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Abstract

Gang violence has plagued the Los Angeles policing district of Hollen-
beck for over half a century. With sophisticated models, police may better
understand and predict the region’s frequent gang crimes. The purpose
of this paper is to model Hollenbeck’s gang rivalries. A self-exciting point
process called a Hawkes process is used to model rivalries over time. While
this is shown to fit the data well, an agent based model is presented which
is able to accurately simulate gang rivalry crimes not only temporally but
also spatially. Finally, we compare random graphs generated by the agent
model to existing models developed to incorporate geography into random
graphs.

Introduction

Gang violence is a prevalent problem in the Los Angeles policing district
Hollenbeck [13]. Just east of downtown, it is among the top three most violent
Los Angeles policing regions, despite having a total area of just 15.2 square miles
[13]. Gang related crimes are not a new problem in Hollenbeck; some of the
gangs have existed since before WWII [13]. Thus heated battles over territory
are a deeply rooted phenomenon and central to the gang related violence that
plagues Hollenbeck every day.
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Figure 1: Map of Hollenbeck’s census block groups and gang territories.

Police data on gang crimes from 1999 to 2002 reveal a plethora of gangs in
Hollenbeck. This work only considers the 33 gangs that have committed over
four crimes against other gangs in this time period.

Gang rivalries are analyzed by modeling their behavior through time and
space. In Section 1, a self-exciting point process called a Hawkes process is
presented to model rivalry behavior over time. This point process has been
used in seismology to model the rate of earthquakes occuring; the rate jumps
up following an event as one expects aftershocks. In our case, the expected
aftershocks are the retaliations following gang crimes.

While the Hawkes process is shown to fit the data better than the memory-
less Poisson process, an ideal model can mimic both the temporal and spatial
distributions of a rivalry’s crimes. To accomplish this, in Section 2 an agent
based model is used to simulate gang activity. Agent based models have been
used in a vast number of subjects, including biology and epidemiology [5][12][15].
Such a model is applicable to our problem because it allows for gangs to have
individual gang members moving with bias toward other gangs, fighting and
building rivalries. This model is shown to closely replicate actual gang behav-
ior. Finally, graphs from the agent based model are compared to a random
method of connecting nodes called Geographical Thresholding. The method in-
corporates the distance between nodes and randomly assigned weights to decide
whether or not to make a connection.
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Data

The data we use in producing our models were provided by the Los Angeles
Police Department: 1200 gang related violent crimes that occurred between
1999 and 2002. Each entry lists the latitudinal and longitudinal coordinates, the
victim gang, the suspected gang, the type of crime, and the date and time of the
incident. As the focus of this study is gang rivalries, events were removed from
the data set when only one gang was involved or when incomplete information
was available.

1 Hawkes Process

1.1 Motivation

The Hawkes process is a self-exciting point process commonly used in seis-
mology to model earthquakes. There is a background rate at which events can
occur; once an event does occur, the rate jumps up as aftershocks are expected
to follow the initial event. In the case of gangs, the expected aftershocks are
the retaliations that follow gang crimes. The Hawkes process is compared to
the Poisson process and shown to be, in general, a better fit to the data. At-
tention is restricted to crimes between specific pairs of gangs, as the activities
of these pairs drive the dynamics of the system. Only rivalries with more than
ten crimes over the three year period from 1999 to 2002 are considered, since
parameter estimation based on too few crimes may be inaccurate.

Figure 2: A plot of the Locke-Lowell rivalry’s crimes over time with the respec-
tive Hawkes process rate function, λ (t).

1.2 Equations

The rate function for the Hawkes process is:

λ(t) = µ+ k0

∑
t>ti

g(t− ti;w) (1)

µ Background Rate
k0 Scaling Factor
w Rate of Decay
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The rate function λ(t) is the expected rate at which events occur. µ is the
background rate at which events can occur, k0 is a scaling factor for the effect
of a crime, and w is the rate of decay for a crime’s effect [9]. For the function
g(t−ti;w) we used an exponential distribution, we−w(t−ti). A higher µ increases
the overall rate of crimes. A higher k0 increases the jump in the rate function
following a crime. A smaller w, and thus a slower decay, means that the rate
stays elevated longer following a crime. When the rate is elevated, more crimes
are likely to happen, which in turn increases the rate further. Hence, the process
is self-exciting.

The parameters for the Hawkes process are obtained using maximum likeli-
hood estimation. The log likelihood function is:

log L =
N∑
i=1

log λ(ti)−
∫ T

0

λ(t) dt (2)

L Likelihood Function
N Number of Events
T Total Time (Days)

The log likelihood function is maximized with respect to k0, w, and µ [9]. In
the case of our police data, it is fit between a pair of gangs. Each ti is the
time of a crime, measured to the hundredth of a day, between the two gangs.
Built into the log likelihood function is the constraint that λ (t) integrates to
N . The total time window of our crime data, T , is 1043.6 days. Due to the
nature of nonlinear maximization, different sets of parameters can be obtained
when maximizing the function, based on the starting point given. One way to
check the accuracy of the parameters is to see that λ (t) does indeed integrate to
N . Many different starting points are experimented with to find the parameters
that both produce the highest log likelihood value and let λ (t) integrate exactly
to N .

1.3 Model Comparison

In this section, we first point out the predictive nature of the Hawkes process,
as one can run simulations with a rivalry’s parameters. We then compare the
Hawkes process to the Poisson process using both a histogram analysis [10]
and the Akaike Information Criterion (AIC) [1]. To illustrate our methods, we
present figures for the rivalry between the Locke Street and Lowell Street gangs.
These two gangs committed 27 violent crimes against each other in a period of
1043.6 days from 1999 to 2002. MLE parameters are obtained as described in
Section 1.2. We summarize our findings with a table for the nine rivalries with
at least ten crimes.
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1.3.1 Simulations

Once parameters are obtained for a rivalry, one can run simulations to obtain
a rough prediction of the rivalry’s behavior in the future.

Figure 3: On top, a plot of the Locke-Lowell rivalry’s crimes over time with
the respective rate function, λ (t). On bottom, simulated crimes from a Hawkes
process with the Locke-Lowell rivalry’s parameters and the corresponding rate
function, λ (t).

1.3.2 Histogram Analysis

In this section we examine all inter-attack times ti − tj such that i > j. We
again use the Locke-Lowell rivalry to illustrate our methods. If the data come
from a Poisson process, then a histogram of inter-attack times will be roughly
uniform when looking at a short inter-attack time window (e.g. crimes less
than 90 days apart) due to minimal finite window effects [10]. This is because,
with an infinite window, inter-event times from a Poisson process are uniformly
distributed.

If the data come from a Hawkes process, there will be high frequencies
for short inter-attack times (e.g. crimes less than 30 days apart) due to self-
excitation [10]. The reason that self-excitation is expected is that gang crimes
are followed by retaliations. These high frequencies should decay quickly and
then become somewhat uniform or start to decay linearly due to finite window
effects [10].
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Figure 4: A histogram of Locke-Lowell inter-attacks times for the true data and
model simulations.

Above are the true inter-attacks times for the Locke-Lowell rivalry (left),
inter-attack times for 1000 Hawkes simulations with the rivalry’s MLE parame-
ters (middle), and inter-attack times for 1000 Poisson simulations with its MLE
parameter for the rivalry (right). The purpose of running 1000 simulations is
to capture the true distribution shape of each model with its respective MLE
parameters for the rivalry. It is the distribution shape over a fixed time win-
dow that matters here, not the vertical axis scale. The time window is 90 days,
hence there should be minimal finite window effects. The histogram distribution
matches that of the Hawkes process much more closely than that of the Pois-
son process. Due to the small number of data for each rivalry, the simulation
parameters are fit to the data used for comparison as is done in Short et al [10].
If more data were available, a better comparison would be to fit the parameters
to half of the data set and then compare it with the other half.

1.3.3 Akaike Information Criterion

We also compare the Hawkes process to the Poisson process using the Akaike
Information Criterion. It is defined as

AIC = 2k − 2 log L (3)

where k is the number of parameters in the model and log L is the value of the
maximized log likelihood function [1]. The Akaike Information Criterion gives
values to rank models such that the model with a lower AIC value is the better
fit [1]. This criterion penalizes models for having more parameters; however, for
the rivalries we examine the AIC generally supports the Hawkes process with
three parameters over the Poisson process with only one parameter.

This simple formula is derived by H. Akaike as follows: consider a maximum
likelihood problem over a family of models f(x|θ) with a vector parameter θ,
true parameter θ0 and n observations. Let J be the (positive definite) Fisher
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information matrix, which gives a norm || ||J2 . When θ is restricted to vary
within a smaller k-dimensional subspace Θ, the distribution of n∗ ||θ− θ0||J2 is,
under certain conditions, a chi-square distribution with k degrees of freedom [1].
It can then be shown that n ∗ ||θ̂− θ0||J2 +k = E[2n ∗ I(θ0; θ̂)], where I(θ0; θ̂) is
the Kullback-Leibler mean information. Akaike claims that one should choose
the model that minimizes E[I(θ0; θ̂)] [1]. Noting this, one would then want an
approximation of n ∗ ||θ̂ − θ0||J2 . It can be shown that 2(

∑n
i=1 log f(xi|θ0) −∑n

i=1 log f(xi|θ̂)) is such an approximation of n∗||θ̂−θ0||J2 , but has a downward
bias which may be corrected by adding k [1]. The first sum in this approximation
may be ignored for comparison between two models, since it is the same for both,
and the second term is precisely the log likelihood evaluated at θ̂. This leads to
the simple formula for the Akaike Information Criterion, 2k − 2 log L.

1.3.4 Hawkes Summary Table

Hawkes Summary Table

Rivalry Poisson µ k0 w µ Poisson AIC Hawkes AIC Best Fit

Loc-Low 0.026 0.584 0.068 0.011 253.3 242.2 Hawkes

Clo-Eas 0.032 0.209 0.921 0.025 296.0 288.8 Hawkes

Lin-Eas 0.014 0.121 0.096 0.013 159.3 162.7 Poisson

KAM-Sta 0.018 0.259 0.101 0.014 192.2 193.1 Poisson

Tin-Sta 0.015 0.124 28.6 0.013 167.7 157.6 Hawkes

MCF-ELA 0.017 0.513 0.080 0.008 184.2 173.6 Hawkes

VNE-Opa 0.019 0.390 0.134 0.012 200.2 192.8 Hawkes

VNE-8th 0.015 0.488 0.033 0.008 167.7 167.0 Hawkes

TMC-Cua 0.025 0.074 0.021 0.023 246.0 247.6 Poisson

Figure 5: Hawkes Summary Table For Nine Largest Rivalries

In the table above, Poisson µ is the maximum likelihood estimate of fitting a
Poisson process to the data; for a Poisson process this estimate is the average
number of events per day over the time period. In general, the parameters found
for the rivalries were of a similar magnitude. However, despite many starting
seeds for the nonlinear maximization, the best set of parameters for the Tiny
Boys – State Street rivalry gives a w of 28.6. These parameters do allow the
rate function to integrate exactly to N .

1.4 Summary

The preceding analysis shows that the Hawkes process generally fits the tem-
poral distribution of gang rivalry crimes better than the Poisson process. While
there are a couple of rivalries that have crimes spread more or less independently
through time, most rivalries have significant clustering of attacks.
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2 Agent Based Model

The problem of simulating actions of many gang members is approached using
an agent based model, referred to as the random walker program. In agent based
models, each agent acts individually following a defined set of rules. The agents
move randomly with a bias such that the group exhibits the behavior of interest.
Agent based models have been used to gain insight into behavior and population
dynamics of humans and animals [5][11][12][15].

2.1 The Program

The random walker program simulates gang members moving in a semi-
random manner on a map. In this program, each “agent” represents a group of
gang members, as stereotypically gang members operate in groups. The map
with anchor points, blocked locations, and any other static features is referred
to as the environment. In order to determine what occurs each time step, the
program calls four functions.

2.1.1 Moving Gang Members

The first function moves all the gang members to their next location. Each
member looks at the spaces above, to the left, to the right, and below them, as
well as the space the are occupying and makes a weighted random choice for
which direction to move.

The probability that a gang member g moves to space s from space s0 is

P (g → s) =
W (s, g, t)∑

s′0∼s0

W (s′0, g, t)
, (4)

where s′0 ∼ s0 indicates all cells neighboring s0 and W (s, g, t) is the weight of
space s for gang member g at time step t. This is found by

W (s, g, t) = W 0 + C
∑
i

e
−(sx−xi)

2−(sy−yi)
2

2σ2 +De
−(sx−x̄)2−(sy−ȳ)2

2σ̂2 , (5)

where {(xi, yi)} is the set of all locations of gang members of the target gang
and (x̄, ȳ) is the target gang’s center. W 0 is the base weight for all cells. D
was usually taken to be 0 or nearly 0 such that movement depended entirely or
almost entirely on the locations of other agents.

2.1.2 Adding New Gang Members

The next function called adds new gang members. Gang members are added
at anchor points and then move normally at the next time step. An anchor
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point is a centralized location from which criminals tend to stage their crimes.
These were taken to be the average location of all crimes identified with the
gang. Gang members are added to the map at a rate Γ, such that

P (new gang member appears for gang G) = Γ. (6)

When a gang member is added, he randomly selects another gang to target.
This is biased such that he is more likely to target a gang with which his gang
has a higher rivalry strength. Once a target gang is selected, the gang member
never changes his target.

The target gang for gang H is selected as

P (target = Gi) =
RHGi

(t)∑
j

RHGj
(t)
, (7)

summing over all gangs.

2.1.3 Fights Between Gang Members

Once new gang members have been added, the program checks to see if any
gang members are occupying the same cell. If so, each cell that has multiple
gang members in it can currently support up to one fight. For a cell with mul-
tiple gang members in it, the function looks at random pairs of gang members
occupying the cell until either a pair fights or until all pairs have been examined.
Each cell only supports one fight because it is assumed that after a crime has
occurred, police appear to prevent any further crimes from occurring that time
step. However, depending on the length of the time step used, it is sometimes
more reasonable to let cells support multiple fights.

The probability that two gang members fight is dependent on the rivalry
strength between the two gangs that they belong to (G1 and G2):

ρg1g2(t) =
{

1− e−RG1G2 (t)δt no fights have yet occurred here in time step t
0 otherwise

(8)
This is very similar to the function used by Short et al. in a study of burglaries
to determine whether their agents burgled houses [11]. Gang members never
attack members from their own gang.

2.1.4 Updating Rivalry Strengths

The final function called each iteration updates the rivalry strengths. The
rivalry strengths decay over time and are increased by any fights that have
occurred in the current time step. This is very similar to the function used
by Short et al. to determine attractiveness of houses to burglars [11]. Rivalry
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strengths are determined as a base rivalry strength plus a function that varies
as stated above.

Rij(t) = R0 + Bij(t), (9)

where Bij(t) is defined

Bij (t+ δt) = Bij (t) (1− ωδt) + θEij (t) . (10)

ω determines how fast the rivalry strength decays, θ sets how much a fight
between two gangs increases the rivalry strength, and Eij (t) is the amount of
fights that have occurred between gang members of gangs i and j.

These are the variables and main functions that appear:

Variables and Functions of Agent Based Model
W (s, g, t) Weight of space s for gang member g

σ Determines how distance between spaces affects weights
Γ Rate of gang member generation per gang per time step

ρij(t) Probability that gang member i and gang member j fight
Rij(t) Rivalry strength between gangs i and j
δt The length of time per timestep
ω Determines the rate of decay of rivalries
θ Increase in rivalry strength per attack

Eij(t) Attacks between gangs i and j in timestep t

Figure 6: Variables and Functions of Agent Based Model

2.2 Parameters

The parameters that can be changed in the simulation to affect its behavior
are:

• Parameters affecting rivalry strength R

– A high R (such that R δt > 3) corresponds to a ρij = 0.95, so any
strengths higher than that are approximately equivalent in that they
both will cause fights to occur with probability nearly 1.

– Base rivalry strength R0

? Increasing/decreasing R0 increases/decreases the likelihood that
two gangs will fight upon encountering each other, independent
of the amount of fights that have previously occurred between
them.

– Amount rivalry strength is increased per fight θ

? Increasing θ increases the amount of time and extent to which
a fight significantly affects rivalry strength. If θ is large and R
is small, a fight greatly increases the probability of future fights
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occurring. However, if R is large, it does not significantly increase
the probability of a fight, but affects how long ρij ≈ 1 due to
this fight.

– Decay of rivalry strength ω

? Increasing/decreasing ω decreases/increases the time required for
R to decay to approximately R0. ω should always be set between
0 and 1.

• Parameters affecting space weighting W

– Base weight W 0

? W 0 must always be nonzero in order to allow gang members to
choose spaces when they cannot “see” any of their targets, but
it is usually made to be very small (10−6). Increasing W 0 sends
gang members in more random directions with less tendency to-
wards their targets.

– Coefficients C and D

? The actual values of C and D do not matter. The ratio C/D is
similar to setting how important the locations of gang members
are relative to the importance of the anchor points as targets.
Setting both to 0 will cause unbiased random motion.

– “Sight” range σ

? Increasing/decreasing σ increases/decreases how far a gang mem-
ber can “see”, or how fast a weight due to a given target decays
over distance. A greater σ enables a gang member to target more
distant locations.

• Rate at which gangs members are added Γ

– Increasing/decreasing Γ increases/decreases the rate at which gang
members are added to the map. Because over time this program
reaches an equilibrium for number of active gang members for nearly
all parameter values, increasing/decreasing Γ increases/decreases the
number of fights that occur each turn.

• Length of time step δt

– Sets how much time a time step represents. δt must be set such that
Γ makes sense for one time step. Changing δt allows the simulation
to run for more time steps per unit time or cover a greater period in
fewer steps.
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2.3 Model Comparison

Agent Based vs. Hawkes Process Table
Agent Based Hawkes Process Role In Model

ω w Rate of Decay for Rivalry Intensity
R0 µ Background Intensity of Rivalry
θ k0 Jump In Intensity Following Crimes

Rij (t) λ (t) Rivalry Intensity Function

Figure 7: Agent Based vs. Hawkes Process Table

As seen in the table above, there are many qualitative similarities between
the Hawkes process and the agent based model. For example, both ω and w
determine the rate of the rivalry intensity’s exponential decay.

2.4 Temporal Analysis

In this section, we just consider a pair of gangs to simplify the analysis of
rivalry attacks over time. All parameters are obtained from experimentation.
Further research may consider the temporal distribution of crimes with many
gangs, and may explore more sophisticated methods of obtaining parameters.

Figure 8: Temporal Analysis for Agent Based Model

Above is a temporal graph of a rivalry’s crimes generated from the agent
based model (top), a graph of the number of active gang members through
time (middle), and a graph of the rivalry strength function (bottom). As men-
tioned earlier, the number of gang members reaches a stable equilibrium as gang
members are taken off the map through fights and enter the map with a fixed
probability each time step.
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Figure 9: Two gangs in a rivalry.

The rivalry strength function is built to act like the Hawkes process rate
function, even though they are implemented differently:

Figure 10: Hawkes Rate Function λ (t) vs. Rivalry Strength function R (t)

The above graph is provided to help visualize the qualitative similarities be-
tween the Hawkes rate function and the rivalry strength function, not to suggest
a more significant relationship between the two. We used maximum liklihood
estimation for the data produced by the agent model to estimate parameters
for the Hawkes process. The rate function λ (t) is plotted for the generated
crimes below. The graph of λ (t) is similar to the graph of the rivalry strength
function R (t). Despite the different implementations of the two functions, this
suggests that the way in which the agent based model generates crimes resembles
a Hawkes process.
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Figure 11: Histograms of the Locke-Lowell rivalry’s inter-attack times (left),
agent model simulated crimes with experimental parameters (middle), and
Hawkes simulated crimes using the rivalry’s MLE parameters (right)

As seen above, the inter-attack times from the agent based model are qual-
itatively similar to both our actual data and that of a Hawkes process. The
inter-attack times from the agent based model are hardly uniform over this
short time window of 90 days, as would be expected if the events were from a
Poisson process [10]; with a total time window of 1044 time steps, there should
be minimal finite window effects. In summary, the agent based model’s gener-
ation of rivalry attacks is similar to the Hawkes process.

2.5 Spatial Analysis

Figure 12: All Hollenbeck gangs and agents scaled to 100x100 grid.

A vital part of studying our agent based model centers around the spatial
distribution of crimes. Specifically, spatial plots of the total crimes, crimes
specific to a single gang, and inter-rivalry gang crimes are analyzed. In general,
this model reflects where gang crimes are likely to occur in Hollenbeck.

2.5.1 Gang Anchor Points

The method we use to construct an anchor point for a specific gang in this
model is averaging all of the coordinates of all of the reported crimes identified
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Figure 13: Plot of Average Coordinates for Each Gang

with this gang. Some of the averages are skewed a little due to outlier crimes,
and some of the averages may be pulled slightly towards the center of Hollen-
beck (Figure 13). This method of creating anchor points yields results similar
agreeable with previously established anchor point estimates from the LAPD.

2.5.2 Spatial Distributions of Total Gang Crimes

The first spatial test for our model analyzes how closely agents from every
gang engage in crimes throughout the region. Because of boundary and scaling
effects, the predicted locations of crimes are slightly skewed, but the pattern
of the actual Hollenbeck crimes is qualitatively similar. Using parameters of
Γ = 0.035, σ = 2

√
2, R0 = 0.005, θ = 10000, w = 0.05,W 0 = 0.000001, C =

1, D = 0, δt = 1, we create a plot (Figure 14) to compare the model to the data.
The number of crimes is the same in both subplots.

As Figure 14 shows, our agents appear to fight in similar distances to where
the actual Hollenbeck gang members commit crimes. Because modeling total
crimes over the 34-month period does not explain activities of individual gangs,
we next look at the spatial distribution of crimes for individual gangs.

2.5.3 Spatial Distributions for Individual Gang Crimes

Using the agent based model, we generate the locations of individual gang
crimes over a period of 1044 days (the same length of time as our actual data).
To obtain a better understanding of the data, we compared the distance distri-
butions. Figure 15 displays this spatial analysis for the Opal Street gang.

86Copyright © SIAM 
Unauthorized reproduction of this article is prohibited



Figure 14: Plot of Hollenbeck total gang crimes (left) from Nov.1999-Sept.2002
versus predicted total gang crimes (right).

Figure 15: Graph of the Opal Street gang’s actual crimes (top left) and our
model’s predicted attacks for Opal Street(top right). Below are the distance
distributions for the plots.
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In Figure 15, the predicted locations of crimes occur in close proximity to
where the real Opal Street gang members commit crimes. It follows that the
crimes tend to occur at similar distances away from the anchor points; this is
evident in the plots of the distance distributions. Next, we analyze how the
agent based model predicted the distribution of gang rivalry crimes in space.

2.5.4 Spatial Distributions for Rivalry Gang Crimes

The last spatial test using the agent based model analyzes where, in our
adjusted Hollenbeck map, an agent commits a crime against a rival gang walker.
Figure 16, below, contains plots of the actual 8th Street/VNE rivalry spatial
distribution and of the simulated gang rivalry crimes in space.

Figure 16: Plot of the 8th Street/VNE rivalry crimes in space (left) against the
model’s predicted fights between the two gangs (right).

Figure 16 shows that our agent based model accurately predicts where the
crimes between the 8th Street and VNE gangs occur.

2.5.5 Summary

Spatially, we consider the locations of all the aggregated, individual, and
rivalry gang crimes. After noticing the similarities between the actual data and
what the agent based model predicted, we can conclude that our simulation fits
the data well with respect to crime locations.
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2.6 Rivalry Analysis

As gang rivalries are strongly dependent on the distance between gang pairs, a
random graph model of gang rivalries must take the distance between nodes into
account. One existing model developed for this purpose is Geographic Threshold
Graphs [2, 3, 4] and in this section we compare GTG to graphs generated by
the agent based model.

2.6.1 Adjacency Matrices

To visualize gang rivalry interactions, we plot the adjacency matrix of the
data, a symmetric matrix of 1s and 0s. For any entry in the matrix, a 1 corre-
sponds to a connection between the two gangs; the connection is determined by
whether or not n crimes occurred. Graphically, this represents a line between
the two points. When a threshold Ω for an adjacency matrix is included, 1s
are placed in the matrix only when n ≥ Ω. Below (Figure 17) is an adjacency
matrix that plots the real data.

Figure 17: Graph of our Hollenbeck data’s adjacency matrix with Ω = 1.

Figure 17 displays the adjacency matrix for our data with the nodes in the
corresponding relative locations of the anchor points. The axes list the latitude
and longitude. We now attempt to simulate these adjacency matrices.

2.6.2 Agent Based Model

We create an adjacency matrix from the data produced by the agent based
model. Figure 18 displays a simulated adjacency matrix using the same param-
eters as before.
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Figure 18: Plot of an agent based model simulated adjacency matrix. This
graph has 83 edges, similar to the 82 edges of the actual adjacency matrix.

2.6.3 Geographical Threshold Graphs

We can also model gang rivalries by creating an adjacency matrix using Ge-
ographical Thresholding. In each simulation, a 1 is placed in an cell of the
model’s adjacency matrix if the following condition is met:

g(w,w′)
rβ

≥ θ (11)

where the function g is the interaction strength of the 2 points (anchor points),
w and w′ are the randomly assigned weights of the points, r is the Euclidean
distance between the points, β is a parameter of choice (typically β = 2) and
θ is the threshold parameter. Found below (Figure 19) is an example of the
model alongside an adjacency matrix for the actual data.

Figure 19: Graph of the 34-month aggregate adjacency matrix (Ω = 1) (right)
with the geographical threshold graph (left)
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Figure 19 reveals qualitative differences between the Geographical Threshold
Graph and the actual adjacency matrix. Randomly assigning weights is causing
the simulation to diverge from the real plot. While the specifics are unclear, the
model poorly represents gang rivalries.

2.6.4 Summary

The agent based model better models gang rivalry behavior than the geo-
graphical threshold graph simulation. Distances between anchor points, previ-
ous behavioral patterns, and self-excitation prevent Geographical Thresholding
from effectively portraying the Hollenbeck dynamics in our data sample. The
agent based model is able to more closely predict the gang interactions by taking
into account the behaviors and self-excitation, as well as the distances. Addition-
ally, the agent based model allows gang members to travel further and support
more distant rivalries, whereas Geographical Thresholding cannot take into ac-
count rivalries over great distances. Thus though distances are important, more
properties factor into determining gang rivalries.

2.7 Statistical Analysis

2.7.1 Degree Distributions

We can test the agent based model by analyzing the actual and predicted
degree distributions of the rivalry graphs. The degree corresponds to how many
connections one anchor point has with other gangs. Seen below, Figure 20 shows
the real plot next to a simulated one.

Figure 20: Plot of the 34-month degree distribution (left) next to a generated
agent based degree distribution (right)

As seen in Figure 20, the actual data’s degree distribution is very irregular,
which makes it difficult for any random model to simulate. Despite this, in
one specific trial (as seen above), the plot generated by the agent based model
reflects the overall shape and most frequently occurring degree.
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2.7.2 Distance Distributions

Another way to assess the quality of our model considers the distance dis-
tributions. Specifically, we expect our model’s agents to commit crimes closer
to their anchor point. Figure 21, displaying the distance distributions for the
real and the produced data, supports this assumption, despite despite the dis-
crepancies that occur after a distance of 50 scaled units. This similarity further
indicates that the agent based model effectively mimics the data.

Figure 21: Plot of the actual distance distribution (left) alongside a simulated
one (right).

Conclusion

We are able to confirm that gang-on-gang crimes are better represented by
the self-exciting Hawkes process than the memoryless Poisson process. This is
done through a histogram analysis of inter-attack times and use of the Akaike
Information Criterion. This criterion supports the Hawkes process for six of
the nine rivalries with at least ten crimes. The histogram analysis of inter-
attack times agrees with the AIC results. Though not invariably the best fit,
the Hawkes process offers an explanation for the clustering of attacks observed
in the data.

The agent based model is closely related to the Hawkes process. However,
while the Hawkes process simulates rivalry crimes through time, the agent based
model mimics both the temporal and spatial distributions of a rivalry’s crimes.
It may exhibit a wide range of behaviors from completely random motion to
motion strongly biased to support rivalries or hotspots. Due to the number
of parameters it uses, the agent based model is very flexible and can be given
parameters that result in a model that mimics the data well. Because of this
flexibility, the agent based model simulates gang rivalries more accurately than
Geographical Thresholding.

While the behavior of individual gang members may seem too erratic to
predict, the overall network of gangs in Hollenbeck is fairly systematic. Thus, it
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can be well represented by both an agent based model and a self-exciting point
process.

In the future it would be beneficial to determine more accurate represen-
tations of gang territories and locations for gang anchor points. For example,
a more detailed description of gang territories could be obtained by fusing ag-
gregate spatial gang data with existing conceptions of gang geography. Trends
in the data indicate that gangs are more likely to be victimized within their
territory. This information could be used to improve models and ultimately aid
police forces in deterring gang violence.
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