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By Mattia Serra and L. Mahadevan

One of the grand challenges of modern 
biology is understanding the way in 

which a complex, multicellular organism 
arises from a single cell via spatiotemporal 
patterns that are repeatable and reproduc-
ible across the tree of life. As the organism 
grows, its cells change their number, size, 
shape, and position in response to genetic, 
chemical, and mechanical cues (see Figure 
1a). Four-dimensional microscopy (three 
spatial dimensions and time) is beginning to 
illuminate how these cues impact the fate of 
cells and the geometric form of tissues and 
organs that constrain and enable function at 
multiple scales [3]. Even though individual 
cells might seem to move chaotically, the 
large-scale, collective cell movements with-
in tissues resemble a choreographed ballet 
and raise a few natural questions:

(i) How can we quantify the patterns 
and predict the formation of different 
organ systems? 

(ii) How can we understand these pat-
terns from a biophysical and biochemical 
perspective as a function of the way in 
which cells divide, grow, and move in 
response to environmental cues? 

(iii) How can we control these move-
ments to intervene and correct pathological 
development or guide tissue development in 
situations like organoid formation?

Here we focus on the properly invariant 
quantification of large-scale cellular move-
ments and draw inspiration from the study 
of objective transport barriers in hydrody-
namics [2, 5]. Just as it is more meaningful 
to focus on the large-scale coherent struc-
tures in a complex flow rather than track 
individual particles, we believe that it is 
useful to quantify the large-scale motions 
that characterize tissue morphogenesis. Any 
framework that aims to analyze spatiotem-
poral trajectories in morphogenesis requires 
a self-consistent description of cell motion 
that is independent of the choice of reference 
frame or parametrization. This objective 
(frame-invariant) description of cell pat-
terns ensures that the material response of 
a deforming continuum—e.g., a biological 
tissue—is independent of the observer [7].

One can quantify this idea math-
ematically by considering two reference 
frames that describe cellular flows and 
are related to each other via the trans-
formation x Q x b( ) ( ) ( ) ( ),t t t t= +  where 
Q b( ), ( )t t  are a time-dependent rotation 
matrix and translation vector respectively. 
A quantity is objective (frame invariant) 
if the corresponding descriptions in both 
frames transform appropriately: scalars 
c t( ) (e.g., concentration) must remain the 
same with c t c t( ) ( );=  vectors v( )t  (e.g., 
velocity field) must transform via the rule 
v Q v( ) ( ) ( );t t t=  second-order tensors A( )t  

(e.g., strain rate) must transform via the 
rule A Q A Q( ) ( ) ( ) ( );t t t tT=  and so forth 
[7]. It is thus immediately apparent that 
objects like velocity fields, streamlines, 
and vorticity—which are typical outputs 
from microscopy following some elemen-
tary image analyses—are frame dependent. 
Therefore, any metrics that are based on 
these objects for comparative purposes are 
likely erroneous, owing to their inability 
to remove dependence on artifacts that are 
associated with variations in the choice of 
reference frames (see Figure 1b). Indeed, 
most Eulerian approaches that characterize 
fluid or cellular flows suffer from this flaw, 
despite having served as workhorses for a 
long time [1, 5]. So, how can we do better?

A Lagrangian view that integrates over 
the history of cellular movements in time 
can clearly distinguish the way in which 
cells move apart or together, and ultimately 
provides a better perspective on cellular and 
tissue fate. This approach has successfully 
unraveled the complexity of passive fluid 
flows in problems that range from micro-
fluidic mixing to atmospheric polar vortices 
using the notion of Lagrangian coherent 
structures (LCSs) [2]. Hyperbolic LCSs are 
time-evolving attracting and repelling mani-
folds that shape the overall spatiotemporal 
patterns in complex dynamical systems. In 
the context of morphogenesis, the dynamic 
morphoskeleton is the collection of attract-
ing and repelling LCSs. From a practical 
perspective, we can compute these structures 
in terms of the largest finite-time Lyapunov 
exponent (FTLE), which is defined as
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Figure 1. Frame-invariant description of cellular flows. 1a. Sketch of bottom-up and top-down 
approaches to cell motion. Bottom-up approaches study local mechanisms that drive cells, while 
top-down approaches study patterns of cell motion that are caused by local and global driving 
mechanisms. The dynamic morphoskeleton uncovers the centerpieces of cell trajectory pat-
terns in space and time. 1b. Snapshots of a simple analytic velocity field (blue) and its Lagrangian 
particle positions (green). The black dot marks the position of a particle that began at the black 
x  marker at time 0. The frame-dependent velocity field suggests the presence of a vortical 
structure while the tissue undergoes exponential stretching. Figure courtesy of [6].

Control and Integrability in Figure Skating
By Meghan Rhodes, Vaughn 
Gzenda, and Vakhtang Putkaradze

Figure skating is a popular athletic endeav-
or, even taking the prime-time slot dur-

ing televised broadcasts of major sporting 
events like the Winter Olympic Games. The 
grace, precision, and elegance of the ath-
letes—in addition to the enchanting effects of 
dance, music, and costumes—make this sport 
a perennial favorite for many viewers.

The patterns that skaters carve into the ice 
have intrigued a wide audience since the 19th 
century [2]. As a hobby, skaters designed 
intricate patterns and attempted to trace those 
designs into the ice. This pastime soon grew 
in popularity; the patterns became known as 
“figures” and the hobby was termed “figure 
skating.” Some of us might still remember 
televised broadcasts of competitions that 
included “compulsory figures,” during which 
athletes could trace patterns at any speed 
but were only allowed a certain number of 
pushes off the ice. These contests are not part 
of official competitions anymore; they have 
separated into an independent branch with 
its own events that differ from mainstream 
Olympic-style figure skating.

While the acrobatic dance programs 
and jump-filled free skate performances 
of mainstream figure skating are certainly 

more spectacular for viewing—and more 
challenging athletically—the mathematical 
descriptions of continuous skating paths 
are just as interesting. Skaters control their 
motion by changing the direction of their 
skates and the position of their arms, legs, 
and torso, thus altering the moments of iner-
tia and location of the center of mass. Such 
control is produced in the body’s frame, 
whereas the figures are traced on ice — the 
coordinate frame fixed in space (spatial 
frame). The exact nature of the mecha-
nism that a skater employs by mapping the 
body to the spatial variables—which one 
achieves with years of careful practice—is 
very complex and not well understood. This 
lack of understanding is evident in figure 
skating instructional methods. For example, 
each figure skating element can be executed 
in many ways. Different body positions 
are considered “optimal” depending on the 
execution technique of the element in ques-
tion. When learning a new element, skaters 
often experiment with technique and try 
to simply remember the physical feeling 
of a successful attempt in order to recre-
ate the success (rather than determining 
the physics behind the attempt). The level 
to which skaters analyze their movements 
and the resulting impact on the physical 
properties varies based on the individual, 

but significantly examining this relationship 
is not a common practice.

Though one can technically derive a full 
mathematical model of a skater on ice, such 
a model is hardly informative for theoretical 
understanding. The model would have to 
incorporate the motion of the head, torso, 
and every limb — all controlled simultane-
ously. This challenging problem is likely a 
good candidate for modern machine learning 
methods, such as reinforcement learning. 
However, we are interested in understanding 
the problem by designing the simplest realis-
tic mechanical model as possible. We focus 

on the skater’s motion without the blade’s 
friction with ice, which is a reasonable 
assumption for a description of the motion 
on short to intermediate time scales.

During the continuous motion of a skater 
on ice, the skate in contact with the ice can 
only move in the direction of the blade. 
When the skate turns with respect to the ice, 
the direction of motion also changes. There 
is thus a constraint on the velocities of the 
skate on ice. One cannot write the skate 
velocity constraint in terms of coordinates 
only, meaning that the mechanical system 

Figure 1. Original figure skating patterns both on and off the ice. 1a. The trajectory of a 
skater on ice from one of the original figure skating patterns. 1b. The same figure, computed 
by combining the trajectory of a controlled Chaplygin sleigh. Figure courtesy of Meghan 
Rhodes and Vakhtang Putkaradze.
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4 	 Stochastic Modeling for 
Weather and Climate 
Prediction

	 Although the weather forecasting 
community has readily adopted 
stochastic parametrization tech-
niques in recent years, the cli-
mate modeling community gen-
erally still utilizes deterministic 
models. Hannah Christensen 
explains stochastic parameter-
ization’s ability to transform 
climate modeling, alleviate 
long-standing systematic biases, 
and improve model fidelity.

6 	 A Mathematical      
Journey to Football

	 Eric Eager discusses his lifelong 
love of sports, unique career 
trajectory, and transition from a 
tenured position in academia to 
Vice President of Research and 
Development at Pro Football 
Focus (PFF). He details the way 
in which a chance occurrence led 
to a full-time data science posi-
tion that combines his two pas-
sions: mathematics and football.

7 	 Mathematics in Industry: 
What, When, and How?

	 Graduate students across all 
STEM fields must routinely 
decide whether to pursue 
employment in academic or 
industry positions. Mitchel 
Colebank writes about the 
professional experiences of 
several mathematicians who 
have switched between careers 
in industry and academia. They 
offer career advice and candid 
reflections about the process.

8 	 BLIS: BLAS and                
So Much More

	 Field Van Zee, Robert van de 
Geijn, Maggie Myers, Devangi 
Parikh, and Devin Matthews 
explore the BLAS-like Library 
Instantiation Software (BLIS). 
BLIS facilitates rapid instantia-
tion of BLAS and BLAS-like 
operations, provides the original 
interface as well as alterna-
tives, and rapidly incorporates 
support for emerging archi-
tectures and instruction sets.

9 	 When Contagion Rules
	 Model-based epidemiol-

ogy is currently a particularly 
relevant topic in both main-
stream media and the scientific 
world. Adam Kucharski’s The 
Rules of Contagion, which 
published during the height 
of the COVID-19 pandemic, 
addresses epidemiological 
models’ insights into a variety 
of human endeavors and social 
challenges. Paul Davis reflects 
on the book’s observations.
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Obituary: Robert E. O’Malley, Jr.
By Bernard Deconinck, Mark Kot, 
Randall J. LeVeque, and Ka-Kit Tung

I t is with great sadness that we report 
that Robert E. O’Malley, Jr., who was 

president of SIAM from 1991 to 1992, 
passed away on December 31, 2020 at the 
age of 81. He was a world-renowned expert 
on singular perturbation problems, having 
written many impactful books and journal 
articles on the subject.

Bob was born on May 23, 1939 and 
grew up in Somersworth, NH. He began 
his higher education at the University of 
New Hampshire, where he earned a B.S. in 
electrical engineering in 1960 and an M.S. in 
mathematics in 1961. Bob received his Ph.D. 
in mathematics from Stanford University in 
1966, where he wrote a dissertation on two-
parameter singular perturbation problems 
under the supervision of Gordon E. Latta.

Bob enjoyed a long and illustrious career 
in mathematics. After short appointments 
at the University of North Carolina, Bell 
Laboratories, New York University’s 
Courant Institute of Mathematical Sciences, 
and the University of Wisconsin’s 
Mathematics Research Center (where he 
met Candy, his wife), he returned to New 
York University in 1968. While there, Bob 
worked with Joseph Keller and other pre-
dominant researchers. This stint was fol-
lowed by a one-year visit to the University 
of Edinburgh. Bob’s 
lectures at these 
institutions formed 
the basis of his first 
book, Introduction 
to Singular Pertur-
bations, which was 
published in 1974.

In 1973, Bob joined 
the Department of 
Mathematics at the 
University of Ari-
zona; he founded 
Arizona’s Program in 
Applied Mathematics 
in 1976. During this 
period, Bob worked 
extensively on singu-
lar perturbation prob-
lems in control theo-
ry. He was a forceful 
advocate for applied 
mathematics at Arizona and was especially 
supportive of young faculty.

Bob moved to Rensselaer Polytechnic 
Institute (RPI) in 1981, where he was 
Ford Foundation Professor, Chairman of 
the Faculty, and head of a Department 
of Mathematical Sciences that emphasized 
applied mathematics and computer science. 
Many years later, in 1999, Bob’s colleagues 
at RPI hosted an O’Malley-fest:1 a work-
shop on singular perturbations that brought 
roughly 60 mathematicians to Troy, NY, to 
celebrate Bob’s 60th birthday.

1  https://archive.siam.org/news/news.
php?id=793

At the end of 1990 and soon after a sab-
batical to the Technical University of Vienna, 
Bob moved to the Department of Applied 
Mathematics at the University of Washington. 
He served as chair of the department and 
was the Graduate Program Coordinator 
for many years. He retired in 2009 but 
remained active as professor emeritus.

Bob was very productive during his time 
in academia and received many honors. 
He was a member of the inaugural class of 

Fellows for both SIAM 
and the American 
Mathematical Society. 
His SIAM Fellow 
citation2 specifically 
mentions his contribu-
tions to asymptotics 
and singular perturba-
tion theory. According 
to Mathematical 
Reviews, Bob authored 
161 publications — 
including four books.

Bob was an 
extremely active mem-
ber of SIAM and was 
president from 1991 to 
1992. He also served 
as Vice President for 
Publications, sat on 
many editorial boards, 
and was involved 

in the organization of several meetings — 
most notably as Program Chair for the sec-
ond International Congress on Industrial 
and Applied Mathematics (ICIAM), which 
took place in Washington, D.C. in 1991. 
He was even SIAM’s representative to the 
ICIAM Board in its formative years. In 2000, 
Bob became editor of the “Book Reviews” 
section of SIAM Review; he enjoyed this 
responsibility so much that he continued in 
the role through 2014, five years after his 
retirement. Thanks to his selections of books 
and reviewers, this section became one of the 
journal’s most popular aspects.

2  https://www.siam.org/prizes-recognition/
fellows-program/all-siam-fellows/o

Bob loved his work. He routinely came 
to campus even after he retired, and we had 
a better chance of running into him at the 
office than any other colleague. He loved 
differential equations, especially those that 
looked deceptively simple but presented 
examples or counterexamples of phenom-
ena that he sought to understand. In fact, 
he was working on a new book about ordi-
nary differential equations and collecting 
many such equations when he passed away. 
Throughout his career, Bob updated the 
techniques he used to approach these prob-
lems; he recently spent significant time on 
renormalization-based methods that origi-
nated in the physics literature.

Bob also loved books. He loved reading 
them, writing them, reviewing them, talk-
ing about them, and recommending them 
to others. His office was always filled with 
precariously-towering stacks of texts, par-
ticularly during his many years as editor of 
SIAM Review’s “Book Reviews” section. In 
addition, Bob loved exploring the history of 
mathematics. He enjoyed reading and writ-
ing about this history, and peppered his lec-
tures with fascinating historical anecdotes. 
His 2014 book, Historical Developments in 
Singular Perturbations, combines his affin-
ity for differential equations, history, and 
books; it likely contains the most complete 
bibliography on the subject.

Bob loved people. He knew everyone 
in the asymptotics and perturbation theory 
community, and many people far beyond 
it. He always kept an open-door policy 
and would gladly drop whatever he was 
doing to talk with whomever entered his 
office. Graduate students adored Bob, and 
many former students and colleagues would 
detour on their way through Seattle to visit 
him. He greeted everyone with his kind 
smile and made them immediately feel at 
ease during conversation. His broad range 
of interests allowed him to naturally connect 
with people. Bob often wrote personal notes 
of encouragement to students long after they 
had left the department. He was a wonderful 
colleague and will be sorely missed.

Bob’s funeral mass took place at St. James 
Cathedral in Seattle, Wash., on January 9, 
2021. His son Patrick gave an especially 
eloquent tribute about the ways in which 
Bob’s mathematics opened up his family’s 
world and brought the world to their door. 
Bob is survived by his wife Candy and his 
sons Daniel, Patrick, and Timothy.

Additional memories, recollections, trib-
utes, and photos of Bob from students and 
friends are available online.3

Bernard Deconinck, Mark Kot, Randall 
J. LeVeque, and Ka-Kit Tung are faculty 
in the Department of Applied Mathematics 
at the University of Washington. All four 
interacted extensively with Bob O’Malley 
for many years.

3  https://amath.washington.edu/news/
2021/01/08/remembering-professor-bob-
omalley

Robert E. O’Malley, Jr. was president of SIAM from 1991 to 1992. Here, he is pictured at a 
1993 SIAM meeting. Bob was very fond of this photo and even had it hanging in his office.

Robert E. O’Malley, Jr., 1939-2020. Photo 
courtesy of Katie Oliveras.
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by cell velocities. L
t
t

0 0( )x  characterizes the 
maximum rate of separation of points in a 
neighborhood of x0—denoted by the infini-
tesimal vector dx0—during the time window 
[ , ]t t0  (see Figure 2). The FTLE has a natural 
interpretation in continuum mechanics and 
is related to the largest eigenvalue of the 
Cauchy-Green strain tensor [7], therefore 
serving as a natural invariant measure of 
deformation in a continuous medium.

By choosing to integrate either forwards 
or backwards in time, one can delineate 
manifolds that are zones of attraction or 
repulsion over a given time interval; doing 
so establishes an organizing skeleton for the 
flow pattern (see Figure 2). The resulting 
dynamic morphoskeleton is frame invariant, 
easy to compute, and robust to noise and 
loss of local data because of its (integrated) 
averaging property [6].

When deploying this approach on light-
sheet microscopy data from the embryo of 
a normally-developing chick that involves 
~105  cells (see Figure 3a) [4], we see that 
the dynamic morphoskeleton consists of 
two repellers—critical boundary regions 
across which cells will likely assume dif-
ferent fates—and one attractor (see Figure 
3b). Repeller 1 marks a dynamic bound-
ary between the embryonic and extra-
embryonic regions. By contrast, repeller 
2 marks the anterior-posterior boundary 
of a characteristic feature that is known as 
the primitive streak (PS): a zone of strong 
cellular convergence (an attractor) during 
early embryogenesis. First, we note that 
repellers remain invisible to Eulerian and 
Lagrangian tools that researchers use in 
multicellular flows.1 This fact may explain 
why repellers appear to be undocumented 
in the literature, despite their relevance for 
cell fate acquisition.

Second, we notice that just an hour 
after cells have barely started to move, the 
dynamic morphoskeleton captures the PS’s 

1  See the online version of this article for a 
corresponding animation.

early footprint — well before it is actually 
visible to conventional tools (see Figure 3c). 
This approach can also detect preliminary 
signatures of abnormal development. Use 
of a drug to inhibit the presence of a critical 
diffusible morphogen (FGF) that is required 
for early gastrulation causes the PS forma-
tion to fail (see Figure 3d) and results in a 
lack of anterior-posterior cell differentiation, 
which is quantified by the loss of repel-
ler 2 (evident in the left panels of Figure 
3b and 3d).2 Similar analysis of a whole 
curved embryo of a developing fruit fly with 
roughly 6,000 cells allows us to visualize 
how the attractors and repellers characterize 
the motions that lead to gastrulation in both 
normal and pathological development [6].

2  An animation in the online version of 
this article depicts the time evolution of the 
dynamic morphoskeleton for the FGF receptor 
inhibitor embryo.

The enormous amounts of data that are 
rapidly becoming available from large-
scale imaging of biological development 
require properly invariant methods of analy-
sis. The aforementioned approach—which 
integrates local (cell-based) and nonlocal 
(neighborhood/tissue-based) cues—pro-
vides a step in the right direction. The 
dynamic morphoskeleton sets the geometric 
stage for uncovering the dynamic organiz-
ers of cellular movements and tissue form; 
it also provides a lens for uncovering the 
underlying relevant mechanisms at play. 
When we combine the morphoskeleton with 
the ability to track and manipulate gene 
expression levels, mechanical forces, etc., 
perhaps we will be able to determine the 
biophysical mechanisms that underlie nor-
mal and pathological morphogenesis and 
move a little closer to answering one of the 
grand questions of modern biology.
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Figure 3. Dynamic morphoskeletons in chicken gastrulation. 3a. Light-sheet microscopy image of a chick epiblast during the primitive streak (PS) 
formation. 3b. Left: FW FTLE h

0
12  highlights two repelling Lagrangian coherent structures (LCSs). Right: BW FTLE

h12
0  highlights the attracting 

LCS that corresponds to the formed PS. Center: BW FTLE
h12
0  field in the right panel is passively transported to the initial time; this marks the 

initial position of the mesendoderm precursor cells—bounded by the solid black line—that eventually form the PS. Cells that begin on different 
sides of repeller 2 form the anterior and posterior part of the PS. The finite-time Lyapunov exponent (FTLE) has units 1/min, and the axis units are 
in µm. The time evolution of the FTLE fields and cell positions for different T  are available in an online animation. The lower panels of this anima-
tion depict the time-averaged velocity, cell positions, and a deforming Lagrangian grid. 3c. BW FTLE h1

0  ridge highlights the PS’s early footprint 
(blue ellipse) using only the first hour of data when the cells (green dots)—initially released on a uniform rectangular grid—have barely moved. 
3d. The same situation as 3b for a chick embryo that is treated with a critical diffusible morphogen (FGF) receptor inhibitor. An online animation 
shows the time evolution of the FTLE fields and cell positions for different T. Figure 3a courtesy of Cornelius Weijer, 3b-3d adapted from [6].

Figure 2. Attractors and repellers organize cell motion. 2a. Illustration of the attracting and repelling Lagrangian coherent structures (LCSs) over 
the time interval [ , ].t t0  2b. The forward finite-time Lyapunov exponent (FTLE) measures the maximum separation dx

t
 over the time interval [ , ]t t0  

between two initially close points in the neighborhood x0. A forward-time FTLE ridge—a set of points with high FTLE values—marks a repelling 
LCS; nearby points from opposite sides of the ridge experience the maximum separation over [ , ],t t0  t t> 0. 2c. A backward-time FTLE ridge 
demarcates an attracting LCS — i.e., a distinguished curve at the final time that has attracted initially distant particles. Figure adapted from [6].

SIAM Celebrates Mathematics and Statistics Awareness Month
By Jillian Kunze

April is Mathematics and Statistics 
Awareness Month!1 Each year, the 

Joint Policy Board for Mathematics—a col-
laboration between SIAM, the American 
Mathematical Society, the American 
Statistical Association, and the Mathematical 
Association of America—holds a month-
long celebration to enhance public under-
standing and appreciation of mathematics 
and statistics. Both subjects have real-world 
societal impacts in nearly every imagin-
able field, such as medicine, biotechnol-
ogy, energy, manufacturing, and business. 
Throughout the month of April, universi-
ties, high schools, student groups, research 
institutions, public information offices, and 
other related organizations host math-relat-
ed activities. These activities often include 
workshops, competitions, departmental open 
houses, festivals, lectures, art exhibits, poetry 
readings, and other events centered around 

1  https://ww2.amstat.org/mathstatmonth/
index.html

themes related to mathematics and statistics. 
Due to the ongoing pandemic, participants 
are encouraged to celebrate virtually this 
year and use the hashtag #MathStatMonth on 
social media to share their festivities.

Mathematics and Statistics Awareness 
Month originated in 1986 as Mathematics 
Awareness Week under then-U.S. president 
Ronald Reagan, who noted that enrollment 
in U.S. mathematical programs was declin-
ing. Mathematics Awareness Week initially 
focused on national-level events, such as 
a mathematics exhibit at the Smithsonian 
Institution and a reception on Capitol Hill. 
It became Mathematics Awareness Month 
in 1999 and began to shift its emphasis 
towards local, state, and regional activities. 
In 2017, the name changed to Mathematics 
and Statistics Awareness Month to rec-
ognize important research in both fields. 
Though the number and breadth of celebra-
tions have grown throughout the years, the 
event has remained dedicated to increasing 
the visibility of mathematical and statistical 
research across a wide audience.

University department chairs, high 
school teachers, public policy representa-
tives, and other professional leaders can 
access and share resources that help edu-
cate the public about the importance of 
mathematics and statistics in ongoing sce-
narios like sustainability, internet security, 
disease, and climate change. Mathematical 
and statistical research drives technologi-
cal innovation and leads to discoveries 
of broad societal importance across many 
scientific fields. Here, several members of 
the SIAM News Editorial Board detail the 
ways in which they utilize mathematics to 
solve engaging problems.

Hans Kaper (Georgetown University), 
editor-in-chief of SIAM News: “I am an 
applied mathematician by training and 
profession, and my interests lie in the 
mathematical modeling of natural phe-
nomena. Mathematical modeling combines 
the laws of nature with observational data 
and expresses them into the language of 
mathematics. A mathematical model is an 

abstraction; it reflects reality but should 
not be thought of as “reality.” It reveals 
the essential mechanism that drives the 
phenomenon of interest and allows us to 
explore various scenarios, whether theoreti-
cally or computationally.

Among the natural phenomena that have 
fascinated me in the past are reaction-dif-
fusion phenomena in combustion systems, 
vortex formation and transport in high-
temperature superconductors, and pattern 
formation in magnetic materials. I have 
recently become interested in climate issues 
and modeling the effects of human activities 
on Earth’s climate system. Some of my cur-
rent work is related to the dynamics of gla-
cial cycles during the Pleistocene, problems 
that concern food systems and food security, 
and mathematical approaches to resilience.”

Korana Burke (University of California, 
Davis): “Anyone who has tried to enter or 
exit a massive lecture room, music hall, 
or other large venue has likely been stuck 
in a crowd. This scenario is not a pleasant 

See Awareness Month on page 6
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that describes the skater belongs to the field 
of nonholonomic mechanics [1]. This is in 
contrast to holonomic mechanical systems, 
which are defined by the property that allows 
all constraints to be written as a function of 
coordinates only. Studies of the fundamen-
tals of mechanics, and thus our intuition 
about mechanics, mostly pertain to holo-
nomic systems. Nonholonomic mechanics 
can be quite counterintuitive for an unfamil-
iar reader. For example, the famous Noether 
theorem of classical mechanics—which con-
nects conservation laws with symmetries—is 
generally not valid in nonholonomic cases, 
except for energy conservation [5].

One of the earliest, most famous, and 
perhaps most pedagogical examples of a 
skater-like system is the Chaplygin sleigh 
[3, 4] — a flat, rigid object on ice with a 
fixed blade (a modern exposition is avail-
able in [1]). It is actually one of very few 
examples of integrable nonholonomic sys-
tems [7]. One can understand the Chaplygin 
sleigh as a two-dimensional model of a 
skater that lacks the ability to lean. When 
the position of the sleigh’s center of mass 
and its moment of inertia are changing, the 
sleigh is akin to a figure skater who controls 
their motion by changing the position of 
their torso and limbs.

Previous researchers have explored the 
idea of controlling the Chaplygin sleigh 
motion by altering the position of its center of 
mass [8]. The question is: How can we con-
trol the sleigh to produce a predetermined 
curve on the ice, as if the sleigh were partici-
pating in a figures competition? For example, 
how can we achieve a typical shape from the 
figures competition in Figure 1a (on page 1)? 
The trajectory is not smooth at the “cusp” 
points. At these points, the skate’s veloc-
ity with respect to the ice must be zero, and 
an experienced skater can perform a quick 
turn of the skate to continue the motion. 
To realize this motion in the Chaplygin 
sleigh, one can build up the trajectory from 
predetermined “patches”—e.g., pieces of a 
circle—with vanishing velocity at the ends 
and connect them with a quick turn at the 
cusp (see Figure 1, on page 1). Notice that 
no push is necessary at the cusp; the skater 
simply reverses the direction of motion from 
forward to backward or vice versa.

Things get more complex if one seeks to 
describe a skater’s motion in three dimen-
sions when there is a possibility for a side 
lean while skating. If the skater is static 
(i.e., not moving the parts of their body), 
this assumption allows a reduction of the 
mechanical system that describes the skater 
to a system of seven equations with seven 
unknowns: linear velocity of the skate; tilt 
angle; angular velocities of rotation about 

both the vertical and the blade; and three 
Lagrange multipliers that describe the reac-
tion of constraints of ice contact, no for-
ward tilt, and the nonholonomic constraint 
of the skating condition [6]. The system’s 
mechanical energy is conserved, as expect-
ed with the absence of friction. If the pro-
jection of the skater’s center of mass onto 
the blade coincides with the contact point 
(i.e., a balanced skater), two more constants 
of motion exist. We can understand one of 
them as the system’s angular momentum 
around the vertical axis, and the second as 
having no physical relevance. 

Given these three constants of motion, 
the system is integrable and constitutes an 
additional and highly nontrivial example of 
an integrable nonholonomic system [7]. If 
the skater is unbalanced—i.e., the projec-
tion of the center of mass on the blade’s 
direction does not coincide with the point 
of contact—the motion is chaotic with a 
positive Lyapunov exponent of diverging 
trajectories. In terms of ice trajectories, 
the blade’s motion on ice is either quasi-
periodic in the integrable case (see Figure 
2a) or chaotic in the non-integrable case 
(see Figure 2b). Just as with the Chaplygin 
sleigh, the linear velocity of the skate at the 
cusps goes smoothly through zero and the 
skater reverses their direction of motion.

It seems plausible to conjecture that 
experienced figure skaters adjust their posi-
tions to choose the integrable case for their 
performances, moving from one integrable 
case to another for better control. If correct, 
this conjecture can help us better understand 
the algorithms that our own minds use to 
control the motion — ultimately achieving 
a precise output in a motion as complex and 
non-intuitive as figure skating.

This article is based on Vakhtang 
Putkaradze’s invited presentation at 
the Second Joint SIAM/CAIMS Annual 
Meeting,1 which took place virtually last 
year. Putkaradze received the 2020 CAIMS-
Fields Industrial Mathematics Prize.

1  https://www.siam.org/conferences/cm/
conference/an20
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Figure 2. Trajectories made by a static three-dimensional model skater on ice. 2a. The inte-
grable case, when the projection of the center of mass on the mass’s direction of motion 
coincides with the contact point with the ice. 2b. The non-integrable case, when the projection  
of the center of mass is away from the contact point. Figure courtesy of [6].
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Continued from page 1

Stochastic Modeling for Weather and Climate Prediction
By Hannah Christensen

Regardless of the time or location, peo-
ple seemingly always want to know 

the future weather. As late as the mid-20th 
century, the favored approach for weather 
forecasting involved analogues that were 
based on a large historical dataset of past 
weather reports. One would simply examine 
the record to find a day that was similar to 
the present day in question, then issue the 
historical evolution of the atmosphere as the 
forecast for the coming week. However, this 
method does not work in practice because 
the atmosphere is chaotic — its evolution 
is very sensitive to small details in the 
initial state. This was the central message 
of meteorologist Edward Lorenz’s ground-
breaking 1963 paper: analogue forecasting 
is doomed to fail since one simply cannot 
find a historical match to the current weather 
with sufficient accuracy [3].

Instead of using analogues, meteorologists 
now generate forecasts by combining the 
Navier-Stokes equations with equations that 
describe radiation, thermodynamics, water 
phase changes, and other phenomena in 
order to build a computer model of the atmo-
sphere. Numerically solving these equations 
involves setting a discretization scale, which 
should be as fine as possible. However, 
we must also produce weather forecasts in 
a timely manner. Despite access to some 
of the world’s largest supercomputers, this 
stipulation puts a hard limit on how fine the 
discretization scale can be. For weather fore-
casts that are out one or two weeks, this scale 
is around 10 kilometers. We must include 
the effects of all processes that occur below 
the discretization scale—including clouds, 
convection, and turbulence—in the model, 
but can only do so in an approximate manner 

via so-called “parametrization schemes.” A 
key assumption is that one can successfully 
approximate the unresolved scales’ impact 
on the resolved scale flow with a determinis-
tic function of the resolved scales.

Two problems are immediately appar-
ent. First, the Navier-Stokes equations 
show strong evidence of scaling sym-
metries [5]. In other words, if u x( , ),t
p t( , )x  is a solution to the Navier-Stokes 
equation, then u x u x

r
t r r r t( , ) ( , ),= 2

p t r p r r t
r
( , ) ( , )x x= 2 2  is also a solution 

for any scaling parameter r>0. This scal-
ing symmetry is consistent with the power-
law behavior that is evident in atmospheric 
observations [6]. However, truncating the 
equations of motion at the discretization 
scale and replacing the unresolved scales 
in computer models with a deterministic 
parametrization scheme violate these scaling 
symmetries. Deterministic parametrizations 

essentially assume the presence of a spectral 
gap between resolved and unresolved scales, 
which does not exist in reality. The parame-
trization process is therefore a source of error 
in our forecasts. The second problem is that 
small-scale forecast errors will not remain 
confined to the smallest scales. Instead, they 
will exponentially grow in time and cascade 
upscale in space, thus causing our forecasts to 
diverge from the atmosphere’s true evolution.

One solution to these two issues is to 
replace conventional, deterministic param-
etrizations with stochastic parametrization 
schemes [7]. We recognize that the grid-
scale variables cannot fully constrain sub-
grid motions without a spectral gap. We 
therefore choose to describe the subgrid 
in terms of a probability density function 
(PDF) that is constrained by the resolved 
scale flow, then randomly draw from this 
evolving PDF to step our computer model 

forward. For example, instead of including 
the effects of the most likely arrangement of 
clouds, we include the effect of just one pos-
sible cloud field on the forecast’s evolution.

To derive an appropriate form for the sto-
chastic parametrization, we can characterize 
small-scale variability using high-resolution 
simulations that resolve the small-scale 
phenomena of interest. We do this by coarse 
graining these simulations before compar-
ing them to a low-resolution forecasting 
model. Measurements of the “true” PDF 
of subgrid motions that are conditioned on 
the large-scale state not only provide fur-
ther evidence that parametrization schemes 
should be stochastic, but also motivate 
the form of the stochastic parametrizations 
themselves [1] (see Figure 1).

To address the second aforementioned 
problem—the fact that small-scale forecast 

Figure 1. Coarse-graining studies motivate and constrain stochastic parametrizations. 1a. The coarse-graining approach. 1b. True subgrid temperature 
tendency distribution (blue) compared to the estimate from a deterministic parametrization (grey rectangle and panel titles). Figure adapted from [1].

See Climate Prediction on page 5
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errors will not remain confined to the smallest 
scales—we transition from making a single 
forecast for an upcoming period to making a 
set of forecasts. The forecasts originate from 
different but equally likely starting condi-
tions, which we estimate based on our mea-
surements of the atmosphere. Each forecast 
also utilizes different random numbers in the 
stochastic parametrization scheme, thereby 
indicating various possible realizations of the 
small-scale processes. By skillfully account-
ing for all sources of error in our forecasts, 
we can ensure that they are reliable — i.e., 
statistically consistent with the observed evo-
lution of the atmosphere. For instance, if we 
collect all of the days for which we predicted 
a 10 percent chance of rain, it should rain on 
10 percent of those days. Stochastic param-
etrizations are clearly necessary; we cannot 
produce reliable forecasts without them.

Nowadays, however, we are not only 
interested in predicting the weather. Climate 
prediction is extremely important because it 
provides guidance for policymakers and 
enables a range of sectors to prepare for the 
future. But predicting the climate is a differ-
ent problem than predicting the weather. In 
fact, Lorenz referred to weather prediction 
as a “prediction of the first kind” [4]. Such 
problems are initial value problems — the 
skill in the forecast comes primarily from 
accurate specification of the starting condi-
tions and the system’s resulting evolution 
away from these conditions. Climate pre-
diction, on the other hand, is a “prediction 
of the second kind.” In this context, we are 
interested in predicting a system’s response 
to an external forcing. We cannot hope to 
predict the specifics of the weather on any 
given day, but rather seek to predict the 
weather’s changing statistics.

Despite these differences, we produce 
climate predictions much like weather fore-
casts — though now we use a computer 
model of the entire Earth system, includ-
ing the atmosphere, oceans, biosphere, and 

cryosphere, among other components. We 
also incorporate an estimate of how anthro-
pogenic greenhouse gases and other emis-
sions will evolve in the future—based on 
a range of policy-driven “emission path-
ways”—to assess possible forthcoming 
changes to the Earth’s climate. The added 
complexity of a climate model, coupled 
with the need to produce predictions on 
century-long timescales, means that we 
must substantially coarsen the discretization 
scale to the order of 100 kilometers.

While the weather forecasting commu-
nity has readily adopted stochastic parame-
trizations because of their measurable posi-
tive impact on forecast skill, the climate 
modeling community generally still uses 

deterministic models. However, our recent 
work demonstrates the potential of stochas-
tic parametrizations to transform climate 
modeling much like they have transformed 
weather prediction. We show that the pres-
ence of stochasticity in climate models can 
alleviate long-standing systematic biases, 
such as mean state biases—like the dis-
tribution of precipitation [8]—and biases 
in modes of variability, like the El Niño–
Southern Oscillation [2] (see Figure 2). 
Despite concerted efforts from the commu-
nity, these stubborn biases in deterministic 
models have long resisted improvement.

Unpicking the way in which stochastic-
ity leads to such dramatic improvements 
is nontrivial, and we generally must assess 
the mechanism for each phenomenon of 
interest. For example, while researchers 
can understand El Niño’s basic existence 
as a deterministic coupling between atmo-
sphere and ocean, its variability stems from 
high-frequency atmospheric wind stress 
forcing on the ocean surface. Simulations 
that include a stochastic parametrization 
reveal an improved distribution of atmo-
spheric winds. In the Community Climate 
System Model (CCSM) and Met Office 
Unified Model (MetUM), the parametri-
zation dampens an excessively active El 
Niño. But in the EC-Earth climate model, it 
enhances a too-weak El Niño (see Figure 2). 
If we assume that the underlying coupling 
strength between atmosphere and ocean dif-
fers among the various climate models, then 
a very simple delayed oscillator model of El 
Niño predicts this extraordinary result [9].

By improving the statistics of the fast 
“weather” in climate models, we enable the 
simulated Earth system to explore its attrac-
tor in a more realistic way and thus improve 
the model’s fidelity. As I write this article, 
the International Panel on Climate Change 
is producing its Sixth Assessment Report.1 
This report will collate the state of the art 
in climate prediction and compare coordi-
nated climate change experiments that were 
created with the world’s leading climate 
models. For the first time, one of these 
models includes stochastic parametrization 
schemes. This is an exciting development, 
and I trust that many climate centers will 
soon adopt these techniques.

This article is based on Hannah 
Christensen’s invited presentation at the 
2020 SIAM Conference on Mathematics of 
Planet Earth,2 which took place virtually 
last year. Christensen’s talk is available on 
SIAM’s YouTube Channel.3

1  https://www.ipcc.ch/assessment-report/ar6
2  https://www.siam.org/conferences/cm/

conference/mpe20
3 https://www.youtube.com/watch?v=rtay

L2JAjh8 
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Figure 2. Power spectra of modeled (black) and observed (grey) El Niño–Southern Oscillation time series in three climate models—the Community 
Climate System Model (CCSM), EC-Earth, and Met Office Unified Model (MetUM)—with and without the stochastically perturbed parameterization ten-
dencies (SPPT). The power spectrum for each model with stochastic parametrization better matches the observed data. Figure adapted from [2] and [9].
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feeling in the best of times, and the ongoing 
pandemic has taught us that it can even be 
a health hazard. We can utilize differential 
equations to model the way in which people 
adjust their movements when they are in a 
crowd. These models allow us to study the 
appearance of bottlenecks and also their 
resolution. The results can generate more 
efficient entering and exiting protocols for 
existing venues and lead to the design of 
new venues whose geometry and seating 
arrangements would minimize bottlenecks 
and the resulting crowds.”

Oana Marin (Argonne National 
Laboratory): “Differential calculus revo-
lutionized mathematical physics at the end 
of the 17th century. Almost two centuries 
later, computers have provided a platform 
for the simulation of any differential equa-
tion. Although the progress of science may 
now seem boundless, the expectations have 
shifted. We wish to explore all of the physi-
cal scales, we hope to simulate physical real-
ity in real time on our mobile phones, and 
we want computers to teach us everything 
that we cannot analytically derive ourselves. 
Nowadays, we are disappointed to discover 
that the numerical methods we use to repre-
sent the physics on a computer are limited; 

computers themselves are not as reliable 
as forethought because of computational 
round-offs, sophisticated heterogeneous 
supercomputers, and so forth. The work of 
numerical analysts is almost akin to revisit-
ing the days of Gottfried Wilhelm Leibniz 
and Isaac Newton, but this time equipped 
with a great weapon: the supercomputer.”

Lois Curfman McInnes (Argonne 
National Laboratory): “Computational sci-
ence and engineering (CSE)—which unites 
mathematics and statistics, computer sci-
ence, and core disciplines from the sciences 
and engineering—is actively transforming 
discovery and innovation in essentially all 
areas of science, engineering, technology, 
and society. CSE has become the essential 
driving force for scientific progress when 
classical experiments or conventional theory 
reach their limits, and in applications where 
experimental approaches are too costly, 
slow, dangerous, or impossible. Advanced 
mathematics-based computing is actively 
inspiring a wide range of scientific discover-
ies, better designs for new products, and sup-
port for decision-makers. Next-generation 
opportunities are moving beyond interpretive 
simulations and toward predictive science.”

Ali Pinar (Sandia National Laboratories): 
“I have been part of many interdisciplin-
ary efforts throughout my career. In all 
cases, mathematics has been the com-
mon language that enabled communication 

between different disciplines. And the suc-
cess of introducing rigor to a new area has 
been directly proportional to the ability to 
adopt mathematics.”

Rosemary Renaut (Arizona State 
University): “These days, my research 
involves the solution of inverse problems. I 
like to use the example of a speed camera 
that reads your license plate. The camera 
obtains a blurred version of the plate, but 
mathematics is at play in generating the let-
ter that comes with the ticket by restoring the 
image from its blurred form. More compli-
cated inverse problems surround us in many 
fields. For instance, consider medical images 
from PET and MRI scanners that assist 
with the diagnosis of various complications. 
Mathematicians have again been pivotal in 
the design of robust and accurate approaches 
that reconstruct the images from measure-
ments that engineers and physicists cleverly 
obtain. We are not just “number people” — 
far from it. We are engaged in exciting 
problems with huge societal relevance that 
motivate our current research directions.”

SIAM encourages its members to partake 
in Mathematics and Statistics Awareness 
Month and proudly share the importance, 
beauty, and applicability of their research 
with the general public.

Jillian Kunze is the associate editor of 
SIAM News.

Mathematics and Statistics Awareness Month recognizes the value of mathematical and sta-
tistical research in the solution of problems with broad societal reach.
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By Eric Eager

My love of numbers has always 
accompanied my love of sports. As a 

kid, I could recite the Pythagorean theorem 
as well as I could recount the number of 
catches that Jerry Rice made in each season 
of his hall-of-fame career. My childhood 
is annotated by my hometown Minnesota 
Vikings’ heartbreaking losses. I knew all of 
the stats during any game and could recite 
those of others. This penchant served me 
well as I progressed in both my athletic and 
academic endeavors. I chose mathematics 
as my undergraduate major, a subject that 
came naturally to me and neatly coexisted 
with my love for playing and watching 
football as a college student at Minnesota 
State University Moorhead.

When it became noticeably clear that 
my career would likely not involve sports, 
I began taking the time to appreciate the 
beauty of mathematics and the learning 
thereof. I was hooked by real analysis, 
abstract algebra, differential equations, and 
the idea that math was a living, breathing 
thing that could model the world with the 
guidance of people like me. As a result, I 
opted to pursue my Ph.D. at the University 
of Nebraska–Lincoln (UNL).

At UNL, I grew to love all aspects of pro-
fessional applied mathematics — from mod-
eling to data analysis and simulation to theo-
rem proofs. I developed models that led me 
into the discipline of mathematical biology, 
where I studied under world-class research-
ers and tackled important problems in popu-
lation ecology, environmental biology, and 
gene regulatory networks. I also enjoyed 
conducting cutting-edge research about the 
scholarship of teaching and learning, and 
I mentored two Research Experiences for 
Undergraduates groups while in Lincoln. 
This work then took me to the University 
of Wisconsin–La Crosse, where I founded 
the Math Bio Working Group and received 
multiple grants from the National Science 
Foundation to mentor undergraduate 
research at the interface of mathematics and 
biology. I was actively accomplishing the 
goals I had set when I decided to become a 
mathematician many years earlier. 

In 2015, my world changed. While in 
the middle of my academic career as a 
mathematician, I agreed to help a company 
called Pro Football Focus1 (PFF) collect 

1  https://www.pff.com

text and video content provide alternatives 
to traditional sports media. I have been 
lucky enough to appear on NFL Network 
and frequent talk radio shows in almost 
every major media market in the country to 
discuss fantasy football, gambling, and the 
NFL draft. PFF’s work has been featured on 
NBC Sunday Night Football as well as the 
TODAY show. In fact, MSNBC’s nation-
al political correspondent Steve Kornacki 
used our simulation to analyze the playoff 

picture in the same engaging 
way he analyzed the elec-
toral map during the 2020 
U.S. election season.

My typical workday is 
never typical, and my math-
ematics training routinely 

comes into play through the habits of mind 
that are necessary to navigate the com-
petitive and ever-changing world of sports 
analytics. While PFF’s data set was already 
immense when I began working with the 
company in 2015—and even more so when 
I joined full time in 2018—the data we use 
to better understand the game of football 
continues to grow in both rows and columns 
each day. Staying up to date with the new-
est methods of generating insights from this 
data is no different than being privy to the 
latest theorems or models in mathematical 
biology. I therefore spend much of my time 
reading the work of other analysts, includ-
ing those within and outside my group, to 

determine whether I can integrate any of 
their ideas into my models. Does incorpo-
rating the continuity of a team’s offensive 
line reduce the errors in our fantasy football 
projections? Can adding the speed of a pass 
rusher’s first move off the line of scrim-
mage help sharpen our ability to employ 
machine learning to evaluate his talent 
level? What is the best way to utilize sub-
ject matter expertise to communicate our 
findings to stakeholders and ensure that the 
information will be used?

Throughout the course of both my own 
education and that which I gave my stu-
dents, the narrative always remained that 
one can do anything with a mathematics 
degree. There were times where I ques-
tioned such a notion, but ultimately my 
career path has convinced me that it really 
is completely true. The marketplace for 
sports analysts is quickly evolving but far 
less rigid than most. With so much public 
data readily available, your resume is the 
insight that you present to the world; do not 
be afraid to get started and share your work!

Eric Eager is the Vice President of 
Research and Development at Pro Football 
Focus (PFF), a worldwide leader in data 
and analytics. Prior to joining PFF, he 
was an applied mathematician who studied 
mathematical biology, ecology, and the 
scholarship of teaching and learning.

and analyze data for the National Football 
League (NFL) and college football. PFF 
found its way into my world through my 
weak interests in fantasy football and the 
plight of my favorite team, the Kansas City 
Chiefs. The organization was collecting and 
analyzing data in a way that I had never 
seen. “Moneyball for football,” I thought. 
I was already watching these games reli-
giously, so I figured that getting paid to 
do so would keep everyone in my family 
happy. My mother thought I 
was wasting my time.

At the time, researchers 
were doing little in the way 
of mathematical or statisti-
cal analysis with this type 
of information. This fact sur-
prised me but ended up being extremely 
advantageous. I knew that nearly all of 
the NFL teams were paying PFF for its 
services; here was an opportunity for me to 
use my skills as an applied mathematician 
to finally make a difference in the game I 
loved so much. I was learning more about 
football and data science than I ever thought 
possible and pushing my professional capa-
bilities forward with each day.

By 2018, my colleague George Chahrouri 
and I had developed enough quality foot-
ball-based machine learning models for PFF 
CEO Neil Hornsby and former Cincinnati 
Bengal and PFF majority owner Cris 
Collinsworth to offer us the job of a life-
time: the opportunity to work full time in 
football as data scientists for the world’s 
most prominent football data company. 
While it was not easy to leave my position 
at UW–La Crosse, especially because I had 
just earned tenure the previous year, it was 
a risk I decided to take.

Now almost three years later, I have 
held several different roles at PFF as the 
company continues to grow. From data 
scientist to Vice President of Research and 
Development,2 I have consulted with teams 
on the use of our data to evaluate players, 
coaches, and front office members. I have 
also mentored other employees who have 
grown to do the same thing. When PFF 
moved from a data provider to an analysis 
company, our group began to build machine 
learning models for fantasy football and 
simulators for gambling. Our dashboards 
and contract projections help pair agents 
with rising professional prospects, and our 

2  https://www.pff.com/analyst/eric-eager

A Mathematical Journey to Football
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Eric Eager (left) of Pro Football Focus (PFF) previews Super Bowl LIV between the Kansas 
City Chiefs and the San Francisco 49ers in Miami, Fla., with Soren Petro of Sports Radio 810. 
Photo courtesy of Soren Petro.
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By Mitchel Colebank

Graduate students across the fields of 
science, technology, engineering, 

and mathematics (STEM) routinely face 
an important post-degree career decision: 
academia or industry? Unfortunately, com-
panies rarely provide the title of “mathema-
tician” in job postings, which can make 
it difficult for new Ph.D. candidates in 
applied mathematics to fully understand 
the day-to-day responsibilities of industry-
based positions. But recent years have seen 
increased conversation and guidance about 
the importance of applied mathematics in 
business, industry, and government (BIG) 
settings. Furthermore, the boom of “big 
data” has created numerous quantitative sci-
ence jobs in organizations that specialize in 
healthcare, medicine, government security, 
and defense research. Given the wide range 
of current opportunities, applied mathemat-
ics graduates must think about which career 
paths are best suited for them.

In 2018, SIAM published BIG Jobs 
Guide: Business, Industry, and Government 
Careers for Mathematical Scientists, 
Statisticians, and Operations Researchers1 
to help students and early-career math-
ematicians understand the growing industry 
job market. Authors Rachel Levy, Richard 
Laugesen, and Fadil Santosa agree that the 
most common job titles for mathematicians 
include “data scientist,” “analyst,” and “soft-
ware engineer,” though other “quantitative”-
based titles are also abundant. It is thus wise 
for students to market themselves as more 
than simply mathematicians. “One miscon-
ception is that you can present yourself as a 
mathematician and people will automatical-
ly know what you bring to the table,” Levy 
said. “Job seekers should practice describ-

1  https://my.siam.org/Store/Product/
viewproduct/?ProductId=29783110

and pursuing her Ph.D. in applied math-
ematics. “My job as a quality engineer was 
not what I expected,” Ellwein Fix said. 
“I thought it would entail more long-term 
scientific problem solving, but I found that 
needs in manufacturing were primarily cus-

tomer-driven firefighting.”
Based on both her prior 

interest in industry and 
Ph.D. research in mathe-
matical biology, Ellwein Fix 
completed an internship at a 
large pharmaceutical compa-

ny while doing graduate work. Although the 
experience was both engaging and enjoy-
able, she ultimately accepted a postdoctoral 
position in bioengineering at Marquette 
University before securing an academic 
appointment in mathematics. “The reward 
of deriving mathematical bases for scien-
tific phenomena while being able to conduct 
outreach and teach young professionals 
solidified my desire for an academic posi-
tion,” she said. Ellwein Fix appreciates the 
freedom to chase her own research goals. 
She also commented on the varying time 
flexibilities of industry versus academia. 

In her industry job, Ellwein Fix was given 
brief timelines to complete projects and 
allotted only a short period to brainstorm 
and problem solve. Her academic position, 
however, permits a semi-flexible schedule 
that allows her to spend the appropriate 
time addressing new ideas in mathematical 
physiology while still meeting reserach, 
teaching, and administrative deadlines and 
maintaining a healthy work-life balance. 
The switch from industry to academia was 
therefore beneficial for Ellwein Fix, as it 
provided insight into both job markets that 
helps her advise undergraduate and gradu-
ate students on their career goals.

Switching from                
Academia to Industry

Conversely, switching from academia to 
BIG is more common. Charles Taylor left 
his position as an associate professor at 
Stanford University to cofound HeartFlow,2 
a company at the intersection of computa-
tional modeling, artificial intelligence, and 

2  https://www.heartflow.com

ing the types of problems that interest them 
and the ways in which they have tackled a 
problem with approaches that might be rel-
evant to a prospective employer.” Another 
common misconception is that industry jobs 
lack intellectual challenge or are focused on 
simple “number crunching” tasks. Laugesen 
offered an alternative viewpoint. “The prob-
lems in industry and government tend to 
require a broad range of expertise,” he said. 
“The mathematical scientist must therefore 
interface with team members who possess 
quite different conceptual toolboxes.”

One of the starkest differences between 
academic and BIG settings is the quantity 
of open positions. While most major met-
ropolitan areas—and many smaller regions 
as well—typically offer ample satisfying 
job prospects in industry, academia is less 
straightforward. Early-career academic 
professionals often must accept what is 
available, rather than target specific areas. 
Moreover, BIG jobs generally have clear-
cut working hours, whereas 
the burden of teaching, advis-
ing students, submitting grant 
proposals, and conducting 
personal research can greatly 
exceed the 40-hour workweek 
in academia. However, aca-
demic jobs frequently provide more intellec-
tual freedom for mathematicians to pursue 
their own research endeavors, while BIG 
positions are commonly created and funded 
to address specific problems.

Switching from                  
Industry to Academia

Though the switch from industry to aca-
demia might be uncommon, it is certainly 
possible. Laura Ellwein Fix, an associ-
ate professor of mathematics at Virginia 
Commonwealth University, spent several 
years in industry before returning to school 

Mathematics in Industry: What, When, and How?
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Figure 1. HeartFlow cofounder and chief technology officer Charles Taylor reviews a 
HeartFlow Analysis three-dimensional model. Figure courtesy of HeartFlow.

See Mathematics in Industry on page 12
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BLIS: BLAS and So Much More
By Field Van Zee, Robert van de 
Geijn, Maggie Myers, Devangi 
Parikh, and Devin Matthews

The Basic Linear Algebra Subprograms 
(BLAS) have profoundly impacted sci-

entific software development. This applica-
tion programming interface (API) supports 
basic linear algebra functionality, including 
vector-vector operations like dot product 
and axpy, matrix-vector operations like 
matrix-vector multiplication and rank-
1 updates, and matrix-matrix operations 
like matrix-matrix multiplication and solu-
tions for triangular systems with multiple 
right-hand sides. It enables portable high 
performance and a level of abstraction 
that upholds the development, maintenance, 
and readability of high-quality applications. 
Here we discuss the BLAS-like Library 
Instantiation Software (BLIS),1 which 
facilitates rapid instantiation of BLAS and 
BLAS-like operations and provides both the 
original interface as well as alternatives [9].

Scientists have long expected hardware 
and middleware vendors to deliver high-
performance implementations of BLAS; 
until the mid-1990s, only these propri-
etary solutions were available. The open-
source Portable, High-Performance ANSI 
C (PHiPAC) project [2]—and later the first 
widely-used Automatically Tuned Linear 
Algebra Software (ATLAS) implementa-
tion [10]—included important develop-
ments, such as the achievement of reason-
ably high performance via coding in C, 
autogenerating code, and autotuning param-
eters. In the late 1990s, Kazushige Goto 
introduced a new way of blocking matrix-
matrix multiplication that took advantage 
of two levels of cache memory in cen-
tral processing units [3]. At the time, this 
method improved performance by up to 10 
percent over ATLAS and existing vendor 
libraries. Goto’s approach—now called the 
Goto algorithm—became the foundation 
for GotoBLAS and still forms the basis 
for most of the highest-performing BLAS 
implementations, both proprietary and open 

1  https://github.com/flame/blis

source. His implementation lives on as a 
fork of GotoBLAS called OpenBLAS.

One drawback of GotoBLAS was that 
much of the source code targeted specific 
architectures in addition to specific BLAS 
operations. BLIS restructures Goto’s algo-
rithm so that this low-level, machine-specific 
code is limited to the implementation of a 
few “microkernels” within five levels of 
generic cache- and register-blocking loops 
(see Figure 1). Once the microkernels are 
implemented, all BLAS and BLAS-like 
functionality becomes instantiated and is 
ready for use. As with Goto’s algorithm, the 
rearrangement or packing of data at strategic 
points within the algorithm improves data 
locality and reduces the number of translation 
lookaside buffer (TLB) misses. It is impor-
tant to note that analytical models, rather 
than empirical tuning, determine the various 
parameters in BLIS [5]. This approach yields 
a more flexible, portable, and easily main-
tained framework that achieves nearly opti-
mal performance, as reported on the BLIS 
GitHub repository performance pages.2

The native interface that BLIS supports 
is object based, meaning that attributes 
like matrix domain (real versus complex), 
precision (half, single, double, or extend-
ed), dimensions, and storage format are 
hidden. BLIS also provides 
a native “typed” interface 
that resembles BLAS while 
offering extensions for vari-
ous features, including the 
specification of separate row 
and column strides for each 
matrix operand. Finally, BLIS contains a 
BLAS compatibility interface that imple-
ments the conventional BLAS API. Users 
can easily create their own interfaces that 
map to either of the underlying BLIS inter-
faces (object or typed).

BLIS does not only export top-level 
interfaces; it also exposes lower-level com-
ponents that researchers can compose in 
innovative ways. For example, BLIS can 
mix the domains and precisions of operands 
[8]. To support this feature, it incorporates 

2 https://github.com/flame/blis/blob/master/
docs/Performance.md

the necessary conversions into the pack-
ing component that already forms a part 
of the basic algorithm. This technique has 
also been employed for a separate library 
for tensor contraction called TBLIS [6], 
which avoids the necessary rearrangement 
of data that occurs when such operations 
are cast in terms of traditional BLAS. In 

addition, BLIS has enabled 
the practical implementa-
tion of Strassen’s algorithm 
[4]. These examples dem-
onstrate that BLIS is as 
much a conceptual toolbox 
for innovation as a tangible 

framework for code instantiation.
Since its debut on GitHub in 2012, BLIS 

has amassed a sizeable online community 
that includes volunteers who maintain pack-
ages for various distributions of Linux and 
other operating systems. Supported operat-
ing systems include Debian Linux, Ubuntu 
Linux, Gentoo Linux, Extra Packages for 
Enterprise Linux/Fedora Linux, openSUSE 
Linux, and GNU Guix. BLIS also offers 
macOS and Conda support, along with 
limited support for Windows dynamic-link 
libraries (DLLs). Users may download and 
compile the source code themselves via 
either git-cloned repositories or source 
snapshots in .zip or tarball formats. In 
addition to the “vanilla” distribution of 
BLIS that The University of Texas at Austin 
manages (in collaboration with academic, 
industry, and community partners around 
the globe), Advanced Micro Devices, Inc. 
(AMD) maintains3 a separate fork of BLIS 
that contains optimizations that are specific 
to Zen-based microarchitectures, as well as 
enhancements that their corporate custom-
ers request. An annual workshop called the 
BLIS Retreat4 provides a forum for many 
stakeholders from academia, industry, and 
government laboratories to exchange ideas 
and discuss the latest research.

While creating an entire framework—
with support from the National Science 
Foundation and industry gifts—has taken 
the better part of a decade, the techniques 
that underlie BLIS are remarkably sim-
ple. During a four-week massive open 
online course (MOOC) titled “LAFF-On 
Programming for High Performance,”5 we 
examine BLIS’s matrix-matrix multiplica-
tion to illustrate important issues in high-
performance computing. This course, which 
is part of a series of MOOCs,6 attracts both 
novices and experts and lowers barriers for 
entry into the field — much like BLIS low-
ers barriers to porting BLAS-like operations 
to new environments and architectures.

BLIS continues to grow by rapidly incor-
porating support for emerging architec-
tures and instruction sets—such as Intel® 

3 AMD selected BLIS as the foundation for its 
hardware-optimized BLAS library circa 2015.

4  http://cs.utexas.edu/users/flame/BLIS 
Retreat2020

5  https://www.edx.org/course/laff-on-
programming-for-high-performance

6  http://ulaff.net

Advanced Vector Extensions 512, AMD 
EPYC, ARM Scalable Vector Extension, 
and IBM POWER10—and addressing 
dense linear algebra operations beyond the 
traditional BLAS interface. The simplic-
ity of BLIS’s underlying techniques and 
concepts has enabled a myriad of improve-
ments. However, the BLIS framework—as 
a concrete instantiation of these ideas—has 
begun to reach certain limits. Instead, alter-
native one-off instantiations of the BLIS 
concept have enabled efficient tensor con-
traction [6], machine learning primitives 
[11], and even operations that are relevant 
to biostatistics [1]. But is it necessary to 
look beyond BLIS to address these exciting 
problems? We believe that the answer is 
“no” — or rather, the next great adventure 
for BLIS is to make it so.

This article is based on Robert van 
de Geijn’s invited talk at the 2020 SIAM 
Conference on Parallel Processing for 
Scientific Computing,7 which took place in 
Seattle, Wash., last year. Van de Geijn, Van 
Zee, and others received the 2020 SIAM 
Activity Group on Supercomputing Best 
Paper Prize for their paper on the BLIS 
framework [9]. Van de Geijn’s presentation 
is available on SIAM’s YouTube channel.8 
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BLAS-like Library Instantiation Software (BLIS): Working at the intersection of algorithms and 
architecture. Photo by Robert van de Geijn and Maggie Myers.

Figure 1. The BLAS-like Library Instantiation Software (BLIS) refactoring of the GotoBLAS 
algorithm as five loops around the microkernel. Image courtesy of [7].

SOFTWARE  AND 
PROGRAMMING

See BLIS on page 10



April 2021 SIAM NEWS • 9

The Rules of Contagion: Why Things 
Spread – and Why They Stop. By Adam 
Kucharski. Basic Books, New York, NY, 
July 2020. 352 pages, $30.00.

A book about pandemics that came 
off the presses just as COVID-19 

upended life as we knew it? Precious 
little about COVID itself? Terrible timing? 
Completely irrelevant?

Wrong on all counts. Adam Kucharski’s 
The Rules of Contagion is a deeply 
informed and widely accessible account of 
the evolution and breadth of model-based 
epidemiology. The subtitle proclaims the 
book’s scope: Why Things Spread – and 
Why They Stop. All of these “things” 
are timely; some are humorous, most are 
frightening. They include misinformation 
on the internet, gun violence in cities, viral 
tweets, financial crises, and the spread 
of genetic variants of diseases, including 
highly contagious COVID variants.

Kucharski, an associate professor and a 
Sir Henry Dale Fellow in the Department 
of Infectious Disease Epidemiology at the 
London School of Hygiene & Tropical 
Medicine, writes about—and works in—a 
data-driven side of applied mathematics 
that has taken center stage in the last year. 
The field is a perfect microcosm of the 
larger world that many SIAM members 
inhabit: mathematics, modeling, data, and 
computation, blended in whatever propor-
tions best suit the moment’s challenge.

Kucharski writes with a sense of pres-
ence—an awareness of unknown outcomes 
and possible alternatives—not with biblical 
certainty. He tells stories with the authority 
and personal insight of a feet-on-the-ground 
participant who is balanced by the judgment 
and perspective of experience.

In the first chapter, Kucharski offers 
“A Theory of Happenings” — a sketch 
of the origins of epidemiological models 
that is free of equations and jargon. He 
describes mechanistic models that arose 
naturally to answer questions beyond the 
reach of experiments, such as “Can malaria 
be stopped without killing every mosqui-
to?” As they evolved, the models revealed 
even more insight. The best, perhaps, was 
the possibility of herd immunity — the first 
of many points where Kucharski’s story 
touches today’s ongoing COVID-19 crisis.

These models were ultimately able to 
answer other questions as well. In 2015, 
the island of Martinique faced an outbreak 
of the mosquito-borne Zika virus. With 
Zika came Guillain-Barré syndrome, a mus-
cle-weakening immune disorder that can 
gradually paralyze a victim (and had coin-
cidentally threatened Kucharski throughout 
his childhood). What was the likely shape 
of the outbreak curve? Would the small 
island’s supply of eight ventilators suffice 
for a slow, flat outbreak or be overwhelmed 
by a rapid, sharp spike? Data-driven model-
ing predicted a slow, flat outbreak. In the 
end, no more than five patients at a time 
ever required the use of ventilators.

Kucharski’s allegiance to data is apparent 
throughout the book. Some SIAM members 
might be startled to hear his suggestion 
that the papers of Alfred Lotka and others 
led outbreak analysis “away from real-life 
epidemics.”1 Kucharski goes on to explain 
that two decades after Lotka, mathematical 
epidemiologist Klaus Dietz brought “the 
theory of epidemics out of its mathematical 
niche and into the wider world of public 
health” when he introduced the reproduc-
tion number R:  the average number of 
new infections that one infected person is 
expected to generate. Dietz recovered this 
powerful idea from a paper by malaria 
researcher George MacDonald.

Of course, R  and its subscripted rela-
tives have been prominently featured in 
the news since the arrival of COVID-19. 
SIAM News readers will likely appre-

1  And perhaps those readers will recall 
that “One’s meat is another’s poison.”

When Contagion Rules
ciate Kucharski’s subsequent description 
of the four factors that influence R. He 
calls these factors “DOTS” — Duration, 
Opportunity, Transmission probability, 
and Susceptibility. Here the 
rubber of mathematical mod-
eling meets the twisting road 
of real-life data.

The subsequent chapters are 
filled with Kucharski’s accounts of epidemi-
ological models’ insights into a wide swath 
of human endeavors and social challeng-
es, particularly those 
enabled by networks. 
Social influence, com-
puter viruses, and 
assaults on privacy 
are but a few exam-
ples. R  and DOTS 
are only two of many 
perspectives from 
which to penetrate 
the mysteries of these 
branching, diverg-
ing, and intertwining 
plot lines. The plea-
sures of reading The 
Rules of Contagion 
are the insights that 
result from artful and 
informed mathemati-
cal modeling; the 
worries are the threats 
of the malicious out-
breaks under study.

Kucharski’s ably-
told stories ignite such worries around the 
first computer worms, the Stuxnet worm 
that took control of Iranian uranium centri-
fuges, and the household Bluetooth devices 
that were surreptitiously commandeered 
to power denial-of-service attacks. Simple 
bots and deceptive websites notwithstand-
ing, Kucharski warns that “when it comes 
to online manipulation, it turns out that 
something much subtler—and far more trou-
bling—has been happening.” False informa-
tion from fringe websites can be laundered 
through legitimate news outlets “just as drug 
cartels might funnel their money through 
legitimate businesses to hide its origins.”

Kucharski analyzes these network-
enabled threats with the same informed 
perception he brings to contagious diseases 
and social ills. He demonstrates that under-
standing the relevant rules of contagion 
leads to strategies that defend against such 
threats. For example, some countermea-
sures to outbreaks of misinformation might 
“work by targeting different aspects of the 
reproduction number,” while studies of 
online contagion have indicated the sig-
nificance of broadcast events that amplify 
content. Events that disseminate misin-
formation are therefore points of attack, 
much like adult mosquitos are for malaria. 
After an outbreak of misinformation, math-
ematical models can estimate the preven-
tive effects of various mitigation efforts. 
Modeling this kind of contagion builds 
a framework for both development and 
assessment of policy options.

Kucharski argues persuasively for mak-
ing the components of the online informa-
tion ecosystem—including citizens, media 
outlets, political organizations, and social 
media platforms—“more resistant to manip-
ulation.” This complex process begins with 
a thorough understanding of contagion to 
avoid the risks that are associated with 
potentially blaming the wrong source or 
proposing overly simplistic moderation 
strategies; e.g., “bad air” was once thought 
to cause malaria. And some people have 
blamed masks for causing COVID.

Kucharski’s discussion of “Tracking 
Outbreaks” in the book’s penultimate chap-
ter directly connects to a present concern: 
the fear that the COVID-19 virus will 
evolve to outwit vaccines. Fortunately, pub-
licly-available, anonymous health records 
help researchers rapidly identify and fight 
dangerous genetic variants.

But the existence of these well-inten-
tioned public records turns Kucharski’s 
narrative to a different epidemic: assaults on 
privacy. Kucharski recounts the classic “out-

ing” of former Massachusetts 
Governor William Weld’s 
health records, which were 
extracted from supposedly 
anonymous hospital records. 

This assault utilized a simple “genetic 
code”—publicly available voter records 
and Weld’s name, age, and gender—to 

identify him. The 
resulting publicity 
eventually inspired 
significant changes 
to the way in which 
the U.S. stores and 
shares health-related 
data.2 Kucharski 
offers additional 
disturbing examples 
about the many 
cracks in the shields 
that supposedly pro-
tect personal data.

The book’s clos-
ing chapter, “A Spot 
of Trouble,” pro-
vides an insider’s 
prescient closing riff 
on what most news-
paper readers now 
know about pandem-
ics, misinformation, 
and other problems. 

Kucharski specifically warns that “the big-
gest challenges are often practical rath-
er than computational,” and adds that the 
messy, complicated nature of datasets reflect 
the human lives on which they are based.

2  Not to mention fruitful research into 
differential privacy, among other forms of 
protection. See [1] for more details.

The Rules of Contagion is relevant to 
anyone who is interested in the roles of 
modeling and science in general; mathemat-
ical and biological barriers are nearly non-
existent. In fact, early chapters could per-
fectly frame an upper-level undergraduate 
or beginning graduate seminar. Participants 
could pair the text’s descriptions of an 
epidemiological problem with the corre-
sponding mathematics and modeling in 
papers from the complete bibliography (as 
could any reader seeking more technical 
detail). Readers could also draw on the 
closing chapter’s daunting ethical dilemmas 
to approach a more complicated objective 
of broad scientific education: preparing 
students to fulfill the social obligations con-
ferred by the gifts of scientific skill.

No one owns the rules of contagion. They 
are part of the shared grounds of scientific 
understanding and public good, and they 
arise in surprising settings. As a practitioner 
of the arts that he describes, Kucharski is a 
lively, intelligent, and well-informed guide 
to the data-heavy side of contagion model-
ing. His tour is alternately entertaining, 
gripping, and alarming, especially in this 
time of pandemic fear, misinformation, and 
crumbling privacy protections.

The Rules of Contagion provides an intel-
lectual adventure ride and moral challenge; 
an account of scientific accomplishment; a 
list of daunting, as yet unanswered ques-
tions; and a narrative of battles against 
diseases won, lost, and in flux. Few books 
of its type are successful on so many fronts.
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BLIS
Continued from page 8

Each year, the United Nations Educational, 
Scientific, and Cultural Organization 

(UNESCO) and the L’Oréal Foundation 
honor five exceptional female scientists with 
the L’Oréal-UNESCO For Women in Science 
International Awards.1 Recipients are recog-
nized for their scientific accomplishments, 
unique career paths, outstanding talents, and 
profound commitment to their professions in 
traditionally male-dominat-
ed fields. The award com-
mittee selects one recipient 
from each of five different 
regions: Africa and the Arab 
States, Asia and the Pacific, 
Europe, Latin America and 
the Caribb-ean, and North 
America. SIAM is  happy to 
share that Alicia Dickenstein 
(University of Buenos 
Aires) is the 2021 laure-
ate for the Latin America 
and Caribbean region!

Per the prize citation, 
Dickenstein was “recog-
nized for her outstanding 
contributions at the forefront of mathe-
matical innovation by leveraging algebraic 
geometry in the field of molecular biology. 
Her research enables scientists to under-
stand the structures and behavior of cells 
and molecules, even on a microscopic scale. 
Operating at the frontier between pure and 
applied mathematics, she has forged impor-
tant links to physics and chemistry and 

1  https://en.unesco.org/science-sustainable-
future/women-in-science/laureates

enabled biologists to gain an in-depth struc-
tural understanding of biochemical reac-
tions and enzymatic networks.”

Dickenstein, who received her Ph.D. 
from the University of Buenos Aires, was 
recently elected to the SIAM Council and 
began her three-year tenure on January 1, 
2021. She is also a member of the SIAM 
Activity Group on Algebraic Geometry 

and the SIAM Activity 
Group on the Life 
Sciences, and she serves 
as a corresponding edi-
tor for the SIAM Journal 
on Applied Algebra and 
Geometry. Dickenstein’s 
research interests center 
on the computational 
aspects and applications 
of algebraic geometry, 
particularly in the con-
text of polynomial and 
biological systems.

“My first reaction to 
receiving one of the five 
2021 L’Oréal-UNESCO 

For Women in Science International Awards 
was, of course, great happiness on a personal 
level and gratitude to my family, students, 
and coauthors,” Dickenstein said. “I very 
much hope that all the publicity around this 
award helps girls realize that mathematics is 
a career that everyone, regardless of gender 
(as well as race, social status, etc.), can 
choose and enjoy. I am also happy because 
math is not a very ‘popular’ discipline, so 
this is a recognition for all of us.”

Alicia Dickenstein Receives the 
L’Oréal-UNESCO For Women 
in Science International Award

Alicia Dickenstein of the University 
of Buenos Aires is also a member 
of the SIAM Council.
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[11] Yu, C.D., Huang, J., Austin, W., Xiao, 
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zation for the k-nearest neighbors kernel on 

x86 architectures. In SC’15: Proceedings of 
the international conference for high per-
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Field Van Zee, the chief architect of BLIS, 
is a research scientist at the Oden Institute 
for Computational Engineering and Sciences 
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Here is a twist on a well-known prob-
lem in mechanics. A cube rests on a 

sphere, as in Figure 1. The contact is of no-
slip kind. What condition on the sizes h  and 
r  guarantees stability of the equilibrium?

A Solution by Motion
The standard solution involves express-

ing the cube’s potential energy V  as a func-
tion of the tilt angle q  and expressing the 
minimality condition V ′′ >( )0 0  in terms of 
a  and r.  Although this is straightforward, 
it involves some calculation and is not 
very instructive. Instead, here is a solution 
with no calculation. If we roll the cube 
to the right without sliding (as in Figure 

2), both the cen-
ter of mass and 
the contact point 
with the sphere 
move to the right. 
The solution then 
amounts to the 
observation that 
the equilibrium is 
stable if the hori-
zontal velocities 
satisfy v v

C
>

c.m. 
at the moment 
the equilibrium
is passed.

To translate 
this criterion into the condition on r  and 
a, let w  be the cube’s angular veloc-
ity; w  is thus also the angular velocity at 
which contact C  travels around the circle. 
We therefore have

v a v r
Cc.m.

= =w w, .

The former is valid at the moment the 
equilibrium is passed since C  is the 
instantaneous center of rotation and a  is 
the distance of the center of mass to C . 
Substituting these values into our stability 
criterion v v

C
>

c m. .  gives

r a> .

In other words, the equilibrium is stable if 
and only if the square does not hang over 
the sides of the circle.

Stability of Tilted Cubes
A cube can rest in equilibrium on any 

point of the sphere with | | /θ π< 4 (see 
Figure 4a); for the cube to be in equilib-
rium at a given q, the point of contact must 

be at the distance h tan q 
from the midpoint of the side.

Which (if any) of these 
equilibria are stable? The 
answer is given by (2). We 
have k r1 1= / ,  k2 0= ,  and 
h a= /cos ;q  the tilted equi-

librium in Figure 4 is thus stable precisely if

	         a r< cos .2 q 		  (3)

For q  just under p/ ,4  the largest stable 
cube will be just under a r= / .2

A Geometrical Criterion
Condition (3) looks nicer when expressed 

geometrically: the equilibrium is stable iff 

the cube’s center lies below the arc of the 
ellipse with the semiaxes r  and 2r  (see 
Figure 4b). If we extend the cube’s base (by 
a weightless extension) as in Figure 4b, all 
points on the upper semicircle—not only 
the ones with | | /θ π< 4—can serve as 
equilibrium contact points. 

The counterintuitive stability of the small 
cube in Figure 4b contrasts with the insta-
bility of an inverted pendulum. The differ-
ence is that the “pivot”—i.e., the contact 
point—for the cube responds to perturba-
tions so as to create a restoring torque: an 
inanimate stabilizing mechanism.

The figures in this article were provided 
by the author.

Mark Levi (levi@math.psu.edu) is a pro-
fessor of mathematics at the Pennsylvania 
State University.

Equivalence of v v
C
>

c m. . With 	  
the Minimality of V( )0

According to Figure 2b, the velocity 
v
O
C O′ ⊥
′ ′ and v

O ¢  is hence sloped upwards 
so that the potential energy is increasing.

General Shapes
The same idea applies to a general situa-

tion of a rock that is resting on a stationary 
rock (see Figure 3). As we roll the rock, the 
velocity of the center of mass is horizontal at 
the moment the equilibrium is passed;1 the 
stability criterion is thus v v

C
cos .q>

c.m.
 To 

transform this into a geometrical condition, 
we note that v h

c m. .
=w  and

 
 
 		             

(1)

      

v
k kC
=
+
w

1 2

,

where k k1 2,  are the curvatures 
of the two rocks (positive for 
convex rocks). Indeed, Figure 
3b depicts an infinitesimal segment of the 
rock that has rolled from position AB  to 
a new position AB¢ ¢  in time dt  and has 
rotated (in addition to translation) through 
the angle wdt.  Therefore,

∠ =′( , )b b dtw

(we count clockwise rotation as positive to 
avoid dealing with negatives). On the other 
hand, again treating all angles as positive,

∠ =∠ +∠ = +′ ′( , ) ( , ) ( , ) .b b a b a b k ds k ds2 1

Comparing the last two expressions 
for ∠ ′( , )b b  yields wdt k k ds= + =( )1 2
( ) ,k k v dt

C1 2+  which amounts to (1).
We conclude that the rock in Figure 3 is 

stable iff v v
C
cos ,

. .
q>

c m
 i.e., if

				     (2)
				     

    	       

cos
.

q
k k

h
1 2+

>

For the cube on the sphere in Figure 1, 
k r1 1= /  and k2 0= ,  h a= ,  q= 0,  and (2) 
agrees with the result r a> .

1 This is true because the velocity of O  is 
orthogonal to the line OC  from the instanta-
neous center of rotation C,  and because OC  is 
vertical at the moment in question.

A Moving Argument

Figure 1. There is no 
slip at the contact point.

Figure 2. Rolling the cube. 2a. If the contact point gets ahead of the center of mass in the 
horizonal direction, the gravitational torque is then restoring towards the equilibrium. 2b. More 
compactly, stability criterion is v v

C
>

c m. .
.

Figure 3. Rolling the rock. 3a. Stability criterion for a rolling rock: v v
C
cos .

. .
q>

c m
 3b. v k k

C
= +w/( ).1 2

Figure 4. Stability of tilted cubes. 4a. A cube can be in equilibrium at any angle | | / .θ π< 4  
4b. The equilibrium is stable iff the cube’s center lies below the ellipse with semiaxes r  and 2r.

MATHEMATICAL 
CURIOSITIES
By Mark Levi
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By David Edelman                   
and Jonathan Crook

The following is a short reflection from 
two of the authors of Credit Scoring and 
Its Applications (Second Edition), which 
was published by SIAM in 2017 and writ-
ten by Lyn Thomas, Jonathan Crook, and 
David Edelman. The updated, more robust 
second installment is a follow-up to the 
first edition, which was released in 2002. 

This text serves as an analysis of sec-
tion 7.4, entitled “Behavioral Scoring: 
Orthodox Markov Chain Approach.” 
Portions of this summary have come 
directly from the book and were modified 
slightly for clarity.

Researchers first suggested the idea of 
modeling consumers’ repayment and 

usage behavior in the early 1960s. They 
sought to identify the different possible 
states of a borrower’s account and esti-
mate the chance of the account moving 
from one state to another between billing 
periods. These states are primarily contin-
gent upon the account’s current position 
and recent history, but can also depend on 
the initial application. Therefore, typical 
information that one could use to deter-
mine an account’s state might include its 
current balance, the number of overdue 
time periods, and the number of “remind-
er” letters in the last six months. The 
object is to define states in such a way that 
the probability of moving to any particular 
state at the next billing period is depen-
dent only on the account’s current state; 
this is the definition of a Markov chain.

In 1983, Jarl Kallberg and Anthony 
Saunders employed a simple version of this 
model [5]. The data in their example led to a 
stationary transaction matrix (see Figure 1). 

Thus, if all of the accounts have no 
credit—i.e., p0 1 0 0 0 0=( , , , , )—at the 
beginning, the account distribution is 
p1 0 79 0 21 0 0 0=( . , . , , , ) after one period. 
After subsequent periods, it becomes

p2 0 64 0 32 0 04 0 0=( . , . , . , , ),

p4 0 468 0 431 0 070 0 023 0 008=( . , . , . , . , . ),

p10 0 315 0 512 0 091 0 036 0 046=( . , . , . , . , . ).

This is a useful way to estimate the amount 
of bad debt that will appear in future peri-
ods. After 10 periods, the model estimates 
that 4.6 percent of the accounts will be bad.

One of the first Markov chain models of 
consumer repayment behavior was a cred-
it card model suggested by Richard Cyert, 
H. Justin Davidson, and Gerald Thompson 
[2], wherein each dollar owed would jump 
from state to state. This model had trouble 
accounting for conventions and allocat-
ing part payments; a different group later 
addressed these concerns [8]. A. Wayne 
Corcoran suggested another variant of 
the model that utilized different transition 
matrices for accounts with different sized 
loans [1], and David Edelman proposed 
a version with different transition matri-
ces for different months of the year [4]. 
Kallberg and Saunders also investigated 
models for which the state space depends 
on the amount of the opening balance and 
the level of repayments [5].

In more sophisticated Markov chain 
models, each state s  in the state space 

They must also decide the length of time for 
which they will undertake an action and plan 
the actions’ sequence. The defaulters’ state 
is described by a lender’s current collection 
action, the ongoing duration of that action, 
and the recovery rate that was obtained from 
the borrower when the current action began. 
Researchers used this type of Markov deci-

sion process model to find 
the sequence and duration 
of actions that maximize the 
expected recovery rate [3].
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Enjoy this passage? Visit the SIAM 
bookstore1 to learn more about Credit 
Scoring and Its Applications2 and browse 
other SIAM titles.

David Edelman, who holds degrees in 
statistics from the University of Glasgow 
and Harvard University, embarked on 
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ing in credit risk management for two 
major Scottish banks. In 2003, Edelman 
began operating as a freelance consul-
tant, interim manager, and trainer. In the 
past 17 years, he has served hundreds 
of clients from over 30 countries and 
across five continents. Jonathan Crook 
is Professor of Business Economics and 
Director of the Credit Research Centre 
at the University of Edinburgh’s Business 
School. His research concentrates on sta-
tistical models to predict credit risk. Crook 
has published almost 70 journal articles, 
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has three components: 
s b n i=( , , ).  Here, b  is the 
outstanding balance, n  sig-
nifies the number of current 
consecutive periods of non-
payment, and i  represents the other char-
acteristics of importance. One can use the 
anticipated one-period reward that the lender 
makes from a customer in each state to cal-
culate the expected total profit from that cus-
tomer under any credit limit policy. In fact, it 
is possible to calculate the credit limit policy 
that maximizes the profits for 
a given level of bad debt — 
or minimizes the bad debt for 
a given level of profit.

We employ dynamic 
programming to calculate 
the chances of default-
ing, D b n i( , , ),  for a simple example in a 
mail-order context. Utilizing past data, we 
develop a table of default probabilities for 
each state and the expected value of the 
state’s orders (see Figure 2). The states are 
ordered by increasing probability of default, 
where the total expected order value is 
£ , .1 000  The lenders must then decide on 
an acceptable default level and value of 
lost orders. Management has to thus choose 
which default level D*  is acceptable. Since 
D b n i( , , ) is increasing in b, one can solve  
D L n i n i D( ( , ), , ) *=  to find the credit limit 
L n i( , ) for each state ( , ).n i

This Markov chain model has two ele-
ments. The first element is the states, or 
the consumers’ repayment performance; 
a transition matrix describes the repay-
ment behavior’s dynamics. The second is 
a reward function: the value of the con-
sumer’s state to the organization. The addi-
tion of a third element—potential decisions 
of the lender that impact the rewards and 
transitions between states—yields a Markov 
decision process, which is an example of 
stochastic dynamic programming.

We can extend the previous example to 
solve for the optimal credit limit policy, 
which serves as a function of the state s 
and the number of periods until the end of 
the time horizon.

More recent Markov decision models that 
maximize the credit limit policy employ other 
state descriptions. One research group—
which received the Daniel H. Wagner Prize 
for Excellence in the Practice of Advanced 
Analytics and Operations Research—uti-
lized states with six components, such as 
default rate, usage, purchase behavior, and 
repayments behavior and amount [7]. Each 
component was split into two, three, or four 
bands for a total of nearly 600 behavioral 
states. Actions in this model included setting 
the credit limit (10 levels) and deciding what 
interest rate to charge (five levels).

Meko So and Lyn Thomas allowed 10 
credit limits and used behavioral score 
bands—along with “defaulted,” “closed,” 
and “inactive”—as their model’s eight 
states [6]. They found that a second-order 
Markov chain that defines the state based 
on the current and previous behavioral 
score bands provides a better fit to the 
data. They also introduced a method that 
estimates the transition probabilities from 
states with minimal data.

One can apply the Markov decision 
approach to optimize the collection process 
for defaulted loans. In this case, the lender 
seeks to recover as much of the defaulted 

debt as possible; the amount 
recovered as a fraction of 
the original defaulted debt 
is called the recovery rate. 
Lenders can undertake a 
number of actions with vary-
ing levels of harshness and 
cost implications, ranging 
from gentle reminder tele-
phone calls to legal action. 

Behavioral Scoring: Markov Chains 
and Markov Decision Processes

Figure 1. A stationary transition matrix based on the model 
by Jarl Kallberg and Anthony Saunders.

Figure 2. Table of default probabilities for each state, along with the expected value of the state’s orders.

FROM THE SIAM 
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By Joanna Wares and Luis Melara

For students studying science, technol-
ogy, engineering, and mathematics 

(STEM), the rich realm of undergraduate 
research serves as a high-impact learning 
environment that transports them beyond 
the classroom and allows them to make 
original contributions to their disciplines. 
Research projects—during which students 
work on problems that align with their 
personal interests and possible career aspi-
rations—have thus become essential com-
ponents of many undergraduate programs. 
Applied and industrial mathematics under-
graduates who partake in research learn to 
apply proper mathematical and computa-
tional techniques, hone their communica-
tion skills, write journalistic articles, and 
summarize methods and results. These writ-
ing tasks are also valuable learning experi-
ences that help prepare students for higher 

publication process, students write and 
submit manuscripts, serve as correspond-
ing authors, generate responses to review 
reports, and communicate directly with 
members of the SIURO Editorial Board 
(industry experts and international faculty 
from top universities and liberal arts colleg-
es with expertise in the publication’s broad-
ranging fields). Faculty members, graduate 
students in Ph.D. tracks, or industry leaders 
review all submissions and produce referee 
reports, which provide important feedback. 
Student authors may also receive review 
reports that request minor and/or major 
revisions; they can choose to address and 
respond to these amendments and resubmit 
their work for reconsideration, as is typical 
with peer-reviewed publications.

In recent years, disease modeling has 
been a particularly popular research area 
for students. An example of a success-
ful article is Emily Kelting’s 2018 paper 
about Toxoplasma gondii in cats, which 
can also affect pregnant women [1]. This 
work describes conditions that minimize 
the risks of parasite transfer from cats to 
other species (see Figure 1). Unsurprisingly, 
COVID-19 was a popular research area in 
2020, and SIURO authors approached the 
topic with various techniques. All SIURO 
papers are open access and available online. 

SIURO will be undergoing several 
changes to its publication policies in 2021. 
Beginning in the spring of this year, all 
research mentors will now be listed as 
“project advisors” on published papers; 
proper citations of contributors will thus 
include project advisors as well as the 

undergraduate authors. In addition, Joanna 
Wares (University of Richmond) was 
appointed editor-in-chief of SIURO in 
January after serving as an associate editor 
for five years. She succeeds Luis Melara 
(Shippensburg University), who led the 
publication for the last six years. During 
his time as editor-in-chief, Melara system-
atized and simplified SIURO’s submission 
system to improve ease of use for submit-
ters and reviewers. He even developed a 
system and criteria for review that ensures 
the accomplishment of SIURO’s goals: 
encouraging undergraduate research and 
providing an outlet for meritorious study.
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education or postgraduate positions. SIAM 
Undergraduate Research Online (SIURO)1 
is a web-based publication that encourages 
students to undergo this process by offering 
them a space to showcase their work.

SIURO was established in 2008 to pub-
lish high-quality undergraduate research in 
applied and computational mathematics. The 
publication covers a wide array of topics, 
including analysis, discrete mathematics, 
operations research, optimization, statistics, 
dynamical systems, modeling, and general 
computation. Student authors employ these 
methods in applications that pertain to a 
variety of fields, ranging from the physical 
and life sciences to finance and management.

One of SIURO’s primary objectives is 
to provide undergraduates with a platform 
where they can experience peer review 
procedures firsthand. Throughout the 

1  https://www.siam.org/publications/siuro

SIAM Undergraduate Research Online Prepares 
Students for Career Publishing Endeavors

Figure 1. This image depicting the transfer of Toxoplasma gondii between cats and the envi-
ronment was featured in a 2018 SIAM Undergraduate Research Online (SIURO) article by 
Emily Kelting. Figure courtesy of [1].

healthcare (see Figure 1, on page 7). Taylor 
had previously worked in industry for sev-
eral years after obtaining his bachelor’s 
and master’s degrees, before opting to pur-
sue a Ph.D. in mechanical engineering at 
Stanford. His Ph.D. thesis focused on the 
integration of computational fluid dynam-
ics (CFD) with medical imaging modali-
ties to predict blood flow and pressure in 
patient-derived geometries. After becoming 
a professor at Stanford, Taylor saw a chance 
to bring his ideas to the public through 
the healthcare field. “I went into academia 
because there was an opportunity to work on 
a hard problem for a long time, which a lot 
of industries weren’t ready for yet,” Taylor 
said. “I decided to start HeartFlow because I 
was at a point where I could pursue the ideas 
from my Ph.D. on a larger scale.”

HeartFlow has since provided a new 
FDA-cleared tool for diagnosing and man-
aging coronary artery disease, all driven by 
Taylor’s initial work in cardiovascular CFD 
and the growing field of machine learning 
(see Figure 2). “Use your thesis as a starting 
point for your career,” Taylor said. “Ask 
yourself three things: What do you love? 
What are you good at? And what does the 
world need? Know these three things and 
always be flexible; what you start doing after 
your degree will change over the years.”

Which Should I Choose?
The choice between a career in academia 

or BIG ultimately depends on individual 
preference, research area, and desired life-
style. Given the complexity of the decision, 
SIAM has taken numerous steps to better 
educate undergraduate and graduate students 
on the nuances of BIG careers. For example, 
mathematical sciences students and fac-
ulty can utilize SIAM’s Visiting Lecturer 
Program,3 which provides the community 

3  https://www.siam.org/students-education/
programs-initiatives/siam-visiting-lecturer-
program

with a roster of experienced mathemati-
cians and computational scientists from both 
academia and BIG that are willing to speak 
to students about their experiences. The 
Tondeur Initiatives,4 funded by Philippe and 
Claire-Lise Tondeur in 2018, also provide a 
repository of programming that aligns with 
the BIG Math Network5 and pertains to BIG 
internships and career opportunities.

One obvious limitation of academia is the 
job market itself. “The number of tenure-
track positions remains fairly flat, while the 
number of other types of positions is explod-
ing,” Levy said. While this remark is true in 
typical years, the COVID-19 pandemic has 
further complicated the situation. In fact, a 
recent article in Science reports a 70 percent 
decrease in STEM tenure-track openings in 
the U.S. when compared to the previous year 
[1]. Taylor suggests that new applied math 
Ph.D.s consider possible academic employ-
ment in departments beyond mathematics. 
“Interdisciplinary scientists can be quali-
fied for different department positions,” he 
said. For instance, experts in uncertainty 
quantification may find suitable placement 
in mechanical engineering departments, 
whereas those who excel at mathematical 
biology might be ideal candidates for bio-
statistics or developmental biology depart-
ments. The same logic applies to industry 
positions, where the role of “data scientist” 
takes many different forms depending on 
whether one is employed at a national labo-
ratory or social media company.

Ellwein Fix encourages early-career 
mathematicians to use conferences—includ-
ing virtual gatherings—as opportunities to 
learn more about academic versus BIG 
careers. “Don’t hesitate to contact the people 
you meet at conferences,” she said. “Senior 
researchers and professors expect emails 
from students who ask to meet during con-
ferences, so be sure to reach out to those 
who are making an impact in your field of 
study.” Ellwein Fix still communicates with 

4  https://www.siam.org/students-education/
programs-initiatives/tondeur-initiatives

5  https://bigmathnetwork.org

multiple BIG contacts that she encountered 
at prior conferences; they often inform her 
of new industry jobs for her own students. 
“Many of my career opportunities came 
from staying in touch with individuals I met 
during my Ph.D.,” she said. Some confer-
ences also host career fairs—the 2021 SIAM 
Conference on Computational Science 
and Engineering6 is one such example—
which are great ways for students to learn 
about industry jobs at different companies. 
Representatives from these companies can 
also answer questions about work-life bal-
ance, job growth, and benefits.

Taylor likens the entry-level, assistant 
professor position in academia with hav-
ing a startup company. “As an assistant 
professor, you have numerous new respon-
sibilities to which you must adapt, all while 
trying to obtain your own funding,” he said. 
This is especially true at Research 1 institu-
tions. Industry positions are a bit different. 
“You will likely have to stay in your own 
lane in an industry job at a big company,” 
Taylor continued. “It can be easy to get 
stuck in the same role, so it is important to 
have a job at a company where you know 

6  https://www.siam.org/conferences/cm/
program/career-fair/cse21-career-fair

you can grow.” Because both academic and 
industrial or government jobs have their 
own pros and cons, new graduates should 
assess their individual goals inside and 
outside of their professions.

Many resources are available for cur-
rent and recent graduate students who are 
deciding between careers in industry and 
academia. The BIG Jobs Guide and BIG 
Math Network provide information about 
opportunities outside of the realm of aca-
demia, in addition to resources about BIG 
careers. Additional information is acces-
sible via SIAM’s Career Resources page.7 
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Figure 2. The HeartFlow Analysis interactive three-dimensional model enables physicians to 
precisely diagnose and manage coronary artery disease. Figure courtesy of HeartFlow.
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