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Fighting a Pandemic with Medical Imaging and  
Machine Learning: Lessons Learned from COVID-19
By Michael Roberts, Derek Driggs, 
Ian Selby, Evis Sala, and Carola-
Bibiane Schönlieb

Many researchers in applied mathe-
matics have recognized that machine 

learning (ML) models can help clinicians 
during the ongoing COVID-19 pandemic. 
Models that utilize chest radiographs and 
computed tomography (CT) scans to detect 
patients with severe cases of COVID-19 
have received considerable attention over 
the last year. However, pervasive sys-
tematic errors in existing research make 
it dangerous for doctors to consider these 
models for clinical use.

Here we identify a few of these compli-
cations and discuss avenues that research-
ers can explore to close the gap between 
model development and model deploy-
ment. In particular, we emphasise the need 
to (i) source high-quality data, wherein 
the biases are understood and appreciated; 
(ii) incorporate data from multiple sources 
(as a clinician would when making a deci-
sion); and (iii) employ a multidisciplinary 
team for model development.

The work, effort, and dedication of the 
mathematical imaging and ML communi-
ties during this pandemic has been inspi-
rational and clearly shows ML’s potential 
for clinical decision support. It also dem-
onstrates the possible pitfalls of ML during 
a global emergency.

By focusing on image-based diagnosis 
and prognosis for COVID-19, we make 
several observations about the quick and 
reliable development of ML-based clinical 
support tools. Our consequential discussion 
stems from a recent systematic review [12] 
and editorial piece [4].

Imaging and Machine Learning   
for the COVID-19 Pandemic

Chest imaging is a useful tool for the 
initial triage of patients with COVID-19 at 
hospitals with first-line utilization of chest 
X-rays (CXRs) and CT imaging. Although 
European and American radiological soci-
eties initially discouraged the use of CT 
and chest radiographs for COVID-19 diag-
nosis in early 2020 [1, 13], this position 
softened as the high false negative rate 
of existing tests became apparent and the 
pandemic began to strain the resources 

that are required to test patients quickly 
[14]. China has employed imaging exams 
as the primary initial diagnostic tool since 
the outbreak’s onset [13]. In addition, 
several studies indicate that the extent of 
opacification in the lungs of COVID-19 
patients is a significant prognostic marker 
of mortality [2]. Figure 1 displays common 

presentations of COVID-19 in CT scans 
and chest radiographs.

The COVID-19 pandemic is the first of 
the ML era, and pattern recognition algo-
rithms have the potential to aid clinicians 
in the diagnosis and prognostication of 

See Medical Imaging on page 3

Figure 1. Annotated examples of COVID-19 scans. 1a. Chest X-ray (CXR) with ground-glass 
opacification (GGO) in both lungs and consolidation (outlined in orange). 1b. A computed tomog-
raphy (CT) scan that shows GGO (green) and consolidation (orange). 1c. A CT scan that indicates 
severe COVID-19 with a crazy-paving pattern. Images courtesy of [8] and inset courtesy of [5].

Balancing Homeostasis and Health
By Matthew R. Francis

Human beings are not bicycles. 
However, mechanistic metaphors for 

the human body abound. For instance, we 
compare athletes to finely-tuned machines 
and look for equations that are derived 
from mechanics to describe biological pro-
cesses — even when the relationship is no 
better than an analogy.

However, the concept of homeosta-
sis clearly exemplifies the breakdown of 
mechanistic models when one applies them 
to the human body. Homeostasis is the 
process by which an organism maintains 
a stable output regardless of input (within 
reasonable limits). The most familiar exam-
ple is human body temperature, which stays 
within a remarkably small range of values 

regardless of whether one is sitting in a cold 
room or walking outside on a hot day.

“In a bicycle, you know what each part 
is for,” Michael Reed, a mathematician 
at Duke University, said. “We are not 
machines with fixed parts; we are a large 
pile of cooperating cells. The question is, 
how does this pile of cooperating cells 
accomplish various tasks?”

More specifically, how can researchers 
mathematically describe the function of 
these processes? Homeostasis is the con-
ceptual opposite of bifurcation, wherein a 
small variation in initial conditions results 
in a massive change to the system’s evolu-
tion. But it is also unlike dynamical equi-
librium, in which system perturbations 
often lead to oscillations.

All living things rely on homeostatic 
mechanisms, and homeostasis is an essen-
tial component of a wide range of biologi-
cal and biomedical phenomena, including 
cancer growth, physiological responses to 
drugs, and hormone therapies. Mathematical 
modeling of these systems—in tandem 
with animal experiments—promises new 
ways to treat diseases and imbalances, 
both by identifying healthy homeostatic 
schemes and disrupting homeostasis in 
pathogens or tumors.

“Not only are these very complicated 
biological mechanisms, but overlaid on top 
of the biochemistry and physics are various 
control mechanisms that adjust for this kind 
of variation,” Reed said. During his presen-
tation at the 2021 American Association 
for the Advancement of Science (AAAS) 
Annual Meeting,1 which took place virtu-
ally this February, Reed noted that the 
amount of a particular enzyme that is 
produced in the liver can vary as much as 
25 percent without affecting liver function. 
Such preservation requires a fine level of 
control that results from a complex nonlin-
ear relationship between input, regulation, 
and output functionality.

“Homeostasis is a biological concept, 
[so] you have to make it into a mathematical 
concept,” Martin Golubitsky, a mathemati-
cian at Ohio State University who also 
spoke at the AAAS session, said. “It’s a 
really difficult mathematical problem ana-
lytically; what does it mean to be ‘approxi-
mately constant’? You know it when you 
see it to some extent, but you don’t know 
how to search for it very easily.”

Homeostasis Giveth and 
Homeostasis Taketh Away

Human beings are like bicycles, at least in 
a dynamical sense. The forward motion that 
stems from pedaling helps to maintain bal-
ance and keep the bicycle from falling over. 
Similarly, equilibrium for a living thing is 

1  https://www.aaas.org/events/2021-aaas-
annual-meeting

Figure 1. Homeostasis of dopamine under a wide range of production of the enzyme tyro-
sine hydroxylase (TH) and the dopamine reuptake transporter (DAT), which are to varying 
degrees controlled by genes. The stated values are all relative to an average genotype, 
which the authors of the study call the “wild type.” Figure courtesy of [1] and reproduced 
with permission under the Creative Commons Attribution 4.0 International License: https://
creativecommons.org/licenses/by/4.0.

See Homeostasis and Health on page 4
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SIAM Partakes in the 2021    
Virtual National Math Festival
By Wesley Hamilton

Every two years, the Mathematical 
Sciences Research Institute—in cooper-

ation with the Institute for Advanced Study 
and the National Museum of Mathematics—
organizes the National Math Festival1 
(NMF) to bring together mathematicians, 
math educators, and the broader commu-
nity. The NMF typically takes place in 
Washington, D.C., but it occurred virtually 
this year due to the ongoing COVID-19 pan-
demic. The festival ran from Friday, April 
16 through Sunday, April 18 and was hosted 
on the Hopin event platform (see Figure 1).

This year’s event included five film 
screenings and associated panels, seven spe-
cial math talks (with subjects ranging from 
black holes and spacetime to “Changing 
the ‘Face’ of Mathematics”2), an “Imagine 
Math Class” video competition3 for youths 
aged 13-18, and a plethora of interactive 
sessions and booths. The festival began on 
Friday night with several screenings and a 
Mathical book reading,4 but most festival 
activities took place over the weekend. All 
of the interactive sessions and booths were 
open to attendees on Saturday and Sunday.

Steven Strogatz delivered a main stage 
talk titled “Infinite Powers: The Story of 
Calculus.”5 During his presentation, which 
was meant for a general audience, Strogatz 
discussed the history of calculus and how 
it has shaped modern science. Austin 
Ferguson, a mathematics graduate student at 
the University of North Carolina at Chapel 
Hill, attended and enjoyed the talk. “It was 
great listening to Dr. Strogatz talk about 
the basics of calculus,” he said. “Hearing 

1 https://www.nationalmathfestival.org
2  https://www.nationalmathfestival.org/event/

changing-face-mathematics
3 https://www.nationalmathfestival.org/join/

imagine-math-class
4  https://www.nationalmathfestival.org/event/

mathical-author-reading-brittney-morris-slay
5 https://www.nationalmathfestival.org/event/

infinite-powers-story-calculus

a professor who I respect so much, whose 
textbook helped steer me in the direction 
I’ve gone, explain something so clearly and 
with so much passion was wonderful.”

Another main stage event featured the 
founders of Mathematically Gifted and 
Black:6 Erica Graham (Bryn Mawr College), 
Raegan Higgins (Texas Tech University), 
Candice Price (Smith College), and Shelby 
Wilson (Johns Hopkins University Applied 
Physics Laboratory). Their session, which 
explored the genesis and impact of their 
website, was followed by a question-and-
answer (Q&A) period with the audience. 
The four mathematicians discussed the 
importance of representation in mathemat-
ics, addressed the ways in which media 
portrayal of mathematicians has shifted 
in the past few decades, and commented 
on the origins of their website. “Typically 
[in the media] we see white men as math-
ematicians,” Graham said. “If you try to 
think about some sort of counterexample 
to that, there are very rarely additional 
representations of mathematicians who 
look like the four of us.”

This presentation highlighted a second 
NMF goal: increasing representation and 

6  https://mathematicallygiftedandblack.com

humanizing mathematics in a way that the 
standard math curriculum often overlooks. 
A selection of film screenings and associ-
ated Q&As also furthered this objective:

 – 2016’s Hidden Figures, about the 
African American female mathematicians 
who worked for NASA during the Space Race 

 – Secrets of the Surface, the 2020 docu-
mentary about Maryam Mirzakhani — the 
first female and Iranian recipient of the 
Fields Medal

 – The Man Who Knew Infinity, the 
2015 biopic of Indian mathematician 
Srinivasa Ramanujan.
Many of the special events were recorded 
and are available on the NMF website.

The SIAM Education Committee7 hosted 
a number of sessions and a booth at the NMF 
to encourage festival attendees to inter-
act with applied mathematicians and learn 
about careers in applied math. We decided 
to organize “Meet a Mathematician” ses-
sions, which were inspired by a similar 
series of interviews by the Girls Talk Math 
summer camp8 in 2020. We invited seven 
mathematicians from diverse backgrounds 
and fields to speak about their lives, math-
ematical experiences, and use of math in 
their careers. The speakers were as follows:

 – Torina Lewis of the American 
Mathematical Society (AMS) detailed the 
AMS’s efforts to organize programs that 
engage, support, advance, and uplift the 
entire mathematical community

 – Kerisha Burke of Phillips 66 spoke 
about working in the energy industry as a 
midstream analyst

 – Mario Banuelos of California State 
University, Fresno explained how he uses 
math and computer programming to study 
biology, computer vision, and health

 – Tim Chartier of Davidson College 
discussed his work with sports analytics

 – Aaron Luttman of Pacific Northwest 
National Laboratory talked about his nucle-
ar security research

 – Genetha Gray of Salesforce described 
how she incorporates mathematical models 
in human resource departments (see Figure 2)

 – Sara Del Valle of Los Alamos 
National Laboratory discussed epidemiol-
ogy and her responsibilities at the lab.

These sessions were well attended—most 
had roughly 30 unique attendees—and gen-
erated engaging dialogue. Moreover, we 
compiled audience questions into a cen-
tral document that the SIAM Education 
Committee will use when preparing for 
future outreach endeavors and festival 
appearances. SIAM volunteers helped the 
sessions run smoothly by monitoring the chat 
for questions, managing virtual attendees, 
and otherwise engaging in conversations.

Ferguson volunteered for two “Meet a 
Mathematician” sessions and reflected on 
the value of this type of outreach. “As 
a kid, I never actually saw what being a 

7  https://www.siam.org/about-siam/
committees/education-committee

8  https://girlstalkmath.com

Figure 1. Attendees at the virtual National Math Festival (NMF), which took place in April 2021, 
entered via the Hopin Lobby.

Figure 2. Author Wesley Hamilton (left) and Genetha Gray of Salesforce prepare for a “Meet a 
Mathematician” session at the virtual National Math Festival (NMF) in April 2021.

See National Math Festival on page 5

5 	 Mathematical Models       
of Traffic Flow

	 Given the prevalence of traf-
fic in modern society and the 
development of unprecedented 
computer power and progressive 
tracking devices, traffic model-
ing is becoming increasingly 
important. Helge Holden and 
Nils Henrik Risebro describe a 
novel mathematical model that 
analyzes multi-lane traffic.

6 	 The SIAM Industry 
Committee: What We Do 
and How You Can Engage

	 The SIAM Industry Committee 
seeks to increase industry 
member participation within 
SIAM, improve SIAM services 
for these members, and sup-
port industrial careers. John 
Abbott, Sharon Arroyo, Kevin 
Bongiovanni, Amr El-Bakry, 
and Lalitha Venkataramanan 
detail the committee’s recent 
achievements and initiatives.

8 	 Is There an Artificial 
Intelligence in the House?

	 As medical centers begin to 
incorporate artificial intelligence 
into their practices, research-
ers must contend with biases 
in these systems that can lead 
to disparities in diagnosis and 
treatment. Matthew Francis 
utilizes content from the 2021 
American Association for the 
Advancement of Science Annual 
Meeting to address such biases.

8 	 Exploring COVID-19’s 
Impact on Undergraduate 
and Graduate Education

	 In addition to the potential 
knowledge gap caused by the 
shift to remote learning in 
the last year, COVID-19 has 
taken a mental and emotional 
toll on both students and edu-
cators. Kathleen Kavanagh, 
Robyn Hannigan, and Joe 
Skufca explore the pandemic’s 
impacts on higher educa-
tion at Clarkson University.

11 	 New Jersey High School 
Team Wins Top Prize for 
Models that Optimize High-
Speed Internet Connectivity

	 Given the world’s increased 
reliance on high-speed internet, 
the topic of internet connectiv-
ity lent itself well to the 2021 
MathWorks Math Modeling 
(M3) Challenge. A team of high 
school students from Livingston 
High School in Livingston, 
N.J., took home the top prize 
of $22,500 for their sophisti-
cated mathematical models.

11 	 Professional Opportunities 
and Announcements
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Medical Imaging
Continued from page 1

COVID-19 via chest imaging [11]. Indeed, 
our systematic review [12]—which exam-
ines the entire literature from January 
1, 2020 to October 3, 2020—identifies 
320 published and preprint manuscripts 
that develop ML models using chest CT 
or radiographs for COVID-19 diagnosis 
or prognostication. Unfortunately, most 
papers contained systematic issues pertain-
ing to image sourcing, quality, and docu-
mentation that introduce bias in developed 
models, ultimately making them unlikely 
to perform well in practice [4].

We now highlight some of the method-
ological issues in these studies and pro-
vide recommendations for the creation 
of ML models that incorporate imaging 
features and are suitable for clinical use. 
Fundamentally, we endorse the acquisition 
of high-quality data (preferably temporal) 
and detailed associated metadata.

Sourcing Issues
CXRs and CT scans for COVID-19 

patients are commonly available in public 
repositories that do not independently verify 
the accuracy of the ground-truth labels of 
COVID-19 diagnosis. Researchers also fre-
quently use a large pediatric pneumonia 
cohort [9] as the control “non-COVID-19” 
group during model development, which 
inadvertently trains a model to distinguish 
adults (COVID-19) from young children 
(non-COVID-19); the imaging differ-
ences in Figure 2 demonstrate this point. 
Furthermore, we discovered a prevalence of 
“Frankenstein” datasets, which are compiled 
from existing datasets and released under a 
new name. Scientists who train models with 
such Frankenstein datasets are unknowingly 
testing their models on overlapping data 
and thus producing optimistic performance 
metrics. Finally, many manuscripts utilize 
data from image repositories that consist 
of COVID-19 images from publications, 
preprints, or social media posts without 
acknowledging these images’ potential bias 
towards more interesting or unusual cases.

Quality Issues
Image quality can also drastically affect 

a model’s performance and robustness. In 
our review, we found that researchers rarely 
discuss image pre-processing steps. Image 
resizing is a common pre-processing step 
for deep learning models, but the effects of 
initial image resolution, input resolution, 
and aspect ratio adjustments on a model’s 
performance are unclear. We also do not 
know whether an image that one extracts 
from a publication—a “picture of a pic-
ture”—contains the same level of useful 
information as the original [10].

Documentation Issues
Although researchers should fully doc-

ument the source and metadata for the 
images that contribute to model develop-
ment, such documentation is lacking in 
most of the literature. For example, one 
must know whether radiographs were taken 

with mobile scanners and understand the 
distribution of scanner manufacturers, CT 
reconstruction kernels, and CT slice thick-
nesses. Without this information, scientists 
cannot comprehend biases in the dataset.

Multiple Data Streams
In the absence of a polymerase chain 

reaction test result or a suspected false 
positive/negative, one can make a clinical 
diagnosis with information from multiple 
data sources. A ML model for use in clinical 
trials must endeavour to emulate this ability.

In late February 2020, the Diamond 
Princess cruise ship had the largest cluster 
of positive COVID-19 cases outside of 
China. A study of 104 of these COVID-19-
positive patients found that 73 percent (76 
out of 104) were asymptomatic. However, 
54 percent (41 out of 76) of these asymp-
tomatic individuals displayed lung opacities 
on their CT scans. The converse was also 
true, as roughly 21.5 percent (six out of 
28) of symptomatic patients had normal 
CT findings [6]. Imaging features alone are 
clearly not sufficient for accurate diagnosis.

Multidisciplinary Approach
Clinicians, ML experts, imaging spe-

cialists, mathematicians, and statisticians 
should all partake in the development 
process of a trustworthy model for clini-
cal use. Clinical insight regarding model 
usability and data quality is invaluable. 
For instance, clinicians know that unstable 
patients may be primarily imaged from 
the front (i.e., anteroposterior) or whilst 
lying on their backs (supine) if they are 
critically unwell. Annotations that indicate 
this specification are commonly burnt into 
CXR images, and state-of-the-art models 
that classify lung pathologies on the wide-
ly used CheXpert dataset [7] frequently 
employ these annotations to inform the 
models (see Figure 3). Although such 
insights are not obvious to a non-clinician, 
they should heavily influence the develop-
ment of ML algorithms to avoid irrelevant 
links between radiographs and outcomes.

Eye on the Prize
Unfortunately, most models have no via-

ble path towards regulation and clinical use. 
The many hastily developed, poor-quality 
models in some manuscripts risk polluting 
the entire literature, obscuring high-quality 
models, and alienating clinicians who are 
eager to embrace ML methods. Maintaining 
a clear path towards the clinical adoption of 
algorithms throughout their development 
process—and working with relevant indus-
trial partners and healthcare authorities—is 
crucial for ensuring model suitability for 
clinical implementation.

Acknowledgments: The authors thank 
their colleagues and partners in the AIX-
COVNET collaboration1 for their contribu-
tions and input to this article, which is the 
result of many months of discussions and 
teamwork that began in March 2020.

1  https://covid19ai.maths.cam.ac.uk
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Figure 2. Annotated chest radiograph indicating the differences between pediatric and adult 
patients. Pediatric scans courtesy of [9] and adult scans courtesy of [3].

Figure 3. Activation map depicting regions of interest for a neural network that detects lung abnor-
malities. Red areas indicate discriminative regions that the model uses to make its predictions. 
Original scans courtesy of the National Collaborating Centre for Infectious Diseases dataset [8].

SIAM Members Elected to the U.S. 
National Academy of Sciences

In late April, the National Academy of Sciences (NAS) announced the election of 120 
new members—59 of whom are women, the most ever elected in one year—and 30 inter-
national members, bringing the total number of active members to 2,461 and the total 
number of international members to 511. Inductees are honored for their distinguished 
and continuing achievements in original research. SIAM offers its sincere congratula-
tions to all inductees, including those SIAM members who were elected this year:

•  Peter Constantin, director of the Program in Applied and Computational 
Mathematics and John Von Neumann Professor, Department of Mathematics, Princeton 
University

•  Glenn H. Fredrickson, Mitsubishi Chemical Chair in Functional Materials, 
Department of Chemical Engineering, University of California, Santa Barbara

•  Kenneth Lange, Rosenfeld Professor of Computational Genetics, Department of 
Computational Medicine and Departments of Human Genetics and Statistics, University 
of California, Los Angeles

•  Randall J. LeVeque, professor emeritus, Department of Applied Mathematics, 
University of Washington, Seattle

•  Linda Petzold, distinguished professor, Department of Computer Science, University 
of California, Santa Barbara

A full list of the newly elected members of the NAS is available online.1 

1  http://www.nasonline.org/news-and-multimedia/news/2021-nas-election.html
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death; homeostasis upholds the balances 
that keep organisms alive and healthy.

Reed’s research involves the creation 
of mathematical models that analyze the 
body’s regulation of dopamine — a chemi-
cal that helps transmit signals between 
cells, particularly in the nervous system. 
Low dopamine levels are a key factor 
in Parkinson’s disease, while hyperactive 
dopamine receptors may be associated with 
schizophrenia.2 Reed and his collabora-
tors found that their model displayed an 
impressive stability in dopamine levels 
across a wide range of genetic variations 
that produce different levels of regulatory 
enzymes (see Figure 1, on page 1). This 
stability serves as a strong demonstration 
of homeostasis in the dopamine cycle [1].

In some cases, immune systems can 
hijack homeostatic processes to fight 
pathogens. Reinhard Laubenbacher, direc-
tor of the Laboratory for Systems Medicine 
at the University of Florida, is particularly 
interested in the way in which cancer dis-
rupts iron metabolism and the immune 
system’s ability to stop fungal infections. 
During his AAAS talk, Laubenbacher 
described how certain fungi parasitize iron 
from lung cells. Under ordinary circum-
stances, however, the immune system dis-
rupts homeostasis in the invader cells’ iron 
metabolism to starve them of this vital 
element and ultimately kill them.

This mechanism for interrupting homeo-
stasis provides researchers with possible 
alternative treatment options beyond anti-
fungal medication. Like antibiotics, many 
antifungals are becoming less effective as 
fungi evolve. “We work very closely with 
immunologists,” Laubenbacher said. “They 
might say, ‘An immunocompromised 
patient doesn’t have a certain type of white 
blood cell, so how can we make up for it? 
What if we inject some more of this kind of 
substance, would that make a difference?’ 
In the [computer] model, we can do that and 
see if it does make a difference.”

Such results inform laboratory experi-
ments that can lead to new treatments, 
particularly when other therapies are inef-
fective. While administering drugs to an 
already weakened patient might be harmful, 
interventions that restore homeostasis after 
its disruption could be possible.

Networks and Nodes
Human beings are like networks. Despite 

having individual roles, cells work together 
to ensure the function of organs and the 
entire body. The output of a single essential 
biochemical might involve many cell types 
across multiple organs, but sometimes one 
can abstract the process when studying 
homeostasis. A three-node network that 
consists of a single input i,  output o,  and 
regulatory node r  serves as a simple exam-
ple. Researchers can model networks of 
these three nodes to produce three types of 
homeostasis, one of which corresponds con-
ceptually to the dopamine regulatory system 
that Reed and his colleagues described.

Consider a network wherein a given input 
I  leads to output x I

o
( ). Homeostasis occurs 

when x I
o
′ =( )
0
0 for some input value I

0
 

(the derivative is with respect to I ). One can 
write the three-node network generically as 
a system of three differential equations:

            
x f x x x I

oι ι ι ρ= ( , , , )

             
x f x x x

oρ ρ ρι= ( , , )

 
             

x f x x x
o o o
= ( , , ).ι ρ

The choice of functions fk  describes spe-
cific biochemical networks. For instance, 
for a “feedforward” excitation in which the 
biochemical substrate activates an enzyme 
that removes a product,

2  https://www.sciencedirect.com/top-
ics/neuroscience/dopamine-hypothesis-of- 
schizophrenia
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Particular choices of the functions { , }g h
n

 
lead to homeostatic behavior. Other homeo-
static networks involve different combina-
tions of variables and functions [2].

Three-node networks are mathematically 
tractable. However, they are not descriptive 
of many realistic systems, which could have 
as many as 50 nodes. “How many four-node 
networks are there? 199!” Golubitsky said. 
“How many different homeostasis configu-
rations are there? 20. That’s huge!”

However, some of these seemingly com-
plicated systems might reduce through sym-
metries or redundancies. Golubitsky and his 
collaborators are investigating this possibil-
ity by drawing on graph theory and catastro-
phe theory for guidance.

So Very Simple,		
Only a Child Can Do It

Human beings are not actually networks. 
One cannot reduce Laubenbacher’s mod-
els for homeostasis in iron metabolism 

to the type of differential equations that 
Golubitsky and Reed use — at least not yet. 
Laubenbacher also distinguishes between 
complicated and complex systems; though 
complex systems may be conceptually sim-
ple, complicated homeostatic systems often 
require greater levels of detail.

“[Our model] is a multiscale model,” 
Laubenbacher said. “It has intracellular 
networks, tissue-level phenomena, [and] 
a whole-body component. It’s made up 
of molecule diffusion, partial differential 
equations, and cells that are moving around. 
The model is really a hybrid of mechanistic 
and phenomenological modeling and has 
altogether maybe 150 variables.”

Laubenbacher then paraphrased Ludwig 
Wittgenstein’s aphorism, “Whereof one 
cannot speak, thereof one must be 
silent,” and added his own interpretation. 
“Mathematics provides a language for you 
to formulate the properties of the systems 
that you encounter in the life sciences,” he 
said. “The goal is to be really translational. 
We would actually like to say that if you 
treat these patients in this particular way, 
it’s going to make a difference.”

Homeostasis can simultaneously be 
similar and dissimilar to both bicycles 
and networks. Researchers might need to 

utilize novel mathematics to grasp these 
contradictions, simply because life is not 
mechanical. As with the early years of non-
linear dynamics and chaos theory, much 
current work in this field involves catego-
rizing and searching for global patterns that 
suggest the underlying order. In the end, 
the mathematics of homeostasis may lead 
to a new and deeper understanding — and 
ultimately save lives.

References
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understand metabolism, genes, and disease. 
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output networks, singularity theory, and 
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Padberg-Gehle (Eds.), Advances in dynam-
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mathematician entails and always had this 
mental image of a man at a chalkboard in 
a university office,” he said. “But the two 
mathematicians I worked with—Genetha 
Gray and Aaron Luttman—have led such 
interesting careers that have taken them 
places I didn’t know you could go. I think 
it’s great to expose kids to the varied ways 
a mathematician can work so they can bet-
ter connect themselves to the math that they 
learn.” The SIAM Education Committee 
expresses its deep gratitude to all participat-
ing speakers and thanks them for volun-
teering their time to engage with a curious 
and motivated group of festival attendees.

In addition to these sessions, SIAM also 
sponsored a booth that was staffed by 
both undergraduate and graduate students 
in applied mathematics. The booth aimed 
to humanize mathematics by providing 
attendees with the opportunity to ask stu-
dents about their experiences with pursuing 
applied math degrees. Many festival-goers 
that dropped by were parents or educa-
tors who were interested in engaging their 

National Math Festival
Continued from page 2

Mathematical Models of Traffic Flow
By Helge Holden and                 
Nils Henrik Risebro

Preliminary mathematical models of traf-
fic flow date back to at least the early 

1950s [10]. Two distinct classes of models 
prevail: follow-the-leader (FtL) models and 
traffic hydrodynamics. The former tracks 
individual vehicles, while the sufficiently 
dense traffic in the latter justifies a continu-
um approach wherein vehicle density is the 
fundamental quantity. Given the prevalence 
of traffic in modern society, the develop-
ment of unprecedented computer power 
and progressive tracking devices, and con-
tinued advances in mathematical research, 
mathematical traffic modeling has become 
increasingly important in recent years.

Here we describe a novel mathematical 
model that allows for the analysis of mul-
tilane traffic [9]. But first we start with the 
basics. Consider dense unidirectional traffic 
on a single lane. At the most fundamental 
level, your velocity is determined by your 
distance from the vehicle just ahead — the 
closer you are, the slower you drive. If z

i
 is 

the position of the i th vehicle on a single-
lane road, we can model this simple point by

          
d
dt
z v

z zi
i i

=
−











+



1

. 	  (1)

Here, zi+1 is the position of the vehicle 
directly in front of you,   is the vehicle 
length, and v  is a decreasing velocity func-
tion. This calculation amounts to the FtL 
model and generates a system of ordinary 
differential equations with a size that is 
equal to the number of vehicles. However, 
society is getting too accustomed to (pro-
hibitively) dense traffic, for which a “par-

ticle” description becomes inadequate. It 
is thus natural to wonder whether we can 
take advantage of available mathematical 
technology to study the continuum limit 
of particle models in the context of traffic 
dynamics. It turns out that we can.

Define r
i i i

z z= −+/( );1  a straightfor-
ward calculation then yields

    
d
dt

v v
i

i i

1 1
0
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r r
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Now we can let ® 0  and 
#(vehicles)→∞  with z i

i
=   fixed to 

obtain r r
i
t t z( ) ( , ),®  where r  satisfies
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∂
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since (2) is a first-order (in ) semi-discrete 
scheme for (3). In this case, the continuum 
limit follows from a result in finite differ-
ence approximations of nonlinear partial 
differential equations. Equation (3) is an 
example of a first-order hyperbolic con-
servation law. Solutions of the Cauchy 
problem for this equation develop singu-
larities in finite time that are independent of 
the initial data’s smoothness. We therefore 
must develop the machinery of weak solu-
tions and entropy conditions to single out 
unique solutions [6]. Because (3) is not in 
the standard form, we introduce the classi-
cal transformation—well-known from fluid 
dynamics—from Lagrangian to Eulerian 
variables. This transformation yields

                r r r
t x

v+ =( ( )) ,0

which is the celebrated Lighthill-Whitham-
Richards (LWR) model for traffic flow. In 
the simplest case, we assume that the veloc-
ity depends only on density. If we scale the 
maximum density to unity and assume a 
linear dependence in the velocity—that is, 
v= −1 r—we obtain the equivalent of the 
inviscid Burgers’ equation

              
r r r
t x
+ − =( ( )) .1 0

We have thus connected the two most 
fundamental traffic models by establishing 
the convergence of a numerical scheme. By 
examining more general velocity functions 
and allowing these functions to depend on 
time and position, we see that the “hydrody-
namic” approach to traffic on a single-lane 
road is a rich source of interesting mathemati-
cal problems — even in this very simple case.

The aforementioned reasoning is formal 
and assumes the differentiability of all 
quantities, but one can rigorously establish 
that the limit r  exists and is an entropy 
solution [3, 7, 8] (see Figure 1).

Two Lanes
We model two lanes of traffic as two indi-

vidual roads, where vehicles move accord-
ing to the FtL model (1) and are allowed to 
change lanes. Our basic assumption is that 
the likelihood of a driver changing lanes is 
zero if doing so would lead to a decrease in 
speed, and is otherwise proportional to the 
potential gain in speed. This simple idea is a 
bit complicated to describe mathematically.

Let { }z
i

 and { }yi  denote the vehicle 
positions in the two lanes z  and y  respec-
tively. We assume that the drivers continu-
ously monitor the prospective speeds (and 

Figure 1. A simulation of traffic on a periodic road. The number of vehicles is 200, their length is =1 500/ , and the velocity function is 
v( ) .r r= −1  1a. Initially, the vehicles are equally spaced on half of the road so that the density /( ) . .x x

i i+ − =
1

0 8  1b. As time begins to pass, 
the first vehicle instantly approaches the maximum velocity. Vehicles at the tail move more slowly and are eventually approached by those that 
have completed one loop (at t =1). 1c. Vehicle density approaches the familiar N-wave from conservation laws, wherein a shock is sandwiched 
between two rarefaction waves. This graph is virtually indistinguishable from the solution of the corresponding Lighthill-Whitham-Richards (LWR) 
model. See the online version of this article for an associated animation. Figure courtesy of the authors.

Figure 2. The result of a simulation of two-lane traffic on a periodic road. The number of vehicles is 200 and their length is =1 500/ .  Their 
initial locations are such that on half of the road, x Î[ , / )0 1 2  and density r= 0 8. .  2a. Initially, the vehicles are equally spaced on half of lane 1; 
the other lane (lane 2) is empty. 2b. As time passes, some vehicles switch to the outer lane. The tendency for vehicles to change lanes is deter-
mined randomly, and probability is proportional to the gain in velocity that a vehicle obtains by changing lanes. The velocity function v( )r r= −1  
is the same in both lanes. Vehicles begin moving to lane 2 and traffic becomes denser there. The distance between vehicles in lane 1 starts 
to increase, which makes the vehicles’ velocities increase. The image depicts vehicle positions at t =1.  2c. The density for the two lanes at 
t =1 again displays an N-wave, as in Figure 1. See the online version of this article for an associated animation. Figure courtesy of the authors.

See Traffic Flow on page 7

students with real-world math, although 
undergraduates, retired educators, and 
practicing mathematicians also attended. 
Approximately eight to 10 people—includ-
ing several SIAM volunteers and one Hopin 
staff member who offered technical and 
logistical support—were at the SIAM booth 
at any given time throughout the weekend. 
In addition, the booth provided an oppor-
tunity for SIAM to share the following 
resources that highlight the stories of math-
ematicians from underrepresented groups:

 – Mathematically Gifted and Black
 – Latinx and Hispanics in the 

Mathematical Sciences (Lathisms)9

 – The Society for Advancement of 
Chicanos/Hispanics & Native Americans in 
Science (SACNAS)10

 – Indigenous Mathematicians11

 – Meet a Mathematician,12 which is an 
independent collection of short interviews.

The SIAM volunteers represented student 
chapters from nine institutions across the 
U.S.: Colorado School of Mines (Ethan 

9  https://www.lathisms.org
10   https://www.sacnas.org
11   http://indigenousmathematicians.com
12   https://www.meetamathematician.com

Lewellin and Brendan Stewart); Virginia 
Tech (Jovan Zigic); Worcester Polytechnic 
Institute (Kayla Fabry); Indiana University 
of Pennsylvania (Aziegbemi Okisamen); 
University of Delaware (Nicholas Russell); 
Western Kentucky University (Ahmet 
Kaan Aydin); Arizona State University 
(Gabriela Navas-Zuloaga); California State 
University, Fresno (Mario Banuelos); and 
the University of North Carolina at Chapel 
Hill (K. Medlin, Franklin Rea, Dylan 
Bruney, Andrew Ford, Austin Ferguson, 
Kate Daftari, Gargi Dixit, Mary Mac Cole, 
and Nick Tapp-Hughes). SIAM’s presence 
at the NMF would not have been possible 
without the time and hard work of all of 
these volunteers, and the SIAM Education 
Committee appreciates every one of them.

As this was the first-ever virtual iteration 
of the NMF, many presenters and volunteers 
were unsure of what to expect. By default, 
volunteers could see the number of attendees 
who were watching a booth or session at any 
given time, but only a few volunteers actu-
ally turned on their cameras. Moreover, the 
use of Hopin required that all participants 
learn a new virtual meeting environment. 
Nevertheless, the “Meet a Mathematician” 

sessions and the SIAM booth experienced a 
healthy level of engagement, and attendees 
actively asked questions and interacted with 
the speakers and volunteers. Linder Global 
Events, the NMF’s logistical organizer, 
offered plenty of training sessions for Hopin, 
and all of the presenters and volunteers were 
fully prepared at the start of each event.

The NMF continues to play an important 
role in exposing the broader community 
to the joy of mathematics. “SIAM puts 
boots on the ground at the NMF because 
we want to see the joy, beauty, and prac-
tice of mathematics shared with as many 
children and families as possible,” SIAM’s 
executive director Suzanne Weekes said. 
From film screenings and a mathemati-
cal rap workshop to career sessions with 
applied mathematicians, the 2021 festival 
had something for everyone. 

Wesley Hamilton recently graduated 
with a Ph.D. in mathematics from the 
University of North Carolina at Chapel 
Hill and will start his position as a Wylie 
Assistant Professor at the University of 
Utah this summer. He also serves on the 
SIAM Education Committee.
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By John Abbott, Sharon Arroyo, 
Kevin Bongiovanni, Amr El-Bakry, 
and Lalitha Venkataramanan

Where can you learn about the latest 
mathematical advances that inspire 

the development of new algorithms to 
reduce business costs, improve product 
designs, and increase safety? How can you 
meet colleagues who will introduce you 
to novel avenues of research? Or perhaps 
you want to influence the next generation 
of industrial mathematicians by expos-
ing students to industry and government 
careers that stimulate their curiosity and 
creativity while simultaneously provid-
ing value to companies and laboratories. 
The SIAM Industry Committee1 is here to 
enable all of these goals.

The SIAM Industry Committee was 
formed in 2010 and has 11 members who 
serve three-year terms, with the possibil-
ity of up to three terms of total service. 
In 2020, we added 15 ad-hoc members to 
enhance committee diversity and extend 
our scope. The committee pursues the fol-
lowing three focus areas:

 – Increasing industry member partici-
pation within SIAM

 – Improving SIAM services for indus-
try members

 – Providing education support related 
to careers in industry.
Each committee member focuses on one 
or more of these areas and attends monthly 
meetings that allow them to share ideas and 
collectively chart committee progress.

In 2018, the Industry Committee sent 
a survey to nearly 5,000 SIAM members 
who work in non-academic settings (e.g., 
industry/business, government laboratories, 
nonprofit organizations, self-employed, and 
other). We received more than 600 replies 
that expressed respondents’ needs from 
SIAM.  The subsequent survey highlights 
helped drive recent committee activity:

 – The majority of respondents indicated 
a desired focus in data science, machine 
learning, and computer science.

 – Members rated SIAM journals and 
SIAM Review as the most valuable SIAM 
products, followed closely by conferences 
and workshops.

 – Survey responses indicated high lev-
els of enthusiasm for resources that identify 
candidates for job openings, new books in 
specific areas, and newly formed joint con-
ferences with other societies.

 – Young members expressed an inter-
est in mentoring, guest speakers, training, 
and job listings.

Given these findings and other objec-
tives, the Industry Committee maintains 
several routine initiatives. For example, 
every year at the SIAM Annual Meeting, a 
member of the Industry Committee hosts a 
career panel of four to six individuals from 
a variety of industries and laboratories with 
a mix of experience levels. Participants 
provide overviews of their backgrounds 
and answer questions about their career 
trajectories. Each panel has an associ-
ated theme; the theme at the 2020 SIAM 
Annual Meeting (AN20) was entrepreneur-
ship.2 A well-attended virtual mixer after 
the session encouraged further interaction 
with the panelists. Inspired by the success 
of these panels, the Industry Committee 
hosted another virtual event3 about indus-
trial and entrepreneurial careers in October 
2020 that attracted over 200 participants. 

1  https://www.siam.org/about-siam/
committees/industry-committee

2  https://sinews.siam.org/Details-Page/
an20-panel-offers-guidance-to-future-applied-
mathematics-entrepreneurs

3  https://sinews.siam.org/Details-Page/
siam-panel-addresses-applied-mathematics-
in-industry-and-entrepreneurship

 – The committee updated information 
on SIAM’s website that concerns industry, 
with a focus on industry careers. 

 – The Industry Committee consistent-
ly provides input to the Committee on 
Programs and Conferences5 and the Career 
Opportunities Committee,6 and shares 
industry perspectives during committee 
discussions.

In addition, the committee closely part-
ners with the BIG Math Network,7 with a 
particular focus on the Tondeur Initiatives.8 
In 2018, Philippe and Claire-Lise Tondeur 

5  https://www.siam.org/about-siam/
committees/committee-on-programs-and-
conferences

6  https://www.siam.org/about-siam/
committees/career-opportunities-committee

7 https://www.siam.org/students-education/
programs-initiatives/big-math-network

8  https://www.siam.org/students-education/
programs-initiatives/tondeur-initiatives

made donations to SIAM, the American 
Mathematical Society, and the Mathematical 
Association of America to support U.S.-
based mathematicians who are interested in 
business, industry, and government (BIG) 
careers. SIAM is proud to work with the 
BIG Math Network and its fellow mathe-
matics societies to implement the Tondeurs’ 
vision and facilitate career pathways for 
students in the mathematical sciences.

In October 2020, the Industry Committee 
hosted a nine-hour workshop over two 
days with more than 30 participants from 
the committee, SIAM staff, SIAM leader-
ship, academia, and industry. The workshop 
aimed to develop essential elements of a 
three- to five-year strategic plan for non-
academic membership, accounting for the 
2018 survey and other recent activity.

We are planning additional panels to serve 
student needs in 2021.

Here we outline several other recent 
accomplishments:

 – The Industry Committee developed 
and hosted a tutorial session at AN20 on 
emerging research areas, in coordination 
with the SIAM Education Committee. 

 – Student chapters in Massachusetts, 
Washington, Oregon, and Texas connected 
with local industry mathematicians, allow-
ing chapter members to pose questions 
about industry and business. 

 – Members of the Industry Committee 
continue to participate in SIAM’s Visiting 
Lecture Program,4 which promotes topics 
that are of interest to developing profes-
sional mathematicians.

4  https://www.siam.org/students-education/
programs-initiatives/siam-visiting-lecturer-
program

The SIAM Industry Committee: 
What We Do and How You Can Engage

See Industry Committee on page 7
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As a result of the workshop’s outcomes, 
SIAM and the Industry Committee are cur-
rently working on the following projects:

 – Teaming up with the SIAM Major 
Awards Committee9 to develop a SIAM 
Prize for Industry, which will recognize 
significant accomplishments in the use of 
mathematics to provide value in industry 
and business settings

 – Planning to advertise SIAM’s ben-
efits to industry members so they utilize 
SIAM resources more fully

 – Developing a community lecture for 
future Annual Meetings to offer insights 
into exciting industrial careers for the 
broader community.

In the future, SIAM and the Industry 
Committee plan to (i) increase industry par-
ticipation in other SIAM committees to 
ensure the inclusion of diverse views, and (ii) 
expand grassroots efforts to connect industry 
members with local student chapters.

We will also explore a number of other 
longer-term initiatives. Such initiatives 
include expanding SIAM’s reach and pro-
grams for data scientists with bachelor’s 

9  https://www.siam.org/about-siam/
committees/major-awards-committee-mac

and master’s degrees, creating an Industry 
Activity Community, reviewing the Fellows 
Program10 and mid-career support, develop-
ing an enhanced marketing strategy, and 
evaluating the corporate benefits model.

The SIAM Industry Committee remains 
active and maintains a strong vision for ser-
vicing our community. We welcome your 
insights and feedback — together we will 
meet these aforementioned challenges and 
strengthen SIAM’s connection with indus-
try. Please submit your name to the SIAM 
Leadership Suggestion Form11 if you are 
interested in getting involved.

John Abbott is a development fellow 
in the Modeling, Software, and Analytics 
group at Corning Incorporated. Sharon 
Arroyo is a Technical Fellow at The Boeing 
Company and the Vice President for 
Industry at SIAM. Kevin Bongiovanni is a 
systems engineer at Raytheon Technologies. 
Amr El-Bakry is a senior Computational 
& Data Science Advisor at ExxonMobil 
Upstream Integrated Solutions Inc. Lalitha 
Venkataramanan is a data science advisor 
at Schlumberger. All of the authors are 
members of the SIAM Industry Committee.

10 https://www.siam.org/prizes-recognition/
fellows-program

11 https://www.siam.org/forms/leadership-
suggestions

Industry Committee
Continued from page 6

thereby positions) of their vehicles if they 
were to move to the other lane. As such, 
z
i
 signifies the dynamics of vehicle zi  if it 

were in the other lane. The probability that 
the vehicle changes lanes within a small 
time interval is then given by

      
f z t t z t t

i i
( ) ( ) ,+ − +( )∆ ∆

where f  is an increasing smooth function 
with f( )s = 0  for s£0  and f( ) .∞ =1  In 
this model, drivers behave rather selfishly 
and do not consider the consequences of 
their lane changing for other drivers (in 
particular, for vehicle yj-1).

If we again take the formal limit of reduc-
ing the time interval and ® 0,

 
 
       
            



z z
x t

i i+ −
→

1
1r ( , ),

               

y y
x t

j j+ −
→

1

2
r ( , ),

           

just as in the single lane case. Here, r1 is 
the density of vehicles in lane z  and r2  is 
the density of vehicles in lane y. The lane-
changing model leads to a flux from lane 
z  to lane y. This flux allows for different 
velocity functions in the two lanes:
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where a a a± = ±(| | )/2  and K  is a constant. 
Therefore, conservation of vehicles reads as
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This is a weakly coupled system of conser-
vation laws. Its special structure allows for 
the sharp estimate of the difference between 
two solutions [9], stating that the sum over 
all lanes of the L1  norm of the difference 
between two solutions does not exceed the 
initial difference, again measured in the L1 
norm. In contrast to the single lane case, the 
scaling limits that lead to (4) are not rigor-
ously established (see Figure 2, on page 5).

Figure 3 compares the numerical solution 
of (4) to the same initial data and reveals 
some similarities to the data in Figure 2.

We can expand this analysis to arbitrarily 
many lanes. The density r

i
 of vehicles in 

lane i  with velocity function vi  satisfies

  
∂ + ∂ ( ) = −− −t i x i i i i i i

v Sr r r r r( ) ( , )1 1

         S i N
i i i
( , ), , , ,r r + = …1 1

(5)

with S S
N0 0= = .

It is tempting to mathematically scale the 
lane “width” to allow for infinitely many 
lanes. Even if the connection to traffic flow 
is absent, doing so gives rise to an inter-
esting non-heterogeneous diffusion model 
with Neumann boundary conditions [1, 9]. 
One can also extend the LWR model to a 
network of roads [4, 5].

Modeling traffic flow provides a treasure 
chest for interesting mathematical prob-
lems. Much of the work assumes that the 
velocity is a decreasing function of the 

density, but the experi-
mental data in Figure 4 
indicates that this is not 
always the case.

It is also wise to 
recall the advice of 
Sherlock Holmes, cour-
tesy of Arthur Conan 
Doyle: “It is a capi-
tal mistake to theorize 
before one has data,” he 
says. “Insensibly one 
begins to twist facts to 
suit theories, instead of 
theories to suit facts.”
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By Kathleen Kavanagh, Robyn 
Hannigan, and Joe Skufca

The COVID-19 pandemic’s impact on 
K-12 and higher education—including 

both students and their educators—should 
not be underestimated. But can we truly 
estimate it at all? The fall semester is 
quickly approaching, and institutions must 
grapple with their expectations of incom-
ing students and determine how to best 
support them after more than a year of 
nontraditional learning. Some recent high 
school graduates have not been in a class-
room since March 2020 and will suddenly 
find themselves in a class of 120 college 
students. Despite herculean efforts by high 
school teachers, students might not have 
mastered trigonometry or algebra and thus 
will not be able to apply those fundamen-
tals to related rates problems. The same is 
true for returning college students, many 
of whom learned their entire calculus 
sequence over Zoom. Will they be able to 
utilize these concepts in an in-person ther-
modynamics course?

In addition to the potential knowledge 
gap, one must also consider the pandemic’s 
mental and emotional toll. It is foolish to 
think that educators can teach the same way 
they did before March 2020, at least in the 
immediate future. So, what information do 
we have and how can we use it to plan for 
the coming semester?

A Data Anecdote for 
Undergraduate Coursework

Examining the questions of “outcomes 
evidence” in any detail requires a bit more 
pause. For context, Clarkson University 
shifted to fully remote learning after spring 
break in 2020. The fall 2020 (F20) semester 
was a mix of on-campus, hybrid, and com-
pletely online courses. With grade distribu-
tions only ranging from spring 2020 (S20) 
to F20, there is not much data with which to 
resolve the longitudinal impacts. However, 
we can still begin to scour the data we do 
have for anecdotal evidence.

To account for as many variables as 
possible, we examined a specific two-
course sequence that crossed disciplines: 
Differential Equations (MA232) and 
Engineering Science (ESXXX), where 
MA232 is a prerequisite for ESXXX. We 
compared the cohort from the S19-F19 
semesters (both courses taught in person) 
with the equivalent cohort from S20-F20 to 
attempt to understand the differences.

requirements but did not formally adjust 
any other expectations in terms of degree 
completion (though we are monitoring the 
situation and remaining flexible).

The social impacts of COVID-19 for stu-
dents have been significant. Grad students 
typically operate as a cohort, and much of 
the information comes from that collec-
tive group. Without close communication, 
things can quickly derail. In a situation that 
we assume is not unique to Clarkson, one 
of our first-year graduate students appeared 
to be a bit withdrawn (which is harder to 
identify with remote interactions). One of 
his instructors dug a little deeper and noted 
that the student’s cohort was small; given 
social distancing, it was essentially non-
existent. The student thought he needed 30 
credits for the year (the stated maximum, 
not a minimum), believed that there was no 
way he could keep up, and was afraid that 
he would lose his assistantship. Without 
other students to commiserate with, he felt 
like he was not meeting the standard; in 
reality, he was doing fine — struggling in 
the same way everyone else was struggling. 
His advisor had noticed that the student 
seemed more stressed and had therefore 
reduced some research expectations, which 
the student then interpreted as a lack of 
faith in his ability to contribute to the 
research group. These misunderstandings 
would likely not have arisen if students 
were working face to face, with ready 
access to advice from more senior peers 
and the usual easy communication between 
advisors, faculty, and grad students.

As we slowly begin to emerge on the 
other side of COVID-19, we will need to 
take a personal and institutional inventory 

to understand any necessary adjustments. 
As faculty, advisors, mentors, and aca-
demic leaders, this is everyone’s first time 
navigating the aftershock of a pandemic. 
SIAM provides many opportunities to 
network, collaborate, share, and plan as a 
community, and we encourage readers to 
organize a minisymposium on the topic 
of education, consider writing an article 
for SIAM News Online, and continue to 
engage in discussions with fellow SIAM 
members. Moving forward, we hope that 
applied mathematics education will be 
at the forefront of discussions so we can 
overcome the challenges of the last year. 
We urge members to dive into their own 
data and leverage the SIAM community 
so we can all learn from each other and 
determine the best path forward.

We invite readers to share their own 
experiences with virtual teaching or learn-
ing, offer suggestions for tips and tech-
niques, and brainstorm with one another. 
Comment on the online version of this 
article to get the discussion started!

Kathleen Kavanagh is a professor of math-
ematics at Clarkson University and the Vice 
President for Education at SIAM. Robyn 
Hannigan is the provost at Clarkson. Her 
academic work includes publications about 
the opportunities of diversity in advancing 
student achievement and learning outcomes 
assessment. Joe Skufca is a professor and 
Chair of Mathematics at Clarkson who con-
ducts research in dynamical systems, data 
science, and applied modeling. He is an 
active member of the SIAM Activity Group 
on Applied Mathematics Education with a 
special interest in ethics in mathematics.

The unexpected mid-semester shift 
to online coursework impacted MA232 
students in the second cohort (S20-F20). 
Though students were back on campus the 
following semester, social distancing lim-
ited class capacity and ESXXX was taught 
as a fully online course.

Figure 1 shows pre-COVID and post-
COVID distributions for the aforemen-
tioned two courses, where the sample 
population is students who took this spe-
cific two-course sequence. We note a minor 
shift to the right (representing improved 
grades) for the MA232 comparison and a 
much stronger shift toward higher grades 
in ESXXX. Based on this observation, one 
could conclude that MA232 students were 
sufficiently well prepared for the follow-up 
course — despite the shift to online learn-
ing in the middle of the semester. However, 
we acknowledge that many confounding 
possibilities lurk behind this simple inter-
pretation. Did the online shift actually help 
students? Are teachers simply grading more 
leniently? Did educators simplify the cours-
es to the core material, which provides the 
minimal requirements but perhaps does not 
challenge the students to think? How did 
assessments change? As educators, we have 
many questions to ponder over the summer, 
especially after we receive additional results 
from the most recent semester.

Mental and Emotional 		
Impacts on Graduate Students

The COVID-19 pandemic disrupted 
every aspect of the graduate student path-
way to a Ph.D.; research, learning, and even 
teaching responsibilities. As graduate stu-
dents, teaching assistants are a bit more pre-
pared for online participation because they 
already possess independent study skills. 
However, student-student interactions and 
an overall sense of community are both 
important in graduate school, and social 
distancing has disrupted that mechanism.

Like professors, graduate students who 
teach had to move their pedagogy online 
— but perhaps with less support, espe-
cially in regards to technology. Many of 
them have families and were thus tak-
ing classes and teaching online courses 
while also homeschooling or caring for 
small children. Some institutions made 
adjustments for faculty members who were 
under similar levels of stress, like delaying 
the tenure clock. What accommodations 
could and should we provide for Ph.D. 
students? At Clarkson, the Department of 
Mathematics delayed all qualifying exam 

Exploring COVID-19’s Impact on 
Undergraduate and Graduate Education

Figure 1. Histogram that represents the grade distributions for Differential Equations (MA232) 
and Engineering Science (ESXXX) in “pre-COVID” (spring 2019/fall 2019) and “post-COVID” 
(spring 2020/fall 2020) settings. Note the apparent shift to the right in distributions for both 
courses in the “post-COVID” setting. Figure courtesy of Joe Skufca.

Is There an Artificial Intelligence in the House?
By Matthew R. Francis

Medical care routinely involves life-
or-death decisions, the allocation of 

expensive or rare resources, and ongo-
ing management of real people’s health. 
Mistakes can be costly or even deadly, and 
healthcare professionals—as human beings 
themselves—are prone to the same biases 
and bigotries as the general population.

For this reason, medical centers in many 
countries are beginning to incorporate arti-
ficial intelligence (AI) into their practices. 
After all, computers in the abstract are not 
subject to the same foibles as humanity. In 
practice, however, medical AI perpetuates 
many of the same biases that are present 
in the system, particularly in terms of 
disparities in diagnosis and treatment (see 
Figure 1, on page 9).

“Everyone knows that biased data can 
lead to biased output,” Ravi Parikh, an 
oncologist at the University of Pennsylvania, 
said. “The issue in healthcare is that 

the decision points are such high stakes. 
When you talk about AI, you’re talking 
about how to deploy resources that could 
reduce morbidity, keep patients out of the 
hospital, and save someone’s life. That’s 
why bias in healthcare AI is arguably 
one of the most important and conse-
quential aspects of AI.”

While AI as a subfield of computer sci-
ence has been around for over 60 years, it 
has only made progress in usable algorithms 
over the last decade. Such usability comes 
in the form of machine learning, which 
extrapolates patterns in training data to 
solve various problems. This training data is 
one spot where problems can arise.

“Healthcare has been late to the party 
with AI and machine learning,” Parikh 
said. “We’ve had to learn from a lot of les-
sons that have come up with other indus-
tries. [It] isn’t that AI is inherently biased; 
even traditional predictive tools and other 
things can be biased as well. The problem 
is that the data used in healthcare is subject 

to biases that certain clinicians, health sys-
tems, or payers might perpetuate, including 
coverage decisions that may disproportion-
ately affect certain minority groups.”

Parikh spoke about improving medi-
cal AI at the 2021 American Association 
for the Advancement of Science (AAAS) 
Annual Meeting,1 which took place virtu-
ally in February. He identified three spe-
cific forms of statistical bias (in addition 
to normal measurement error): undersam-
pling, labeling problems, and heterogene-
ity of effects. Undersampling can occur 
because white people tend to have better 
access to healthcare, while systemic prob-
lems lead to the inclusion of a dispropor-
tionately small percentage of people of 
color in the data. As a result, the widely 
used Framingham Risk Score—which esti-
mates the 10-year cardiovascular risk of an 
individual—is nearly 20 percent lower for 

1  https://www.aaas.org/events/2021-aaas-
annual-meeting

Black patients than white patients with the 
same set of clinical characteristics.

Access to care is also a source of the 
labeling problem. For instance, an algo-
rithm might conclude that a Black patient 
no longer needs care when they actually 
discontinue treatment because various rea-
sons—such as a lack of transportation, job 
issues, or family obligations—prevent them 
from getting to the medical center. Finally, 
heterogeneity of effects includes high rates 
of false negatives for Black patients because 
training data can miss factors that occur 
more frequently in minority groups.

Although these biases are statistical, they 
have obvious connections to larger sys-
temic problems that include transportation 
disparities, insurance issues (particularly 
for those without job-related benefits), a 
lack of hospitals in rural areas and minority 
neighborhoods, and so forth. AI did not cre-
ate these problems, but it certainly should 

See Artificial Intelligence on page 9
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Errata
The May issue of SIAM News erro-

neously featured an outdated adver-
tisement from two years ago for the 
Call for Nominations of the 2020 
William Benter Prize in Applied 
Mathematics. Please disregard it and 
refer to the correct ad for the 2022 
Prize to the right. 

not perpetuate them either. Such avoidance 
requires active intervention.

Trust and Explainability
“When we’re talking about machines and 

algorithms, one goal should be understand-
ing biases,” Elham Tabassi, a researcher 
at the U.S. National Institute of Standards 
and Technology (NIST), said. “We need to 
understand what biases [are present]; have 
tools to quantify them; and [have] practices, 
standards, and documents about how to 
manage and mitigate them.”

Because it defines standards for both 
government and industry, NIST is particu-
larly concerned with the complications of 
AI applications. During her AAAS presen-
tation, Tabassi addressed the need for trust-
worthy AI — with the unspoken implication 
that many current machine learning imple-
mentations are not trustworthy enough.

“Trust and risk are two sides of the same 
coin,” she said. “What things should we be 
worried about? Discrimination is one, bias 
is one, accuracy is one. Can we build zero-
bias algorithms? Maybe one day. The same 
thing [is true] for machines as for humans: 
we are not going to reach zero bias. The 
expectation is understanding, identifying, 
and managing bias.”

These issues are present in many cur-
rent applications—from self-driving cars 
to facial recognition—thus adding a sense 
of urgency to the need for standards and 
accountability. “The issue with healthcare 
AI is that it uniquely has the potential to 
mask bias and make it seem like you’re gen-
erating an accurate prediction,” Parikh said. 
“A lot of the output from AI and machine 
learning is a black box. We don’t under-
stand the variables that go into a prediction, 
[which] exists as a complex association of 
nonlinear relationships.”

This concept—called explainability in 
computer science terms—is separate from 
bias, though it can have similar effects 
in terms of trust and risk assessment. To 
complicate matters, explainability varies 
widely from application to application. 
“What developers expect from an explain-
able AI is very different than the finan-
cial sector, based on the legal require-
ments needed from explainability of the 
algorithms,” Tabassi said. “We’re bring-
ing enough knowledge and understanding 
about the risks…to develop a risk manage-
ment framework as a tool for everybody to 
make the right decisions.”

Do No Harm
Healthcare naturally has separate ethical 

standards from other fields that utilize AI, 
including the classic “do no harm” man-
tra. This sentiment may limit deployment 
until researchers can solve some of the 
problems that are related to bias and trust. 
Nevertheless, both Parikh and Tabassi are 
hopeful. “It’s going to be rare even five 
or 10 years from now that an AI device 
replaces a healthcare worker, because the 
decisions are so high stakes,” Parikh said. 
“AI hasn’t gotten to a performance level 
yet where we’re talking about replacing 
humans, and ultimately I don’t think it’s 
safe to replace clinicians. It can be reassur-
ing that there is a human check on a poten-
tially biased algorithm.”

The reverse—a machine check on poten-
tially biased humans—is also true in ideal 
circumstances. Parikh believes that assis-
tance could come from a simple tool with 

widespread use in clinical settings: check-
lists, which help surgeons and other work-
ers keep track of every step during a com-
plicated procedure. “At various agencies, 
there are preliminary checklists around 
appropriate reporting for potential bias 
in an algorithm for publication,” he said. 
“But we need checklists when it comes to 
potentially vetting an algorithm for clini-
cal implementation as well. That type of 
checklist could really help clinicians filter 
through a lot of the noise and difficult-
to-understand concepts of what it takes to 
declare an algorithm biased.”

One such check is software that requires 
doctors to perform end-of-life conver-
sations with patients, which they often 
neglect to do for people of color. Simple, 
automated prompts of this sort that remind 
practitioners to avoid bias might make 
major differences in quality of care.

AI cannot solve systemic problems in 
the healthcare sector on its own. However, 
researchers and clinicians are becoming 
more aware of how and where bias creeps 
in, rather than assuming that computers 
are free of such issues. Establishing stan-
dards will help achieve trust and identify 

Artificial Intelligence
Continued from page 8

the origins of biases. Even though comput-
ers cannot care the way that humans do, 
they can help us fix our own shortcomings 
in the medical field.

Matthew R. Francis is a physicist, sci-
ence writer, public speaker, educator, and 
frequent wearer of jaunty hats. His website 
is BowlerHatScience.org.

Figure 1. As healthcare providers begin using artificial intelligence (AI) to help guide medical 
decisions, it is important that computerized medicine does not perpetuate systemic inequali-
ties in diagnosis or treatment methods. Public domain image.
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By Ronald K. Pearson

The following is a short reflection from 
the author of Mining Imperfect Data: 
With Examples in R and Python (Second 
Edition),1 which was published by SIAM 
in 2020. This updated edition is more com-
plete and contains techniques and applica-
tions that were not available in 2005 when 
the first edition—titled Mining Imperfect 
Data: Dealing with Contamination and 
Incomplete Records—initially published.

The second edition of Mining Imperfect 
Data focuses on the definitions, con-

sequences, detection, and treatment of 10 
forms of “imperfection” that commonly 
occur in real datasets. These imperfec-
tions include well-known data anomalies 
like outliers and missing observations, 
as well as more obscure issues like inli-
ers. We can define inliers as “data values 
that are consistent with the distribution of 
the bulk of the data, but are in error” [3]. 
The following example [1] from Mining 
Imperfect Data illustrates the phenomenon 
of disguised missing data [4] as one pos-
sible source of inliers: “Recently, a col-
league rented a car in the U.S. Since he 
was Dutch, his post code did not fit into the 
fields of the computer program. The car 
hire representative suggested that she use 
the zip code of the rental office instead.”

1  https://my.siam.org/Store/Product/
viewproduct/?ProductId=32649703

numerical data, one would expect to see few 
of them in inlier-free data. This means that 
the majority of distinct value frequencies 
that are computed via the aforementioned 
inlier detection strategy should be 1. As a 
consequence, the three-s edit rule probably 
represents the best approach for identifying 
unusually large frequencies in inlier detec-
tion, despite its limitations.

The Australian vehicle insurance dataset 
[2] provides a real-world inlier example, 
which is also available on the compan-
ion website2 (see Figure 1). This data-

set contains 67,856 records, 
with 11 fields that provide 
losses, claim counts, and 
vehicle and driver charac-
teristics. The loss variable 
claimcst0 exhibits 3,257 
distinct values that range 

from 0 to 55,922.13; 3,182 of the values 
appear only once, while the most frequent 
value appears 63,232 times. The five most 
frequently occurring values and their fre-
quencies (in parentheses) are as follows: 0 
(63,232), 200 (695), 353.76999998 (219), 
389.94999981 (94), and 390 (35).

Applying the three-s edit rule to this 
count sequence yields a mean frequency 
of 20.83, a standard deviation of 1108.02, 
and an upper outlier detection threshold of 
3344.90. The only frequency that exceeds 
this threshold is that for the value 0. This 
extremely high frequency of 0s is char-
acteristic of variables like insurance loss 
data—where claims are relatively rare—or 
daily rainfall amounts, which are 0 for most 
days except in extremely wet regions.

The fact that 0 is the only value that is 
identified by the proposed inlier detection 
procedure illustrates the weakness of the 
three-s edit rule. An extension of this 
approach that sometimes greatly improves 
its performance is inward detection. For 
this extension, we detect outlying counts 
as before, then remove these records and 
reapply the outlier detection procedure. 
By adopting this approach, we exclude 
the very large 0 count and recompute the 
mean frequency as 1.42 and the standard 
deviation as 12.96, thus giving an upper 

2  http://www.acst.mq.edu.au/GLMsfor 
InsuranceData

outlier detection limit of 40.29. The 
second pass of this inward detection 
procedure therefore identifies the second 
through fourth most frequent values as 
candidate inliers (200, 353.76999998, 
and 389.94999981). Of these results, the 
first value (200) is the most interesting 
because it is such a round number. Upon 
further investigation, it turns out to be 
the smallest  loss value.

A more detailed discussion of this 
example is available in section 6.1.2 
of Mining Imperfect Data: “Inward 
Detection of Inliers.”
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Another possible source of inliers is 
extreme coarsening, such as when one uses 
the first day of a month or year as a surro-
gate for “exact date unknown.”

Although the aforesaid definition of inli-
ers unfortunately provides no basis for their 
detection, inliers in numerical data typi-
cally represent values that repeat unusually 
frequently. By adopting this condition as a 
working definition, researchers can detect 
inliers by tabulating the frequency of each 
distinct value and searching for those with 
atypically high frequencies. This method 
converts the inlier detec-
tion problem into an outlier 
detection problem, for which 
a variety of solutions exist.

The best known of these 
solutions is likely the 
“three-s edit rule,” which 
declares points that lie more than three stan-
dard deviations from the mean to be outli-
ers. Despite its popularity, this approach 
often performs badly in practice, leading 
to the development of alternatives like the 
Hampel identifier or the boxplot rule (dis-
cussed in chapter two of Mining Imperfect 
Data, “Dealing with Univariate Outliers”). 
Ironically, these alternative approaches fail 
catastrophically in the presence of numeri-
cal data with more than 50 percent ties 
(i.e., repeated values). Since there is zero 
probability of ties under the continuous-
ly distributed random variable model that 
researchers commonly use to characterize 

An Exploration of Inliers

FROM THE SIAM 
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What is a Jacobi Field?
A Jacobi vector field governs the separa-

tion of two nearby geodesics, to the leading 
order; the Jacobi equation is the lineariza-
tion of the geodesic equation around a geo-
desic. In mechanical terms (and for embed-
ded surfaces in 3), the distance s  between 
two point masses that are sliding abreast on 
a surface (see Figure 1) in the absence of 
gravity and friction satisfies to the leading 
order the Jacobi equation

	   			    (1)   
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This inertial force—which also acts on B 
from A ' s point of view—has the tangential 

component F F
restoring

= sin q 
that pulls B  towards A (see 
Figure 2). But q= +k s o s

2
( ) 

by the definition of curvature 
(see Figure 3). Therefore,
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And since k k K
1 2

=  is the Gaussian cur-
vature, this explains (1) — but only for the 
special case when the velocity points in a 
principal direction of curvature.

How to Explain (1) Heuristically  
for an Arbitrary Direction?

I would like to leave this question as a 
fun problem and may address it in the next 

installment. It turns out that the special case 
that I describe here misses an interesting 
aspect, one that is also hidden in the for-
mal machinery of standard derivation. For 
example, what if the geodesic is a straight 
line on a ruled surface? Considering this 
question yields a mechanical interpretation 
of the Hessian determinant that has not 
occurred to me before.

The figures in this article were provided 
by the author.

Mark Levi (levi@math.psu.edu) is a pro-
fessor of mathematics at the Pennsylvania 
State University.

here, r r t= ( ) is the position of one of the 
masses, v r=| |  is the speed, and K  is 
the Gaussian curvature. Most 
books on differential geometry 
derive (1), but the derivations 
require some background — 
as well as some space and 
some time. Instead, I would 
like to give a back-of-the-envelope deriva-
tion of (1) in a special case using little more 
than the high school formula F mv R= 2/  
for the centripetal force.

The Setup
Consider a unit point mass A with a 

velocity that points in the direction of a 
principal curvature at the instant in ques-
tion; an identical particle B  is near to and 
abreast of A (i.e., the arc AB  is perpen-
dicular to the velocity of A). Both A  and 
B  have the same constant speed v, and B ' s 
direction of motion is close to that of A by 
assumption (see Figure 1). As mentioned, 
there is no gravity or friction.

A Heuristic Derivation of (1)
An observer who is sliding with the 

reference frame of A feels the centrifugal 
g-force due to the curvature of A ' s  path:

                   F k v=
1
2.  		   (2)

 

Strolling Through Jacobi Fields

MATHEMATICAL 
CURIOSITIES
By Mark Levi

Figure 1. The geodesic at A is tangent to a 
principal line of curvature of normal curva-
ture k

1
 (not drawn).

Figure 2. Restoring component of the cen-
trifugal force. Here, s  is the arc length.

Figure 3. Angle between the normals 
equals the angle between the tangents; the 
latter »k s

2
.

Figure 1. Two views of the log nonzero loss data from the Australian vehicle insurance dataset.
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National Institute of               
Standards and Technology
National Research Council              
Postdoctoral Research Associates

The Applied and Computational Mathematics 
Division (ACMD) of the National Institute of 
Standards and Technology (NIST) invites appli-
cations for two-year National Research Council 
(NRC) postdoctoral research positions at NIST 
laboratories in Gaithersburg, Maryland and 
Boulder, Colorado. NIST is a Federal govern-
ment research laboratory specializing in mea-
surement science. ACMD consists of some 46 
full-time professional staff, along with part-time 
faculty appointees and guest researchers. Staff 
members engage in collaborative research with 
scientists throughout NIST, providing expertise 
in applied mathematics, mathematical modeling, 
and computational science and engineering.

Research areas of interest include complex 
systems and networks, computational materials 
science, computational fluid dynamics, compu-

tational electromagnetics, computational biology, 
orthogonal polynomials and special functions, 
applied optimization and simulation, combinato-
rial software testing, data mining and visualiza-
tion, parallel and distributed algorithms, quantum 
information science, and uncertainty quantifica-
tion in scientific computing.

Candidates and their research proposals are 
evaluated in a competitive process managed 
by the NRC Associateship Programs. The cur-
rent stipend is $72,750 per year; there is also 
a $5,500 travel and equipment allowance. For 
further details, see https://www.nist.gov/itl/
math/postdoctoral-opportunities. Application 
deadlines are August 1 and February 1. 
Appointments commence within one year of 
selection. For questions, contact Tim Burns at 
burns@nist.gov.

NIST is an equal opportunity employer. The 
NRC Associateship Program at NIST is restrict-
ed to U.S. citizens.

New Jersey High School Team Wins Top Prize for 
Models that Optimize High-Speed Internet Connectivity
2021 MathWorks Math Modeling Challenge Confronts the Digital Divide
By Lina Sorg

In today’s increasingly digital world, 
many people take high-speed internet 

for granted. Individuals with stable inter-
net connections often do not think twice 
about uploading or accessing social media 
content, streaming their favorite shows, or 
video chatting with friends and family. Yet 
the benefits of high-speed internet extend 
well beyond entertainment purposes. When 
many parts of the world shifted to predomi-
nately virtual schooling and employment at 
the onset of the COVID-19 pandemic last 
year, internet connectivity became more 
important than ever before.

Those who lack reliable access to high-
speed internet are at a significant disad-
vantage for many daily tasks. It is far 
more difficult for them to attend online 
classes and complete assignments, work 
from home, utilize healthcare portals, par-
ticipate in civic duties, consume news and 
information, and so forth. These limitations 
are especially salient for people in rural and 
low-income communities, which are often 
disproportionately affected by connectivity 
issues. And despite the numerous ways to 
access the internet—cable, satellites, fiber-
optic lines, mobile broadband, etc.—there 
is no clear path to optimal connectivity; 
bandwidth requirements depend on region, 
household type, and usage frequency.

The topic of internet connectivity lent 
itself well to this year’s MathWorks Math 
Modeling (M3) Challenge,1 an annual 
mathematics competition that is a program 
of SIAM with MathWorks as its title spon-
sor. Now in its 16th year, M3 Challenge 
offers 11th and 12th graders in the U.S. 
and sixth form students in England and 
Wales the chance to compete for more 
than $125,000 in scholarship funds. The 
contest allows participating teams just 14 
consecutive hours to tackle a complex, real-
world problem with mathematical modeling 
and generate a comprehensive report that 
explains their solutions. All solution papers 
then undergo three rounds of blind judging 
by 150 applied mathematicians. This year, 
the 10 finalist teams virtually presented 
their solutions to a live panel of judges in 
late April. An online awards ceremony—in 
lieu of the live ceremony that is tradition-
ally hosted by Jane Street, a quantitative 
trading firm in New York City—followed 
these presentations. Recordings of both the 

1  https://m3challenge.siam.org

presentations2 and the awards ceremony3 
are available online.

This year’s problem tasked students with 
combatting the “digital divide”: the gap 
between those who benefit from sufficient 
internet access and those who do not. “The 
COVID-19 pandemic really brought to 
light issues with internet connectivity in 
the U.S. and the U.K. that haven’t been 
as clear in the past,” Chris Musco of New 
York University said. “There are many 
families with insufficient access to the 
internet who were unable to get their stu-
dents into online schooling, for example, 
when communities went into lockdown.”

Musco—who is a 2008 M3 Challenge 
winning alumnus, co-author of this year’s 
Challenge problem, and director of judg-
ing for the Technical Computing Award—
elaborated on the relevance of internet 
connectivity as an appropriate subject for 
mathematical modeling and computational 
thinking. “We’re at a really interesting 
time for the internet because technology is 
changing rapidly,” he said. “The past couple 
of years, we’ve seen 5G technology roll out 
that is able to provide broadband, connect-
ed, wire-internet-like speeds over the air 
without any need for a wireless connection. 
This changing technology is clearly chang-
ing the conversation around this topic.”

The three-part 2021 Challenge problem4 
first asked students to build a mathemati-
cal model to estimate the cost per unit of 
bandwidth per Megabits per second (Mbps) 
over the next 10 years for consumers in 
the U.S. and U.K. Next, they had to create 
a model to predict a typical household’s 
need for internet over the course of a 
year, apply that model to three sample 
households with varying levels of internet 
usage, and determine the minimum amount 
of required bandwidth to cover their total 
internet needs both 90 and 99 percent of 
the time. Finally, teams developed an opti-
mal plan for distributing cellular nodes and 
demonstrated the flexibility of their models 
in three hypothetical regions.

The champion team from Livingston 
High School in Livingston, N.J., trained 
their initial model on the relationships 
between population density, cost of living, 
average download speed, and average price 

2  https://m3challenge.siam.org/archives/
2021/videos

3  https://go.siam.org/BIKZ70
4 https://m3challenge.siam.org/archives/

2021/problem

per Mbps in the 48 mainland U.S. states. 
The students found that fixed infrastructure 
costs are higher in regions with low popula-
tion densities because the costs are divided 
between fewer people; the opposite is true 
in high-density areas. They also noted that 
internet is more expensive in areas with 
a higher cost of living, and used average 
download speed as a measure of the level 
of infrastructure development that corre-
lates with internet prices. “After collecting 
data for these three factors, we found that 
traditional regression techniques would be 
ineffective and time consuming due to the 
various skews and nonlinearities in the 
data,” Leo Stepanewk of Livingston High 
School said. “We thus utilized random for-
est regression, a robust machine learning 
algorithm that is capable of handling and 
learning complex relationships on its own.”

Once they achieved a root mean square 
error of 0.660, Stepanewk and his team-
mates applied the random forest regression 
to the entire U.S. and U.K., adjusted the 
population densities and costs of living 
based on the expected percent change in 
10 years, and employed a regressed expo-
nential function to calculate future average 
download speeds. Ultimately, their model 
predicted a decrease of $0.23 per Mbps in 
the U.S. and a decrease of $0.57 per Mbps 
in the U.K. over the next decade.

Next, the team calculated the bandwidth 
demands for a given household over the 
course of a year. “The main factors that 
we considered were age and occupation 
status, since these variables had the great-
est impact on internet usage patterns,” 
team member Edward Wang said. “The 
internet usage patterns for each individual 
consisted of a probability that they would 
perform a certain internet task at any given 
time and a range of bandwidth values for 
that task. Using these patterns, we created 
Monte Carlo simulations for each house-
hold and simulated the bandwidth demand 
for 1,000 trial weeks.”

These simulations yielded the minimum 
required bandwidth of predicted demand 
for three example scenarios. The students 
determined that 14.5 and 15.5 Mbps is 
sufficient to respectively satisfy 90 and 99 
percent of predicted demand for a couple 
in their early 30s with a three-year-old; 
20.8 and 21.8 Mbps is adequate for a 
retired woman in her 70s who cares for two 
school-aged grandchildren twice a week; 
and 20.6 and 21.9 Mbps meets the demands 
of three former M3 Challenge participants 

who are sharing an off-campus apartment 
while completing their undergraduate 
degrees and working part time.

Finally, the Livingston team developed 
a model to optimally distribute 4G and 5G 
cellular nodes in arbitrary regions. To cal-
culate the locations for node placement, the 
high schoolers utilized population density 
to compute a region’s center and concluded 
that placing nodes at the center of mass 
would allow them to reach the most users.

“After learning about the intricacies and 
expenses of 5G, we decided that it would 
be worthwhile to create a model that only 
pinpointed areas where 5G would be benefi-
cial,” Sidhant Srivastava of Livingston High 
School said. “This is where demographics 
played a role. We created an equation to 
calculate the minimum average household 
income for a region to be eligible for 5G. 
We also calculated the minimum popula-
tion density for that region to maximize 
the consumers for a 5G node.” The team 
deduced that to qualify for a 5G network, 
a region should have a population density 
of at least 777 people per square mile and 
an annual household income of at least 
$103,689.32. By combining these two ele-
ments, the students created a criteria-based 
model that optimally identified regions for 
5G networks and generated an efficient 
distribution plan for cellular nodes.

The Livingston team—which included 
Aditya Desai and Charles Yu in addition 
to Srivastava, Stepanewk, and Wang—took 
home $22,500 in scholarship funds for their 
top-notch solution. As they celebrated their 
impressive earnings, the students consid-
ered the ways in which this experience will 
impact their forays into higher education 
and future career trajectories. “Partaking 
in M3 Challenge has further piqued my 
interest in the intersection of mathemat-
ics, business, and technology,” Desai said. 
“Having experienced the interrelated forces 
that play a role in the disciplines, I will look 
to consciously make these connections and 
apply my problem-solving approach from 
this problem down the road.”

This is precisely the goal of M3 Challenge, 
which seeks to expose talented students to 
the complex facets of mathematical model-
ing that are not common in standard high 
school curricula. It introduces participants 
to relevant and timely topics and presents 
problems in an unfamiliar way, forcing them 
to think critically about real issues; quantify 
and organize data; and represent, analyze, 

The Livingston High School team from Livingston, NJ, took home the top prize of $22,500 for 
their mathematical models of internet connectivity in the 2021 MathWorks Math Modeling 
(M3) Challenge. Top row, left to right: Aditya Desai, Sidhant Srivastava, and Leo Stepanewk. 
Bottom row, left to right: Edward Wang, Charles Yu, and coach Cheryl Coursen.

See Internet Connectivity on page 12
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By Gerardo Hernández-Dueñas, 
Jorge X. Velasco-Hernández, Irma 
García-Calvillo, and Daniel Olmos

The Mexico Section of SIAM 
(MexSIAM),1 which was initially 

formed in 2000 and revived in 2018, serves 
as an international forum for applied math-
ematics in Mexico. It provides a broad 
and inclusive channel for the exchange 
of information and ideas between pro-
fessionals in the mathematical sciences 
to promote research in mathematics and 
further its application in a wide variety of 
settings. The response of the mathematical 
sciences community in Mexico—which 
includes individuals in scientific programs 
that incorporate methods and techniques 
from engineering, mathematics, statistics, 
and computer science—has been outstand-
ing. This enthusiasm reflects the growing 
importance and vitality of applied math in 
both academia and industry.

A significant number of applied math-
ematical scientists in Mexico work in the 
petroleum, mining, and energy sectors (e.g., 
Pemex, the Federal Electricity Commission, 
and the Secretariat of Energy); financial 
institutions; the aeronautical industry; 
environment and ecology fields (e.g., the 
National Commission for the Preservation 
of Biodiversity); medicine and healthcare; 
technological design; and engineering. 
Students also represent an important part 
of the applied mathematics community, and 
exposure to mathematical sciences applica-
tions early in one’s career is crucial.

As with most countries, the COVID-19 
pandemic has put an increased burden on 
Mexico’s educational system. Economic 
inequity and the concomitant lack of tech-
nological infrastructure in many parts of 
the country has made it difficult for schools 
and institutions to offer remote online 
classes and other educational activities in 
certain communities, cities, and regions. 
The communication channel and support 
that MexSIAM provides—although circum-
scribed to the mathematical sciences—is 
therefore exceedingly important during this 
time. Our students have responded enthu-
siastically to MexSIAM activities, thus 
inspiring the creation of the first SIAM 
student chapter in the country. The stu-
dent chapter at the National Autonomous 
University of Mexico (UNAM) will begin 
to host events later this year, with Raul 
Esquivel Sirvent and Gerardo Hernández-
Dueñas as its faculty advisors.

Mexico is home to several internation-
ally recognized academic research centers 
and university departments that advance 
and teach the mathematical sciences. 
Addressing the country’s most pressing 
issues—including national innovation and 
technological development, sustainable 

1  https://mexsiam.org

goals and explored ways in which applied 
mathematics and mathematical models can 
contribute. These virtual seminars—which 
were organized by Isaac Pérez-Castillo 
(Universidad Autónoma Metropolitana 
– Iztapalapa) and Jorge X. Velasco-
Hernández (UNAM)—took place biweek-
ly and featured speakers from Mexico, 
Spain, the U.S., and Canada.

This year, MexSIAM is partnering 
with the Mexican Mathematical Society, 
Mexican Society of Scientific Computing 
and Applications, Mexican Society 
for Operations Research, and Mexican 
Association of Statistics for a diverse set 
of academic activities that focus on the dis-
semination of applied mathematics research 
in Mexico. These societies are organizing a 
virtual applied mathematics colloquium 
this semester to promote interactions and 
the exchange of ideas between their mem-
bers during the ongoing pandemic.

The 2021 Annual Meeting of the 
Mexico section of SIAM3 will take place 
virtually from June 21 to 23. Students 
and academic professional members of 
the section who work in multiple areas 
of the mathematical sciences and related 
fields will deliver contributed talks, orga-
nize minisymposia, and present posters 
in their respective research sectors. This 
year, some of the meeting’s main topics 
include geoscience; mathematics of planet 
earth; climate, ocean, and atmospheric 
modeling; mathematical and theoretical 
epidemiology (particularly in relation to 
the COVID-19 pandemic); mathematical 
and theoretical big data in public health; 
and ecological perspectives. There is par-

3  https://mexsiam.org/reunion-anual-2021

ticular interest in research that involves 
the use, development, and analysis of 
mathematical models as tools to study the 
dynamics of natural phenomena and their 
impacts on human activities.

The invited plenary speakers at the 
upcoming Annual Meeting are distin-
guished researchers who appropriate-
ly represent each of the areas that are 
highlighted at the meeting. They include 
Edgar Knobloch (University of California, 
Berkeley), Pablo A. Marquet (Pontifical 
Catholic University of Chile), Francisco J. 
Ocampo Torres (CICESE), Beatrice Rivière 
(Rice University), Mauricio Santillana 
(Harvard University), and Pauline van den 
Driessche (University of Victoria).

MexSIAM looks forward to continued 
growth and will remain actively involved in 
the larger SIAM community to promote the 
applied mathematical sciences.

Gerardo Hernández-Dueñas4 is an 
applied mathematician who is interested 
in applications in the area of fluid dynam-
ics. He is president of the Mexico Section 
of SIAM (MexSIAM). Jorge X. Velasco-
Hernández is a biologist, mathematician, 
educator, enthusiastic amateur pianist, 
and a SIAM Fellow. He is vice president of 
MexSIAM. Irma García-Calvillo is a math-
ematician, reader, educator, and promoter 
of applied mathematics who enjoys trav-
eling. She is the secretary of MexSIAM. 
Daniel Olmos is a biomathematician, 
lecturer, and active promoter of applied 
mathematics at every level who is always 
looking for all kinds of equilibrium. He is 
the treasurer of MexSIAM.

4  https://paginas.matem.unam.mx/gerardo

natural resource use, and public health—
requires the multi- and interdisciplinary 
engagement of mathematics. Mexico is very 
heterogeneous, and social inequity remains 
a major unsolved problem. Scientific infra-
structure is predominantly located in major 
urban centers, with a significant pres-
ence in Mexico City. MexSIAM is fully 
committed to the promotion of science, 
technology, engineering, and mathematics 
(STEM) at the undergraduate and gradu-
ate levels across the various states of the 
Mexican federation — with a particular 
focus on women and underrepresented 
groups/sectors that are primarily located 
in states with high poverty indexes and 
low average per capita annual incomes. To 
strengthen this commitment, section mem-
bers routinely organize summer schools 
that are open to students from all over the 
country. Members have also been involved 
in the development of a new applied math-
ematics program that will soon launch at 
UNAM Campus Juriquilla.

Mexico and the U.S. share a long bor-
der, an extensive history, mutual regional 
and bilateral interests, and an important 
tradition of academic exchange in many 
areas of STEM. The mathematical sciences 
have always served as a bridge between 
the academic establishments of both coun-
tries, and many applied mathematicians 
in Mexico have been SIAM members for 
many years. As such, MexSIAM is an 
important milestone in the history of our 
academic interrelation. We expect that 
MexSIAM will increase its membership 
in the coming years and continue to attract 
mathematically trained professionals who 
work in industry and the national produc-
tive sector. These connections will rein-
force national development of the applied 
mathematical sciences.

The first Annual Meeting of the Mexico 
Section of SIAM2 took place in December 
2019 at the Ensenada Center for Scientific 
Research and Higher Education (CICESE) 
in Ensenada, Mexico. 82 registered par-
ticipants delivered 64 talks and 12 poster 
presentations. An employee of Samsung 
Research Tijuana also hosted a workshop. 
Participants came from more than 20 univer-
sities in Mexico and the U.S. (see Figure 1).

In August 2020, UNAM and MexSIAM 
joined forces and organized a Seminar 
Series on COVID-19 that centered on 
mathematical modeling approaches to con-
trol, mitigate, forecast, and understand 
evolutionary trends of the epidemic (see 
Figure 2). The emergency response gener-
ated by the worldwide spread of SARS-
CoV-2 necessitates the involvement of 
all individuals to mitigate, contain, and 
control COVID-19. The seminar series 
focused on strategies to achieve these 

2  https://mexsiam.org/noticias/f/mexsi-
am-annual-meeting-2019-took-place-at-the-
ensenada-center-for

Getting to Know the Mexico Section of SIAM

Figure 1. Attendees of the 2019 MexSIAM Annual Meeting in Ensenada, Mexico. Photo courte-
sy of the local organizers at the Ensenada Center for Scientific Research and Higher Education.

Figure 2. A mathematical model of SARS-CoV-2 that explicitly focuses on splitting a popula-
tion that is undergoing a selective lockdown. Each population on the right side of the diagram 
is characterized by a different time-dependent effective contact rate. Figure courtesy of 
Manuel Adrian Acuña-Zegarra.

Internet Connectivity
Continued from page 11

and predict trends in real-world situations. 
“The open-endedness of M3 Challenge, 
along with being able to interpret the ques-
tion in a variety of ways, is so much dif-
ferent from the math education in school,” 
Yu said. “In school, there’s always a right 
answer and it’s pretty easy to know if you’re 
right or wrong. But for M3 Challenge, we 
had to pitch a lot of ideas and weigh their 
strengths and weaknesses before settling on 
one that made the most sense.”

The Livingston team was coached by 
Cheryl Coursen, a mathematics instructor 
at the high school who teaches AP Calculus 
BC and Multivariable Calculus. She tries 
to routinely incorporate modeling into her 
courses and praised M3 Challenge for famil-
iarizing students with mathematical applica-
tions. “There are no right or wrong answers 
in life, as it is not a neat and tidy problem 
situation,” Coursen said. “Every choice has 
consequences, good and bad. Students need 
to see and witness this to understand and be 

able to face life head on, not just in the job 
force but in their everyday lives.”

Livingston High School’s paper is avail-
able online,5 as is their final presentation.6 

Do you have an idea for a real-world 
problem that would lend itself well to math-
ematical modeling? A topic that is not 
well understood or would make a dif-
ference to society, the environment, or 
general quality of life? The M3 Challenge 
Problem Development Committee is always 
looking for problem ideas for future com-
petitions and will work with authors to 
shape their suggestions and locate rel-
evant data. Submit problem drafts or even 
just rough ideas online,7 or send them to 
M3challenge@siam.org!

Lina Sorg is the managing editor of 
SIAM News.

5  https://m3challenge.siam.org/sites/
default/files/uploads/CHAMPION_14817.pdf

6  https://go.siam.org/02RRWo
7  https://m3challenge.siam.org/challenge/

suggest-problems


