves along the parade 

route, and visually by showing off their 
signs. Here are some of our favorites:

•  Science, not silence
•  Oceans are rising, and so are we 
•  There is no Planet B
•  In peer review we trust
•  Make America think again
•  Alternative facts are not statistically  
   significant
•  Science cures alternative facts
•  Empirical data trump imperial alt-facts 
•  No beer without science
Favorable weather forecasts earlier in the 

week took a turn for the worse, and march 
day turned out to be soggy and wet. Still, 
most people endured and kept their spirits 
high. Although we were all soaked at the 
end of the day, it felt good to have been part 
of this unprecedented event.

Hans Kaper, founding chair of SIAG/MPE 
and editor-in-chief of SIAM News, is an adjunct 
professor of mathematics at Georgetown 
University. Hans Engler is a professor of 
mathematics at Georgetown University. He 
currently chairs the SIAM activity group on 
Mathematics of Planet Earth.
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March for Science participants displayed creative signs conveying the relevance and 
significance of scientific research to the public interest. Photo credit: Hans Kaper.

Snapshots from Earth Day in Washington, D.C.

Approximately 150,000 people attended the March for Science in Washington, D.C., on Earth Day, 
April 22. The event began with speeches, teach-ins, and rallies, and concluded with a march from 
the Washington Monument to Capitol Hill. Photo credit: Nicholas Higham.

Attendees of the March for Science braved the rain during the afternoon trek down the 
National Mall. Photo credit: Nicholas Higham.

Participants of the March for Science came out in full force to defend the role of science in policy 
and society. Photo credit: Nicholas Higham.

National Mathematics Festival guests celebrated math with geometric sculptures. Photo 
credit: Nicholas Higham.Attendees of the National Math Festival, held in Washington, D.C., on April 22, enjoyed magic tricks 

that utilized math. Photo credit: Nicholas Higham.

Children used tri-string wands to make large bubbles at the National Math Festival. Photo 
credit: Nicholas Higham.

A hands-on ‘obstacle’ course at the National Math Festival required participants to shoot giant 
vortex smoke rings out of trash cans. Photo credit: Nicholas Higham.
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The Business of Hedges, Bets, and Blackjack 
The Life and Career of Edward Thorp

A Man for All Markets: From Las 
Vegas to Wall Street, How I Beat the 
Dealer and the Market. By Edward O. 
Thorp. Random House, New York, NY, 
January 2017. 416 pages, $30.00.

The basic details of Edward O. Thorp’s 
legendary career are well known. As a 

postdoctoral instructor at the Massachusetts 
Institute of Technology (MIT), he pro-
grammed the school’s brand-new IBM 
704 computer—in the then-brand-new 
FORTRAN language—to calculate the odds 
of winning a hand of blackjack dealt from 
an incomplete deck. Following coverage of 
the feat in both Sports Illustrated and Life 
magazine, Thorp’s book Beat the Dealer 
became a New York Times best seller, 
heightening interest in casino blackjack 
for years to come. Not long thereafter, in 
collaboration with Claude Shannon, Thorp 
developed a “wearable computer” that 
enabled the pair—working as a team—to 
beat the house at roulette. Rather than pur-
sue that opportunity, however, the two part-
ed ways, focusing separately on Wall Street: 
the biggest casino of all. In 2014, Celebrity 
Net Worth1 placed Thorp at number 36 on 
its list of 50 richest hedge fund managers, 
with a fortune estimated at $800 million.

A Man for All Markets describes Thorp’s 
struggle, as a child of the Great Depression, 
to attend college, much less forge an aca-
demic career. Learning first to count and 
then to read, young Edward was devouring 
classics such as Treasure Island, Gulliver’s 
Travels, and King Arthur and the Knights 
of the Round Table by age six. When chal-
lenged by a stranger amused to find one so 

1  www.thecelebworth.com

young in possession of Charles Dickens’ 
A Child’s History of England, the prodigy 
responded by naming every English mon-
arch from King Arthur through 
Queen Victoria.

The Thorp family moved from 
Chicago to Lomita, Calif., on the 
eve of World War II, in search 
of factory work. With both of his parents 
working long hours, Thorp was obliged to 
find his own amusement outside of school. 
Increasingly, he 
found it in science.

Thorp won 
California’s com-
petitive high school 
physics exam, enti-
tling him to first 
pick among the 
scholarships offered 
that year by in-
state institutions. 
He started school 
at the University of 
California, Berkeley 
as a chemistry 
major in the fall of 
1950, but switched 
to physics after 
one semester and 
soon transferred 
to the University 
of California, Los 
Angeles (UCLA) to 
be closer to home.

Despite receiv-
ing a scholarship to 
Columbia University, Thorp remained at 
UCLA upon graduation due to financial 
reasons, quickly completing his masters 
and the course work for a Ph.D. He mar-

ried his undergraduate classmate Vivian 
Sinetar and embarked on a thesis regard-
ing the shell structure of atomic nuclei, 

which required a number 
of advanced math courses. 
Ultimately, this prompted a 
switch to mathematics, and a 
thesis pertaining to compact 

operators on Banach spaces.
Following the completion of his thesis at 

UCLA in 1958, Thorp worked there as an 
instructor for a year. 
Because Las Vegas 
offered packages 
that included cheap 
lodging, meals, and 
A-list entertainment, 
he and Vivian decid-
ed to vacation there 
during Christmas 
break. Having long 
believed it possible 
to develop a winning 
strategy for roulette, 
Thorp planned to 
use the visit to con-
duct feasibility stud-
ies. Before leaving, 
however, he learned 
of a recently pub-
lished strategy for 
blackjack. Devised 
by four army math-
ematicians led by 
Roger Baldwin 
using desktop cal-
culating machines 

during World War II, it reduced the odds 
favoring the house to a mere 0.62, substan-
tially lower than any other game in town. 
In the process of losing $8.50 of his $10.00 

stake while following an abbreviated form 
of the Baldwin strategy, Thorp became 
hooked on blackjack.

Back in Los Angeles, Thorp located the 
journal article describing the strategy and 
experienced an immediate “ah-ha” moment. 
He realized that all the probabilities in the 
article had been calculated as if each hand 
was dealt from a fresh, randomly-shuffled 
deck, whereas casino hands were typically 
dealt from depleted decks, devoid of the 
most recently played cards. Depending on 
which cards were missing, a depleted deck 
could be more or less favorable to the house 
than a fresh deck. And by betting heavily 
when the deck is in the players’ favor, and 
lightly (if at all) when it isn’t, an individual 
can expect to win in the long run. The only 
remaining questions were which depleted 
decks were favorable to whom, and how to 
recognize the promising ones in real time.

Arriving at MIT in the fall of 1959, Thorp 
was pleased to discover that the school’s 
IBM 704 could carry out a thousand man-
years of routine calculations in a mere ten 
minutes of run time. Yet his work was 
still frustrating; results took two to three 
days after a job (deck of punched cards) 
was placed in the queue. Thorp’s first 
discovery, made by avoiding some of the 
approximations used by the Baldwin team, 
was that their strategy actually reduced2 
the house advantage to a mere 0.21! His 
second was that the 48-card deck missing 

2  Around 1980, as computers became 
powerful enough to require no approxima-
tions, researchers discovered that the Baldwin 
strategy actually placed the house at a 0.13 
disadvantage, even without counting cards!

A Man for All Markets: From Las Vegas to Wall 
Street, How I Beat the Dealer and the Market. By 
Edward O. Thorp. Courtesy of Random House.  

BOOK REVIEW
By James Case

See Bets and Blackjack on page 12
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Professional Opportunities 
and Announcements

The California Institute of Technology
Department of Computing and 
Mathematical Sciences

The Department of Computing and 
Mathematical Sciences (CMS) at the California 
Institute of Technology invites applications for 
the position of lecturer in computing and math-
ematical sciences. This is a (non-tenure-track) 
career teaching position, with full-time teaching 
responsibilities. The start date for the position is 
ideally September 1, 2017, and the initial term of 
appointment can be up to three years.

The lecturer will teach introductory computer 
science courses, including data structures, algo-
rithms, and software engineering, and will work 
closely with the CMS faculty on instructional 
matters. The ability to teach intermediate-level 
undergraduate courses in areas such as software 
engineering, computing systems, and/or compil-

ers is desired. The lecturer may also assist in 
other aspects of the undergraduate program, 
including curriculum development, academic 
advising, and monitoring research projects. The 
lecturer must have a track record of excellence in 
teaching computer science to undergraduates. In 
addition, the lecturer will have opportunities to 
participate in research projects in the department. 
An advanced degree in computer science or a 
related field is desired but not required.

Applications will be accepted on an ongoing 
basis until the position is filled.

Please view the application instructions and 
apply online at https://applications.caltech.edu/
job/cmslect.

The California Institute of Technology is an 
Equal Opportunity/Affirmative Action Employer. 
Women, minorities, veterans, and disabled per-
sons are encouraged to apply.    

Foucault’s Pendulum with a Twist
While teaching a mechanics course, 

I stumbled upon the following amusing 
observation. It is well known that small-
amplitude trajectories of a pendulum are 
approximately ellipses (see Figure 1). 
Indeed, the linearized equations for the 
( , )x y  coordinates of the bob are

 
 		                   	  (1)                    


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x x

y y
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= −
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ω
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or

         
r r r=− =〈 〉ω2 , , ,x y

with ω2=g L/ ;  g  is the gravitational acceler-
ation and L is the length of the pendulum. The 
general solution is x a t b t= +cos sin ,ω ω  
y c t d t= +cos sin .ω ω  This is a paramet-
ric representation of an ellipse centered 
at the origin. Indeed, ( , )x y  is the image 
of the unit circle (cos , sin )w wt t  under 
the linear map whose matrix has elements 
a b c d, , , .  Figure 2 illustrates the three 
types of motions.

Now, let’s put ourselves in a frame cen-
tered at the origin and rotating with angular 
velocity w,  where w  is the same as above: 
the frequency of the pendulum. How will 
the elliptical motions of the pendulum look 
in this new frame?

Perhaps surprisingly, the answer is circu-
lar, and with a constant speed. Moreover, 
the angular velocity of these circular 
motions is 2w,  twice the frequency of the 
pendulum (see Figure 3). The circle passes 
through the origin precisely if the angular 
momentum is zero. And the circle in the 
rotating frame is centered at the origin if the 
ellipse in the inertial frame is a circle.

Here are two explanations of this phe-
nomenon, from two different angles.

Explanation 1. This explanation is 

based on the observation that 
any solution of r r= −ω2  is 
a combination of two circular 
motions, one counterclockwise 
and the other clockwise. In 
complex notation r= +x iy,  
the general solution is

            r= + −Ae Bei t i tω ω ,

where A and B are arbitrary complex con-
stants. It follows that the solution in the 
rotating frame is

	       A Be i t+ −2 ω ,

as claimed.
Explanation 2. In addition to the restor-

ing force, the bob in the rotating frame 
perceives two additional inertial (ficti-
tious) forces acting on it: the centrifugal 
force w2R,  where R  is the bob’s position 
expressed in the rotating frame, and the 
Coriolis force −2iω R.  The apparent accel-
eration is thus the sum of the two inertial 
forces and the forces of the spring:

 
 
  R R R R R=− + − =−ω ω ω ω2 2 2 2i i
		  (2)

(formally, one obtains (2) by substituting 
r R= ei tω  into r r=−ω2  and simplify-
ing). Note that the centrifugal force cancels 
the restoring force!

According to (2), the particle in the rotat-
ing frame is subject to the force normal to 
its velocity, same as the Lorentz force on 
a charged particle in the magnetic field of 
magnitude 2w  and normal to the plane. This 
demonstrates that the trajectories are circles 
(just as the trajectories of a charged particle 
are in the constant magnetic field perpen-
dicular to the plane of the particle’s motion).

Interestingly, passage to the rotating 
frame replaces the Hookean force by the 
Coriolis force, as just indicated.

The above equivalence 
is reversible; we con-
clude that the particle in 
a constant magnetic field, 
viewed in an appropriate-
ly rotating frame, behaves 
exactly as the planar har-
monic oscillator (1).

 I end with a tongue-
in-cheek application to 
the Foucault pendulum, 
mounted over the North 
Pole. Wishing to match 

the pendulum’s frequency to 
Earth’s angular velocity, we 
choose the length L to satisfy

  g L/
,

;=
⋅
2

24 3 600
π

    
     

this gives L » 1 176, miles. A Foucault 
pendulum of this length, mounted over the 

North Pole, will execute circular motions 
of the type shown in Figure 3, making one 
revolution in 12 hours — provided that we 
raise the suspension point by, say, 100 miles 
to take the bob out of the atmosphere and 
prevent viscous drag. On a more realistic 
note, to observe this effect on a carousel 
making one revolution in six seconds, the 
length of the pendulum must be around 10 
meters.

A more detailed discussion of this prob-
lem can be found in [1].

The figures in this article were provided 
by the author.
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Figure 1. A small-amplitude motion of a 
spherical pendulum.

Figure 2. Elliptical trajectories of (1) with negative, zero, and posi-
tive angular momentum respectively.

Figure 3. Trajectories in the frame rotating counterclockwise with angular velocity w,  with 
negative (A), zero (B), and positive (C) angular momenta. The lengths a and b in (A) are the 
semiaxes of the ellipse in Figure 2.

MATHEMATICAL 
CURIOSITIES
By Mark Levi

James H. Wilkinson Prize
Lek-Heng Lim has been awarded the James 

H. Wilkinson Prize in Numerical Analysis 
and Scientific Computing. He was educated at 
Stanford University, the University of Cambridge, 
Cornell University, and the National University 
of Singapore. Lim was a Morrey Visiting 
Assistant Professor at the University of California, 
Berkeley and thereafter an assistant professor at 
the University of Chicago. He has received an 
AFOSR Young Investigator Award, a DARPA 
Young Faculty Award, an NSF Faculty Early 
Career Award, a Smale Prize from the Foundations 
of Computational Mathematics Society, and a 
Director’s Fellowship from DARPA.

“Looking at the list of past winners, I am deeply 
honored and humbled that the prize committee 
decided I belong on this list,” Lim said. “SIAM 
President Nick Higham’s email informing me of the prize came as a very pleasant sur-
prise. I am extremely grateful to the people who kindly nominated me.” 

Lim went on to describe an aspect of his research related to real-world application. “In 
joint work with Thomas Schultz, an exceptionally talented computer/neuroscientist in 
Bonn, we figured out a way to get high-resolution 3D images of neural fibers in the human 
brain from diffusion MRI measurements,” Lim said. “Among other things, mapping major 
bundles of neural fibers in the human brain is vitally important in neurosurgical planning.”

Lim will present the James H. Wilkinson Prize in Numerical Analysis and Scientific 
Computing Lecture, “Tensors in Computational Mathematics,” on Wednesday, July 12, 
from 3:00-3:30 p.m. in the David Lawrence Convention Center (room Spirit of Pittsburgh 
A – 3rd Floor) as part of the SIAM Annual Meeting to be held in Pittsburgh, Pa., from 
July 10-14. He will receive his prize at the Prizes and Awards Luncheon on Tuesday, July 
11 at the Allegheny Ballroom of the Westin Hotel. All other major SIAM prizes will also 
be awarded at the luncheon.

Lek-Heng Lim, recipient of the James 
H. Wilkinson Prize in Numerical 
Analysis and Scientific Computing.
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Cause and Dynamics of a Silent Epidemic: Confronting 
the Dropout Crisis and Keeping Children in Schools
A Mathematical Analogy with an Infectious Diseases Approach
By Anuj Mubayi

In 2014, the U.S. high school gradu-
ation rate was 83.2 percent. In 2013, 

the average four-year cohort dropout rate 
for all Chicago high schools was 26.2%. 
Researchers from Arizona State University 
(ASU), Northeastern Illinois University 
(NEIU), and the University of Texas at 
Arlington (UTA) developed a data-driven 
mathematical model to study the influence 
of student environment on high school drop-
out patterns. This modeling study includes 
a 2013 survey—designed by researchers 
using a sampled Chicago high school, which 
is particularly vulnerable to student drop-
outs—to parameterize the model, making it 
unique among these types of investigations.

Bechir Amdouni, a high school teach-
er and graduate student at NEIU, and I 
(formerly of NEIU and now a professor 
at ASU) spearheaded the research project 
after visiting a local high school in South 
Chicago and witnessing the seriousness of 
the dropout problem firsthand. Upon inter-
acting with students and faculty at the high 
school, we realized that academic achieve-
ment shaped by peer influence and parental 
guidance might offer significant support to 
vulnerable students; such influences may be 
affecting dropout rates in this community. 
Marlio Paredes, a dynamical systems expert 
at the University of Puerto Rico-Cayey, 
and Christopher Kribs, a specialist in math-
ematical education and mathematical epide-
miology from UTA, joined us to formally 
design the study.

Methods and Analysis
Despite the complexity of dropout 

dynamics, previous studies have argued 
that the U.S. government’s policies are not 
supported by mechanistic-based temporal 
research; thus, dropout rates in many parts 
of the country are rising rapidly. Our study 
aims to identify driving mechanisms and 
develop, analyze, and test a mathematical 
model to better understand high school drop-
out dynamics; this is followed by analysis, 
calibration, and simulation. Our dynamic 
model uses an analogy from susceptible-
infected-recovered-type infectious disease 
models via a set of nonlinear differential 
equations. Bifurcation analysis identified 
two tipping point quantities: a threshold that 
evaluates the generation point of the critical 
mass of academically vulnerable students in 
a school, and a threshold that captures con-
ditions under which the number of failing 

students becomes large enough to increase 
dropout rates. The resulting model, based 
on students’ academic performance in core 
courses, can imitate four different situations:

(i) A ‘healthy’ school, in which all stu-
dents perform very well academically

(ii) An institution where some students 
fail core courses but academic failure does 
not cause dropouts  

(iii) A school with low dropout rates
(iv) A school with extremely high drop-

out rates
Following model formulation, we devel-

oped and administered a precise survey 
instrument to a group of ninth through 
twelfth grade students in a Chicago public 
school. We used data about the school’s 
enrollment and attempted to identify factors 
that correlated with the establishment and 
maintenance of high dropout levels.

Findings and Implications
Our research team studied the effects 

of multiple mechanisms—including effec-
tive teaching, school demographic factors, 
peer influences on and off campus, parental 
influences, and student academic perfor-
mances—on the dynamics of dropout rates. 
We found that parental involvement and 
peer interactions have the highest impact, 
and hence decided to further study their 
impact on student outcome. 

Students’ academic achievement is most 
directly related to the level of parental 
involvement, or lack thereof.  Survey analy-
sis revealed that over half of the dropouts 
did not live with their parents, reinforcing 
the potential effect of social, economic, and 
emotional environments on students’ educa-
tional development.

In our sample, more than 50% of students 
were in frequent contact with individuals 
who are of the mindset that attending school 
is a waste of time. Preemptively identifying 
vulnerable students and increasing parental 
involvement lowers the number of disaf-
fected friends, thus raising the question of 
how to monitor or effectively restrict “good” 
students from mixing with failing students 
or dropouts. However, if negative social 
interactions (social mixing) increase beyond 
a certain threshold, the impact of paren-
tal involvement becomes less significant 
(see Figure 1). And if intervention is left 
until students are actively failing at school, 
attempts at parental guidance are futile. 
   The study thus suggests that peer interac-
tion, like parental guidance, is critical to 
the development of higher dropout rates. 

However, separating students based on 
negative peer interactions and behaviors 
towards one another raises many practical 
issues regarding curriculum. For example, 
if there is a major shortage of skilled fac-
ulty in similar schools, who will teach these 
separated groups of students?

Chicago public schools use metrics, such 
as dropout rates, to evaluate school perfor-
mance. If this metric is low, schools may 
lose funding or even face closure (50 schools 
closed in the U.S. in 2013). Therefore, teach-
ers feel a continuous pressure to not fail 
students, which raises other issues. Do stu-
dents passing with very low grades deserve 
to pass, or are their passing grades a result 

of pressure of a potential school closing? If 
they graduate, do they enroll in a college or 
university? Have they truly gained quality 
education in high school?

Numerous factors contribute to dropout 
rates, making its investigation quite chal-
lenging. This study serves as a starting point 
to begin to understand these complexities, 
though some limitations exist. Future stud-
ies must consider higher sample sizes, a 
greater number of schools per sample, data 
stratification based on race and ethnicity, 
and construction and analysis of dynamical 
models that capture peer influences depend-
ing on class year, age group, social context, 
and neighborhood.

Summary
The factors we consider in this analysis 

are different from those typically investi-
gated in existing dropout-related studies. 

Moreover, unlike cross-sectional and longi-
tudinal approaches, our research focuses par-
ticularly on the dynamics of dropout rates, 
likely the most effective way to identify criti-
cal factors and design a lasting intervention. 
In summary, while parental influence can 
deter student dropout up to a certain point, 
the amount of time vulnerable students spend 
with friends who have already dropped out is 
also significant. We included general posi-
tive and negative trends as part of the study 
hypotheses, but the ways in which they inter-
act and limit each other are complex. The 
model—while still a gross oversimplification 
of human interaction—allowed us to capture 
some of that complexity.
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Figure 1. Parental guidance and peer influence are most influential on student dropoff rates. 
Although preemptive parental involvement can keep students in school, that involvement loses 
significance as the quantity of negative social interactions increases. Image adapted from [1].

all four aces gave the house a 2.72 percent 
advantage, far greater than the 0.21 of a 
fresh deck. This realization showed that 
the odds can shift significantly after only 
four cards have been played. By the fall 
of 1960, Thorp completed his calculations, 
used the results to develop a variety of 
more or less complicated winning strate-
gies, made a “proof-of-concept” visit to Las 
Vegas, and prepared to publish his findings.

To reach the largest possible audience, 
he asked Claude Shannon to submit his 
paper to the Proceedings of the National 
Academy of Sciences. After a searching 
cross examination, Shannon agreed to do 
so, and directed Thorp to a paper by John 
Kelly containing a now-famous (if still 
somewhat controversial) formula for choos-
ing the fraction of one’s current endow-
ment to wager on a sequence of promising, 
though risky, propositions.

With his knack for detecting statistically 
advantageous wagers and the Kelly rule 
for exploiting them, Thorp was ready for 

an assault on the financial markets. In col-
laboration with Sheen Kassouf, an econo-
mist at the University of California, Irvine 
(where Thorp taught math and finance 
between 1965 and 1982), he wrote a book 
called Beat the Market, explaining a few 
of the ways to do exactly that. In 1969, at 
the suggestion of Warren Buffett, Thorp 
formed a hedge fund called Convertible 
Hedge Associates (later renamed Princeton 
Newport Partners, or PNP), with offices 
in Newport Beach, Calif., and Princeton, 
N.J. The West Coast operation, managed 
by Thorp, identified promising trades and 
communicated them to the East Coast divi-
sion, which made the trades and sought 
additional investors.

In early 1973, Thorp received a preprint 
of a paper by Myron Scholes and Fischer 
Black that rigorously derived a formula 
for evaluating certain options about which 
Thorp presumed no one else knew. Having 
deduced it by what he calls “plausible 
mathematical reasoning,” Thorp had been 
using the now-famous Black-Scholes for-
mula since 1967. But once it entered the 
public domain, he realized that he would 

have to develop new tools to stay ahead of 
the competition.

In December 1987, operatives of the 
International Revenue Service, the Federal 
Bureau of Investigation, and the U.S. 
Postal Service raided the Princeton office 
of PNP. The five top people were indicted 
and tried on 64 charges of stock manipu-
lation, stock parking, and tax, mail, and 
wire fraud. All were convicted on multiple 
counts. As a result, Thorp elected to close 
the operation down. At no time was he, 
or anyone else in the West Coast office, 
accused of any wrongdoing.

Thorp is able to estimate the amount 
of money he might have made, had PNP 
remained in business, merely by reflecting 
that a market-neutral hedge fund opera-
tion—the Citadel Investment Group—was 
built on the PNP model by former hedge 
fund manager Frank Meyer and investment 
prodigy Ken Griffin. Beginning with a few 
million dollars in 1990, when Thorp became 
the group’s first limited partner, it has 
produced annualized gains of about 20% 
through 2015, when Griffin’s net worth 
was estimated at $5.6 billion. During much 

of that time, Thorp continued to act as an 
informal consultant and benevolent guru to 
a variety of investment startups.

Thorp dwells at length on the crimi-
nal behavior he has encountered over the 
years, from plagiarism in academic life 
to dirty tricks in casinos to white collar 
crimes reported in the Wall Street Journal. 
Neither the powers in academic life, the 
Nevada state gaming commission, nor the 
U.S. Securities and Exchange Commission 
seems prepared to confront the malfeasance 
that surrounds them. Protect yourself, he 
warns. No one else is likely to do it for you.

Upon closing PNP’s doors in 1987, 
Thorp paused to reflect on the nature of 
time. How you spend it, he decided, is 
what counts in the long run, and there are 
tradeoffs to be made between time, health, 
and wealth. What seems to please Thorp 
most is the knowledge that, simply by 
thinking about problems of interest, he has 
been able to change the way people choose 
to live their lives and occupy their time.

James Case writes from Baltimore, 
Maryland.
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