
Antibiotics Resistance Forecasting:
A Comparison of Two Time Series Forecast Models

Darja Strahlberg
Hamburg University of Technology, Germany

darja.strahlberg@gmail.com

Advisors: Prof. Dr. Michael Kolbe, Center for Structural Systems Biology,

University of Hamburg, Germany

michael.kolbe@cssb-hamburg.de

Gianni Pagnini, Basque Center for Applied Mathematics & Ikerbasque,

Bilbao, Basque Country - Spain

gpagnini@bcamath.org

August 21, 2021

Abstract

The rise of antibiotic resistance is a growing challenge for global health.
Antibiotics are used for disease treatment, as well as for medical procedures,
for instance, operations and transplants. The aim of this work is to compare
auto-regressive integrated moving average (ARIMA) and recurrent neural net-
works (RNN) to forecast the spread of drug-resistant bacterial infections at the
community level. The comparison of two algorithms is performed for a multi-
step time series univariate dataset. Five distinct time series were modelled,
each one representing the number of episodes per single ESKAPE infecting
pathogen, that has occurred quarterly between 2008 and 2018 calendar years
in Germany. The forecast quality is evaluated by the root mean squared error
between the forecasted values and the test data set. The experimental results
show that multi-neural network forecasting RNN is significantly poorer than
ARIMA for multi-step forecasting on univariate datasets. Finally, the paper
provides a conclusion, that machine learning complexity is not always adding
skill to the forecast. The forthcoming challenges are setting conditions when
machine learning models can perform well for the real-world applications. The
code used to evaluate the concept is available.

1 Introduction

The discovery of antibiotics is considered one of the most significant health-related
events of the last century. Since the introduction of penicillin, the deployment of any
novel antibiotic has been followed by the evolution of clinically relevant resistance
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strains to that antibiotic in as little as a few years [2]. In addition to their use in the
treatment of infectious diseases, antibiotics are critical for the success of advanced
surgical procedures, including organ and prosthetic transplants [4]. So emerging
antibiotic resistance is a much broader problem than initially anticipated.

Forecasting the spread of drug-resistant bacterial infections helps in developing
context-specific national and regional operational plans. The accurate forecast-
ing of future behaviour in epidemiology requires efficient mathematical techniques.
This paper compares two forecasting techniques for a time series data analysis:
auto-regressive integrated moving average (ARIMA) and recurrent neural networks
(RNN). Several industries are using classical time series forecasting techniques, like
ARIMA, for instance market share pricing for oil industry [11]. Other industries
are using machine learning forecasting techniques, for instance forecasting energy
consumption [6]. So two most popular and widely used techniques from other
industries have been chosen for a comparison.

The outline of this article is as follows: first, I describe the motivation, then I define
the problem and set a goal for the paper. In Section 2, a brief review of literature
on mathematical models describing disease outbreaks, the main techniques and the
limitations of current approaches are identified. Basic notions of antibiotics resis-
tance are presented. Section 3 presents two models for comparison and describes
the details of the simulations setup. It discusses the role of machine learning tech-
niques in inferring accurate predictors from observed data. Section 4 presents the
results acquired from the model application to data of the drug-resistant bacterial
infections. Finally, in Section 5, the findings are summarised and a view into future
research direction is presented.

1.1 Motivation

Forecasting is the process of making predictions of the future based on past and
present data. Forecasting of future behaviour in epidemiology is critical for aiding
decision-making by public health officials, commercial and non-commercial institu-
tions. The comparison of classical time series forecasting techniques and machine
learning techniques has been done for the stock market analysis [12]. It was ob-
served that the machine learning model Bidirectional Long Short-Term memory
(BiLSTM) outperformed ARIMA. Additionally, a comparison of the models has
been performed for an epidemiological data of influenza in Japan and US [13]. The
combination of several machine learning algorithms showed consistent performance
improvements. The outcome of all these studies has been somewhat mixed, but
overall neural networks tended more to outperform classical linear techniques [1].

1.2 Problem Definition

The epidemiological forecasting problem is defined as a time series problem. The
time series is acquired at discrete times with constant time lag ∆t such that any
acquiring time is ti = i∆t, with i ∈ N. In the following without loss of generality we
set ∆t = 1 and then t = i such that t ∈ N and the time series results to be defined
by Xt = {x(t = i) = xi | i ∈ N}. The forecast can be written as X̂N+h|N which is the
forecast h-steps ahead given the training set N . From above mentioned reasons,
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these forecast issues have spurred the need for forecasting in order to use the full
capacity of the available data and be able to plan response activities.

1.3 Goal

The paper focuses on the analysis of medically important drug-resistant bacterial
infections with data gathered by Antibiotics Resistance Surveillance from Robert
Koch Institute, Germany [9]. The objective of this analysis is to compare the ac-
curacy of the classical time series forecasting method with the machine learning
forecast model, and use that information to determine when resistance will rise or
decrease in order to develop an operational plan. The laboratory data were retrieved
from January 2008 to October 2018, summed per quarter. The total number of data
points is 44. The forecast has been done for 9-n steps ahead, what is equivalent to
a two years forecast.

Here I am running an experiment verification of the proposed methods for forecast-
ing drug-resistant bacterial infections. The results are conducted using five bacterial
pathogens with increased resistance to commonly used antibiotics to compare ac-
curacy of the proposed methods for the forecast of antibiotics resistance in the real
environment.

2 State of the Art

In the current section a brief review of the literature on different forecast methods is
done by identifying the main techniques and the limitations of current approaches.
The section starts with a short introduction into the problem of antibiotic resistance.

2.1 Biological Overview

The current antibiotic crisis can be considered as an evolutionary problem [10]. Bac-
teria have a remarkable capacity to adapt and evolve even under extreme conditions
including in the Arctic or in boiling water (near ”black smoker” hydrothermal vents).
Bacteria can adapt specific genes or even lifestyles in response to the environmental
conditions. Antibiotic resistance has developed to every antibiotic in clinical use,
with the resistance genes responsible disseminated globally [5].

The analysis of the infection data offers the capability to potentially forecast the
risk of drug-resistant bacterial infections outbreaks. Various attempts were made to
investigate the development of the antibiotics resistance using different mathematical
models on the research objects. For instance, as it is shown in Figure 1: within the
patient, in the hospital or in the community. It is my aim to look at the spread of
the drug-resistant bacterial infections in the community level.

2.2 Models Overview

Over the past two centuries the forecasting modelling approaches changed from
descriptive and dynamic to network and social analysis, as highlighted in Figure 2.
The descriptive approach focuses on the general shape and curve prediction based
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Figure 1: Levels of antibiotic resistance forecast. Dynamic forecast of the drug-
resistant bacterial infection in the human, in the closed community like in the hos-
pital or in the open community.

on the real-life data. The dynamic approach in computational epidemiology mainly
focuses on models where the whole population is divided into different groups (of
susceptible, infective and recovered), and the transition among groups is modelled
by differential equations [13]. Such models have limited prediction power due to
lack of the ability to model individual level information [13]. The network approach
is based on the understanding why the outbreak is happening and the implications
on the networks and individuals. The social approach tries to forecast the risk of a
disease for an individual.

Figure 2: Various approaches of infection disease modelling. The descriptive ap-
proach is based on the real-life data estimation. The dynamic approach is based
on modelling the disease development via mathematical equations. The network
approach focuses on the connections of individuals and groups. The social approach
takes additional data like mobile phone data as input. Every approach has a goal
to answer different questions in respect of the infectious disease development.

Here I am focusing on forecasting the spread for drug-resistant bacterial infections
at the community level using the descriptive approach. My study investigates the
patterns that could describe the observed trend based on the real-life data. So the
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epidemiological problem of the future number of cases of the drug-resistant bacterial
infection can be defined as a time series problem.

Definition 1 A time series is a sequence of observations xt, where t ∈ N collected
at equal spaced, discrete time intervals.

Forecast of time series data is to model the future state as a combination of past data
points [13]. The classical model considers the future state as a linear combination of
past data, whereas machine learning models considers the future state as a non-linear
combination of past data.

Classical Model. The general model for time series can be written as

xt = g(t) + εt; t = 1, ..., T (1)

where T is the number of observations, g(t) is a deterministic function of time, εt a
residual term, or a noise, which follows a probability law.

In the time series analysis, it is assumed that the data (observations) consist of a
systematic pattern and stochastic component; the former is deterministic in nature,
whereas the latter accounts for the random error and usually makes the pattern
difficult to be identified. The stochastic component of the time series is described
by the error term εt. The basic assumption in time series analysis is that some
aspects of the past pattern will continue to remain in the future [14]. It is necessary
to evaluate if the time series components are time invariant, meaning the components
are constant. It is assumed that the error distribution is the same by every data
point: εt ∼ N(0, σ2), where N is the normal density with zero mean and variance
σ2. So, in this case the distribution still will be normal, and that its mean and the
variance will still be the same 0 and σ2. It demonstrates the invariant part of the
process. So the goal is to find something invariant, which was the distribution of
errors. The stationary series by definition have invariant parts such as unconditional
mean and variance.

Machine Learning Model is an umbrella term for techniques that fit models algo-
rithmically by adapting to patterns in data [8]. The prediction problem is defined as
a problem of supervised learning problem. Possible non-linear dependence between
the input (past embedding vector) and the output (future value) is attempted. The
forecast is usually based on the idea according to which reliable predictions can
be obtained solely on the grounds of our knowledge of the past. Chaos is often
considered the main limiting factor to predictability in deterministic systems. [7,
S. 567]

The representation of unknown input/output relation can be written as follows

y = f(x) + w (2)

where f(x) is a deterministic function, and the term w represents the random error.

The data are restricted to look like a supervised learning problem. The previous
time stamp is an input variable x and the next step as the output variable y. Two
hypotheses, which are seldom made explicitly, are needed to articulate an affirmative
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answer: 1. Similar premises lead to similar conclusions (Analogy); 2. Systems which
exhibit a certain behaviour will continue doing so (Determinism) [7]. The main limit
to predictions based on analogues is not the sensitivity to initial conditions, typical
of chaos. But, the main issue is actually to find good analogs [7].

Big data undoubtedly constitute a great opportunity for scientific and technological
advance, with a potential for considerable socio-economic impact. To make the
most of it, however, the ensuing developments at the interface of statistics, machine
learning and artificial intelligence, must be coupled with adequate methodological
foundations, not least because of the serious ethical, legal and more generally societal
consequence of the possible misuses of this technology [7].

I have given a biological and models overview. For the next step, I am going to
compare two models of forecasting the spread for drug-resistant bacterial infections
at the community level: the classical model with ARIMA and the machine learning
model with RNN.

3 Methodology

In this section the time series analysis of drug-resistant bacterial infection data will
be used to make a forecast with two models: ARIMA and RNN.

The goal is to obtain a 9-step ahead forecast to test the forecasting performance of
the ML method for a long horizon. Two methods are going to be compared on the
same data set: the classical time series forecasting model ARIMA and the machine
learning time series forecasting model RNN. The basic idea of ARIMA is to model
the future state as a linear combination of past data points, whereas the basic idea
of RNN is to model the future state as a non-linear combination of past data points.

3.1 ARIMA

In this section an overview of the theoretical explanation of the ARIMA model is
given.

The current problem is defined as a regression problem, the output variable is a
real value. The ARIMA model is a parametric method which represents data points
as a linear combination of its previous values plus an error term. The approach is
to model drug-resistant bacterial infection as time-series patterns with the ARIMA
model. The model consists of three components: auto regressive (AR), integrated
(I) and moving average (MA) models. As it was described above, it is important
to evaluate if the time series components are time invariant, meaning the process is
stationary.

An AR data model with p terms is constructed as follows, where p is the number of
autoregressive terms included in the model; for a time series Xt

Xt = µ+ α1Xt−1 + α2Xt−2 + ...+ αpXt−p + εt (3)

where µ is the mean value, αt is the weight of the correlation coefficients that is
multiplied with the lagged values of Xt and t is the number of observations. The
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error term εt is an independent and identically distributed random variable from
a normal distribution with constant mean and variance. The purpose of εt is to
represent everything new in the series that is not considered by the past values. To
fit an AR model to observed data, the order of the model, p, needs to be chosen and
the parameters need to be estimated.

The I integrated data model has a d parameter, that represents the number of times
that the raw observations are differenced, to achieve stationarity. A first order of
differencing on the model would be written as

∆Xt = Xt −Xt−1 (4)

If the data set is stationary, then d = 0, and the model can be described as:

∆Xt = 0 (5)

An MA data model is constructed as follows. The q is the size of the moving average
window, also called the order of moving average.

Xt = µXt + εt + β1εt−1 + β2εt−2 + ...+ βqεt−q (6)

where β1, ...βq are the sliding mean coefficients. MA is a modelling approach that
uses the dependency between an observation and a residual error from a moving
average model applied to lagged observations.

To combine the autoregression, integration, and moving average, the possible differ-
entiation is made first, then the AR and MA equations are combined as ARIMA(p, d, q)
and as ARMA(p, q), if d=0 :

Xt = µXt +α1Xt−1 +α2Xt−2 + ...+αpXt−p + εt + β1εt−1 + β2εt−2 + ...+ βqεt−q (7)

In the Equation (7): p indicates autoregressive order; α1, ..., αp are autoregressive
coefficients; q indicates sliding average order; β1, ..., βq are sliding mean coefficients;
εt indicates a white noise sequence obeying normal distribution.

The basic modelling ideas and modelling steps can be summarized as follows: (1)
making the non-stationary process a smooth process by means of difference; (2)
establishing a suitable model to describe the stationary process; (3) predicting future
values using the constructed model.

3.2 RNN

Recurrent Neural Networks (RNNs) are used as a deep learning framework to predict
epidemiology profiles in the time-series perspective. RNN is adopted to capture the
long-term correlation in the data [13]. The model is based on the standard sequence-
to-sequence recurrent neural network architecture. RNN better fits to modelling
problems such as time series data.
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A neural network takes an independent variable X (or a set of independent variables )
and a dependent variable y, then it learns the mapping between X and y (Training).
Once training is done, a new independent variable can be given to predict the
dependent variable.

The RNN has sequential input, sequential output, multiple timesteps, and multiple
hidden layers. The Figure 3 highlights how RNN works. I calculate hidden layer
values not only from input values but also previous time step values and Weights
(W) at hidden layers are the same for time steps.

Figure 3: Description of the RNNs. U - Weight vector for hidden layer, V -weight
vector for output layer, W - same vector for different time steps, X- Infection oc-
currences vector for input, Y - Drug-resistant bacterial Infections for output

The steps for the forecast are described described below.

3.3 Steps in Forecasting

The forecasting process involves the choice of the model, data splitting, fitting the
model, model evaluation, re-fitting the model on the entire data set and forecast of
the future behaviour. Figure 4 highlights the steps for a forecasting model. Each
step will be further described. The output of the forecast is the number of drug-
resistant bacterial infections towards a specific antibiotic at each time step.

Data Split. By convention, the test interval does not exceed 20% of the available
data. So if the total available data set has 44 data points, then the test data set is
9 data points, which is equivalent to 9 quarters or 2 years. The training data set
consists of 35 data points, what is approximately 9 years of observation.
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Figure 4: The forecasting process consists of several steps: 1) the choice of the model
based on the available data, 2) data split into training and test data sets, usually
with the ratio 80:20, 3) the model is fit on the training data set, 4) model evaluation
with RMS error, 5) the model is re-fitted on the whole data set, 6) forecast for future
n-steps of data points.

If the dataset is denoted as x1, x2, ..., xN , then the training dataset has the length
T= 35 and denoted as x1, x2, ..., xT . The test dataset has the length h = 9 data
points and denoted as xT+1, ..., xN . In this example the test dataset and forecast
dataset are equally long.

Fit model on training set. The parameters for the ARIMA model need to be
chosen correctly, for (p, d, q). The parameters depend on the individual data char-
acteristics. The RNN model requires weight function estimation to be performed.
The model is initially fit on a training dataset or trained, meaning that the model
is learning from the training data set.

Evaluate model on test set. The new segment Yt is obtained with the ARIMA
model. Yt has the same length as the test data set Xt. During the process of
prediction, the expectation is to obtain the best prediction value with no error or
the smallest possible error, that is, to obtain the best future prediction value using
root mean square error minimization. Root mean square error (RMSE) is defined
as the root mean square of the ARIMA prediction and the actual value, during the
time interval h, which denoted as

λ =

√√√√ 1

N

N∑
t=1

(Xt − Yt)2 (8)

where Yt indicates the predicted value, Xt indicates the true value from the test
data set and N is the sequential number of steps in time in the time interval h.
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Re-fit model on entire data set If the dataset is denoted as x1, x2, ..., xN , the
training data is set as an entire data set x1, x2, ..., xN .

Forecast for future data The prediction interval should not be longer than the
test interval. So the prediction interval is 8 data points, 8 quarters or 2 years. The
model is trained on the entire data set of the length N . So the training data set
should be at length at least N=44, for a forecast of h =8 data points - quarters -
ahead.

Two time series forecasting models and steps of the forecasting process have been
described. An experimentation comparison of the proposed methods for time series
forecasting of the drug-resistant bacterial infectious disease is presented in the next
section. The implementation of the proposed methods for the forecasting and results
are shown in detail.

4 Use Case: ESKAPE bacteria

I have tested the forecasting models on the data of drug-resistant bacterial infections.
The code used to evaluate the concept can be found on the github in [3]. I have
used data of five highly relevant bacterial pathogens known as ESKAPE.

4.1 Available Data

ESKAPE is an acronym encompassing the names of six highly important bacterial
pathogens commonly associated with antimicrobial resistance. Medically impor-
tant bacteria include the following pathogens: Enterococcus faecium, Staphylococcus
aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa
and Enterobacter species.

This study was conducted using data exported from the Antibiotics Resistance
Surveillance from the Robert Koch Institute. Laboratories from all of Germany
report these data on a regular basis [9]. The data are not differentiated by the
region. Data used in this study included the time (quarter), the number of tested
pathogens with confirmed resistance to a specific antibiotic. The laboratory data
were collected from January 2008 to October 2018, summed per quarter. Thus, the
data utilized for the analysis included quarter time series of isolates of E. faecium
with Vancomicyn resistance, S. aureus with Penicillin resistance, K.pneumoniae
with Amikacin resistance, A. baumannii with Imipenem resistance, P. aeruginosa
with Imipenem resistance. The time series of Enterobacter were not available.

The forecast is the multiple-step-ahead forecast, for 9-n future steps. Forecast ac-
curacy was assessed for each each time series. The data were treated as individual
time series, analysed and evaluated separately.

4.2 Implementation

Implementation is showed in detail on bacteria A. baumannii with Imipenem re-
sistance. Further ESKAPE bacteria pathogens have been analysed with the same
strategy. Results are featuring analysis of the data sets from all bacteria pathogens.
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Data Pre-processing Preliminary descriptive analysis was conducted at first.
My aim is to identify relevant features, such as autocorrelation, seasonal patterns,
trends, and any other notable fluctuations. Each time series was evaluated to de-
termine whether it was stationary (i.e. whether basic statistical properties such
as mean and variance of the series remained constant through time). Initial data
analysis was conducted via computational tests of basic descriptive statistics.

The properties of this dataset are as follows:

• This is a real life dataset acquired from Antibiotics Resistance Surveillance
from the Robert Koch Institute. The process is realistic. The quality of the
monitoring data is high.

• The dataset consists of 44 data points, which were collected over the years from
Laboratories in Germany. The data set contains observations from several
laboratories.

• Each data point indicates the number of drug-resistant bacterial infections
summed during three months.

• The dataset is not stationary.

• The dataset is univariate - one variable data input.

Data Split. The training data set is 35 quarter data points. The test data set is 9
data points. The ARIMA model and RNN use time series data as input. The data
are reported in Figure 5 for the bacteria A. baumannii.

Figure 5: Drug-resistant bacterial infections from bacteria A. baumannii with 
Imip-inem resistance over the period of 10 years. The blue line represents 
the training data set of 34 data points and the orange line represents the test 
data set of 9 data points.

Fit model on training set. From the above analysis the data set is qualified to 
be
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modelled by ARIMA(p, d, q). The parameters have been estimated via computation
((p, d, q)) = (6,0,0)). These parameter values were also confirmed programmatically
using the exhaustive grid search optimisation. Parameters have been estimated
separately for each time series data set.

Evaluate model on test set. Forecast results, obtained with the ARIMA and
RNN model are compared with the test data set.

The forecasts performed by both ARIMA and RNN models are reported in Figures
6-10 for the five ESKAPE bacteria. As it is seen from the figures, the RNN forecast
does not replicate the changes as in the real data, whereas ARIMA does.

Figure 6: ARIMA forecast and RNN forecast of drug-resistant bacteria E. faecium
with Vancomycin resistance. The blue line represents the test data set of 9 data
points. The orange line shows the ARIMA forecast. Neither the ARIMA nor the
RNN forecast have any common data points with the test data.
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Figure 7: ARIMA forecast and RNN forecast of drug-resistant bacteria S. aureus
with Penicillin resistance. The blue line represents the test data set of 9 data
points. The orange line shows the ARIMA forecast. ARIMA has several common
data points with the original blue line. The green line represents the RNN forecast,
which also has several common data points with the test data.

Figure 8: ARIMA forecast and RNN forecast of drug-resistant bacteria
K.pneumoniae with Amikacin resistance. The blue line represents the test data
set of 9 data points. The orange line shows the ARIMA forecast. ARIMA has sev-
eral common data points with the original blue line. The green line represents the
RNN forecast; it does not have any common data points with the test data.
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Figure 9: ARIMA forecast and RNN forecast of drug-resistant bacteria A. baumannii
with Imipenem resistance. The blue line represents the test data set of 9 data points.
The orange line shows the ARIMA forecast. ARIMA has several common data points
with the original blue line. The green line represents the RNN forecast; it does not
have any common data points with the test data.

Figure 10: ARIMA forecast and RNN forecast of drug-resistant bacteria P. aerugi-
nosa with Imipenem resistance. The blue line represents the test data set of 9 data
points. The orange line shows the ARIMA forecast. The green line represents the
RNN forecast; the RNN forecast has more data points in common with the test data
than the ARIMA forecast.

4.3 Results

Two different time series forecasting method have been evaluated by the accuracy
of the prediction.
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Accuracy. Table 1 reports the Rooted Mean Squared Error (RMSE) achieved by
each technique for forecasting the drug-resistance bacteria infection data. In three
out of five test cases, ARIMA performs better then RNN. In particular, the RMSE
for bacteria A. baumannii is λ =8.0 for ARIMA(6, 0, 0) and λ =12.0 and for the
RNN model. The similar difference in the RMSE is for the bacteria K.pneumoniae.
The RMSE of ARIMA for the bacteria S. aureus is λ =1221.5, whereas the RMSE
of RNN is λ =1416.6.

For two bacteria E. faecium and P. aeruginosa the RNN model has shown better
results than the ARIMA model. The RMSE of the RNN model for the bacteria
P. aeruginosa is λ =137.7, what is half of the RMSE of the ARIMA model with
λ =273.9. The RNN model has performed significantly better for the bacteria E.
faecium as well. As the data characteristics of the bacteria data are the same, it is
hard to say why the results in the quality of the forecast differ so much.

Table 1: RMSEs of ARIMA and RNN

Bacterial pathogen ARIMA RNN
E. faecium with
Vancomycin
resistance

114.5 79.0

S. aureus with
Penicillin resistance

1221.5 1416.6

K.pneumoniae
with Amikacin
resistance

5.9 12.5

A. baumannii with
Imipenem
resistance

8.0 12.0

P. aeruginosa with
Imipenem
resistance

273.9 137.7

4.4 Discussion

Our results suggest that machine learning methods do not always perform well as
expected.

The observations describing the results are the follows:

1. Out of five time series data sets the ARIMA forecast model showed better
performance for three data sets. The forecasting accuracy of the machine
learning RNN model does not prove to be always significantly better as to
that of ARIMA model for multi-step forecasting on univariate datasets. This
work demonstrates that machine learning complexity is not always adding skill
to the forecast. The potential reason is that RNN cannot preserve and thus
does not remember long inputs [12]. Another hypothesis is that additional
data preparation is required.
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2. The RNN forecast model outperforms the classical ARIMA model for two data
sets. As all five data sets have similar data characteristics, it is hard to say why
the forecast accuracies are so different. This work demonstrates that there is
no standard solution even for the similar datasets.

3. ARIMA requires the time series input only. This feature makes it relatively
easy to implement, without high additional costs.

5 Conclusion

The purpose of this paper is to compare classical time series forecasting models with
machine learning models on the real-life data of drug-resistant bacterial infection
development. The classical time series models, such as ARIMA, models the future
state as a linear combination of past data points. On the contrary, Machine Learning
model such as RNN model the future state as a non-linear combination of past data
points.

The paper was approached in the following steps:

Step 1. Define antibiotic resistance forecast problem at the community level as
time series multi-step forecast problem.

Step 2. Check the available methods in the classical time series analysis and ma-
chine learning analysis.

Step 3. Forecast antibiotics resistance at the community level.

ARIMA and RNN were chosen as methods to forecast the number of drug-resistant
bacterial infection occurrences with resistance. Forecast modelling was performed
following the six steps: choose model, split data into train and test data, fit model on
training set, evaluate model on test set, re-fit model on entire data set and forecast
for future data.

Step 4. Experiment on the ESKAPE infection occurrences with resistance

The experiment included the data collection from Antibiotics Resistance Surveillance
from the Robert Koch Institute for 10 years, as per the six steps indicated above.
The results show that the ARIMA model performed well for three out of five data
sets. Thus it can be seen that the RNN model does not perform well for multi-step
forecasting on univariate datasets even when the data sets have similar properties. It
can be explained by the fact that RNN cannot preserve and thus does not remember
long inputs.

Future work can be concentrated on the combination of different machine learning
methods and understanding in what cases the machine learning models deliver better
results.

The results obtained by the forecast of drug-resistant bacterial infection occurrences
are specific to a data set and should not be extrapolated to other data sets without
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previous verification. However the approach proposed in this paper for forecasting
may be considered equally valid for other epidemiological data.
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