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Abstract. We have implemented a fully implicit numerical approach based on space-time
finite element methods for the Klein-Gordon equation in the 1(space)+1(time) dimension. The
purpose of this paper is to present a stable and parallelizable numerical method. The proposed
numerical method is applied to generate successful simulation results of spin-0 particle propagation
in a charged scalar field. The time additive Schwarz method is vital to make successful simulations
with KSP (Krylov Subspace Methods) solvers. The time parallelizable algorithm is implemented
through PETSc(Portable, Extensible, Toolkit for Scientific Computation, developed by Argonne
National Laboratory).

1. Introduction. The Klein-Gordon(KG) equation is a partial differential equa-
tion(PDE) that governs the quantum evolution of wave functions for relativistic spin-
less particles. The KG equation describes a wide variety of physical phenomena. In
paper [1], the KG equation includes classical wave systems such as the displacement
of a string attached to an elastic bed and quantum systems based on scalar fields.
The KG equation is also related to the Dirac equation. Modeling light matter inter-
action with the relativistic effect can be explained by the Dirac equation, and the KG
equation can be applied to the relativistic effect.

For another example, the electron-positron pair creation process in the supercrit-
ical breakdown of the fermionic vacuum is a striking prediction of the Dirac equation
in [2]. It turns out that a quantum field theory based on the KG equation can pre-
dict similar phenomena from the Dirac equation in [3]. Therefore, the KG equation
can provide new physical explanations about the universe, and can also provide clues
to the Dirac equation because any solution to the Dirac equation is automatically a
solution to the KG equation.

In addition, the KG equation has many applications. The KG equation can be
modified to a non-homogeneous model and a nonlinear model. A modified version
of the KG equation can be used for many engineering models to explain solitary
waves, and wave propagations. Paper [4] shows the Klein-Gordon system transmitting
monochromatic waves. Paper [5] shows an Einstein-Klein-Gordon system (a massive
scalar field coupled to gravity) responding to a numerical simulation of oscillation.

Solutions of the KG equation both homogeneous and non-homogeneous are gen-
erally unavailable in [6]. Therefore, numerical simulation is required to estimate
solutions. Papers [7] introduces numercial methods to the KG equation and Klein-
Gordon-Schrödinger(KGS) equation without a forcing term. Paper [8] shows numer-
ical approaches to the KGS equation without a forcing term.

In this paper, we present to generate successful simulation results of spin-0 particle
propagation in a charged scalar field. This problem is defined as a KG equation
with forcing term. To efficiently solve the KG equation using numerical methods,
we use various numerical procedures. First of all, we consider numerical stability,
which is vital to simulate time dependent problems. Therefore, we implement a
fully implicit method through space time finite element methods, which solved for a
nonhomogeneous wave equation in the 3+1 dimension successfully in [9]. We discretize 152
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space and time together for the entire domain using a finite element space which does
not separate time and space basis functions.

Because of the large size of the discretized problems, we need to use iterative nu-
merical methods based on Krylov subspace (KSP) methods. A proper preconditioner
is also needed to help convergence and increase the speed of convergence. Therefore,
we consider the time additive Schwarz preconditioner. Domain decomposition (DD)
methods in [10, 11] provide a very natural way of deriving parallel algorithms for
the numerical solutions of linear systems and can be used to a preconditioner for
iterative methods. When DD algorithms are used, a large number of subproblems
can be solved in parallel. The local interaction is through the exchange of informa-
tion between neighboring subdomains. Our preconditioner will be implemented based
on domain decomposition approaches but we decompose the time instead of the do-
main. We will show the numerical simulation for the KG equation using the time
decomposition method.

The paper is organized as follows: in Section 2, we review the background of
the KG equation; in Section 3, we introduce our implementation ingredients: the 1+1
space-time finite element discretization and a time parallelizable preconditioner based
on the additive Schwarz idea; in Section 4, we numerically test example problems of
the KG equation in the 1+1 dimension; in Section 5, we test the 1+1 KG equation
with traditional numerical methods; in Section 6, we conclude by discussing future
research opportunities.

2. Klein-Gordon equation. The description of phenomena at high energies
requires the investigation of relativistic equations. The Klein-Gordon equation is a
relativistic version of the Schrödinger equation. The KG equation explains the motion
of a quantum scalar or pseudoscalar field in which quanta are spinless particles. The
KG equation describes the quantum amplitude for finding a point particle in various
places and the relativistic wavefunction.
The non-relativistic equation for the energy of a free particle:

ppp2

2m
= E (2.1)

By quantizing the energy of a free particle, we get the non-relativistic Schrödinger
equation for a free particle:

ppp2

2m
Ψ = i~

∂

∂t
Ψ (2.2)

where, ppp = −i~∇ is the momentum operator ( ∇ being the del operator. In the 3
dimensional Cartesian coordinate system with coordinates (x, y, z), del is defined in
terms of a partial derivative operator as ∇ = x̂ ∂

∂x + ŷ ∂
∂y + ẑ ∂

∂z )
The Schrödinger equation does not have to be relativistically covariant, meaning

that it does not take into account Einstein’s Special Relativity in [12]. In order
to obtain a relativistic equation, we start by considering a free particle within a
relativistic relation. It is natural to try to use the identity from special relativity
describing energy: √

ppp2c2 +m2c4 = E (2.3)

Then, we insert the quantum mechanical operators for momentum and energy, which
yields the equation: √

(−i~∇)2c2 +m2c4Ψ = i~
∂

∂t
Ψ (2.4)

The square of the above identity:

ppp2c2 +m2c4 = E2 (2.5) 153



By quantizing, that gives:

((−i~∇)2c2 +m2c4)Ψ =

(
i~
∂

∂t

)2

Ψ (2.6)

Which simplifies to:

−~2c2∇2Ψ +m2c4Ψ = −~2 ∂
2

∂t2
Ψ (2.7)

So, the Klein-Gordon equation is written by:(
1

c2
∂2

∂t2
−∇2 +

m2c2

~2

)
Ψ(x, t) = 0 (2.8)

The KG equation is most often written in natural units in [13]:(
−∂t +∇2

)
Ψ(x, t) = m2Ψ(x, t) (2.9)

And, the KG equation has many variations. The quasilinear KG equation in [14] is
given by:

utt − α2uxx + γ2u = βu3 (2.10)

And the nonlinear KG equation in [14] is given by:

n∑
i=1

uxixi + λup = 0 (2.11)

See the detail about the general solution forms about the KG equation in Appendices
A and B.

3. Spcae Time Finite Element Method. We investigate a space-time Finite
element method similar to using continuous approximation functions in both space and
time to explore its use for numerical relativity simulations. The discretization for the
KG equation in this paper is an extension of the discretization for the nonhomogeneous
wave equation in [9].

Rewrite the Klein-Gordon equation in natural units in the 1+1 dimension:

−∂
2Ψ

∂t2
+
∂2Ψ

∂x2
−Ψ = 0 (3.1)

We discretize space and time together for the entire domain using a finite element
space which does not discriminate between space and time basis functions and con-
sider iterative solution methods with a time decomposition preconditioner. We take
variables u = Ψ and v = ∂Ψ

∂t instead of Ψ, and separate the equation:

∂2u

∂x2
− ∂v

∂t
− u = 0 (3.2)

−∂u
∂t

+ v = 0 (3.3)

That also indicates that the linear system of equations can be written in matrix
form as Ax = b. Here A is called the stiffness matrix and b is called the force
vector. This is the system we wish to solve numerically.

Finite element space is the space of piecewise polynomial functions φ : Ω×(0, T ]→
R. The weak forms of this equation are:

K(u, v, φ) =

∫
Ω

(
−∇u∇φ+

∂v

∂t
+ uφ

)
ds = 0 (3.4)

G(u, v, φ) =

∫
Ω

(
−∂u
∂t
φ+ vφ

)
ds = 0 (3.5) 154



Using the same method, we solve the spin-0 particle in a charged scalar field:

−∂
2Ψ

∂t2
+
∂2Ψ

∂x2
−Ψ = f (3.6)

Where f is forcing function given by:

f =

√
1

2
(sin(x− t) cos(x− t)) (3.7)

And the weak forms of this equation are:

K(u, v, φ) =

∫
Ω

(
−∇u∇φ+

∂v

∂t
+ uφ− fφ

)
ds = 0 (3.8)

G(u, v, φ) =

∫
Ω

(
−∂u
∂t
φ+ vφ

)
ds = 0 (3.9)

The stiffness matrix A is a N ×N matrix, where N is the total number of nodes
in the domain. In the unit square example we are considering, we have N = W 2.
The stiffness matrix A is defined as:

A =


a(φ1, φ1) · · · a(φ1, φW 2)

...
. . .

...

a(φW 2 , φ1) · · · a(φW 2 , φW 2)

 (3.10)

We calculate the stiffness matrix using the element stiffness matrices. The detail
construction of each submatrices is in Appendix C.

For this boundary value problem, the solution values at the nodes on the boundary
∂Ω are known, so these nodes need not be included in our system of equations. We
set the boundaries:

u = u0 on Ω× t = 0 (3.11)

v = v0 on Ω× t = 0

un = 0 on Ω× [0, T ]

vn = 0 on Ω× [0, T ]

Hence, our stiffness matrix reduces from a W 2 × W 2 matrix to a (W − 2)2 ×
(W − 2)2 matrix. If we label the stiffness matrix component in row i and column k
as aik, then aik = a(φi, φk), which can be calculated by adding the effects of all the
square elements:

aik =
∑
Tj∈Ω

aj(φi, φk). (3.12)

4. Numerical Results. In this section, we present approximated solutions to
the 1+1 Klein-Gordon equation using a space-time Finite Elements Method. We
implement our numerical test in PETSc(Portable, Extensible, Toolkit for Scientific
Computation, developed by Argonne National Laboratory) [15]. From many heuristic
tests, we found that using GMRES and the time additive Schwarz method is one of
the efficient solving method for this problem. See the detail about the time additive
Schwarz method in Appendix D. 155



4.1. Time-Decomposition Method. Figure 4.1 shows the convergence time
test with difference numbers of time subdomains. The green line is the test in the 90
× 90 grid, and the red line is the test in the 60 × 60 grid. The graph shows that large
numbers of time subdomains converge fast. This indicates that large time subdomain
numbers solve the numerical problem efficiently.

This result also indicates that time decomposition algorithm is promising in future
parallel calculation in multi-process machines with large size problems; each process
will calculate local problem with ideally one time subdomain and the local problem
therefore will be reduced with more number of processes. The result Figure 4.1 shows
the global problem might be reduced with more number of time subdomains. Finding
optimal number of time subdomains in parallel implementation will be very interesting
in our future research.
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Fig. 4.1: Convergence Time Test with Difference Subdomain Numbers

Figure 4.2 shows mesh division within space-time. We respect the original bound-
ary conditions for the subspace interface conditions : Dirichlet for t = (tn−1−overlap)
and an evolution equation determined for t = (tn+overlap) where tn is the n-th time
decomposition. In this paper, we fixed overlap size as 1. Figure 4.3 shows analytic

Fig. 4.2: Mesh Grid Division within Space and Time

solutions of the 1+1 KG equation in free space. We test spin-0 particle propagation
through space and time.

4.2. Test Problems.

4.2.1. Test Problem 1 : Free Space Case. We test the spin-0 particle in free
space which is the forcing term is zero as a special case. We implement this problem
using Matlab. Figure 4.4 shows numerical solutions of the 1+1 KG equation in free
space, and indicate particle propagation. We use GMRES [16] and the time additive
Schwarz preconditioner in a 30 × 30 grids. The domain of the problem is split into
time subdomains. The local problem of each subdomain is solved by GMRES. 156
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Fig. 4.3: Analytic Solutions of the 1+1 Klein-Gordon equation for spin-0 particles in
free space
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Fig. 4.4: Numerical Solutions of 1+1 Klein-Gordon Equation for spin-0 particles in
free space

4.2.2. Test Problem 2 : Charged Field Case. We choose the forcing func-
tion given by:

f =

√
1

2
(sin(x− t) cos(x− t)) (4.1)

for representing a trigonometric electromagnetic wave. We expect that the solutions
indicate an electromagnetic wave.

Figure 4.5 shows analytic solutions of the 1+1 KG equation within a charged
scalar field. The solutions indicate that interactions between spin-0 particles and a
charged scalar field produce an electromagnetic wave form.

Figure 4.6 shows the solution after 1, 50, 200, and 500 iterations in a 60 × 60
grid. We use the six time additive Schwarz time subdomains. Large iteration numbers
provide a stable solution.

Figures 4.7, 4.8, and 4.9 show numerical solutions of the 1+1 KG equation within
a charged scalar field in 30 × 30, 60 × 60, and 90 × 90 grids. Spin-0 particles and
a charged Klein-Gordon field produce an electromagnetic wave. The solution shapes
provide propagated electromagnetic waves through space and time. We use GMRES
and the time additive Schwarz method in PETSc.

5. Comparing Results with Traditional Methods. We test numerical ap-
proaches to the 1+1 Klein-Gordon equation. We test with the Euler method, Runge-
Kutta method, Explicit Difference method, and the Crank-Nicolson method. We test
the equation 3.6 to compare with the our charge field results 157
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Fig. 4.5: Analytic Solutions of the 1+1 Klein-Gordon equation for a charged scalar
field

5.1. Euler Method. We use the Euler method for solving this system. The
1+1 KG equation is:

∂2Ψ

∂t2
=
∂2Ψ

∂x2
−Ψ + f (5.1)

For applying the Euler Method, we need to change the KG equation as follows:

∂φ

∂t
= g(x, φ) (5.2)

We apply the method of line technique for adapting a partial differential equation.
Also, we need to take a new variable φ for reducing order:

φ =

[
Ψ
Ψ′

]
(5.3)

We apply that to the 1+1 KG equation as follows:

φn+1 = φn + hg(xn, φn) (5.4)

where h is step size. And, g(x, φ) is RHS of the equation (5.1) as evaluated by the
finite difference calculation. Figure 5.1 shows numerical solutions of the 1+1 KG
equation within a charged scalar field in a 60 × 60 grid. Figure 5.2 shows minimum
error comparison data to the Euler method. We test 30, 60, and 120 step numbers.

5.2. Runge-Kutta Method. We use the Runge-Kutta 4th order(RK4) method.
We apply the RK4 method to time direction. Using the similar analogy in section
5.1, we take the new variable φ instead of Ψ:

φ =

[
Ψ
Ψ′

]
(5.5) 158
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Fig. 4.6: Numerical Solutions of the 1+1 Klein-Gordon equation for a charged scalar
field within 60 × 60 grids
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Fig. 4.7: Numerical Solutions of 1+1 Klein-Gordon Equation for a charged scalar field

And, we use the method of line technique which we apply to the 1+1 KG equation as
follows:

φn+1 = φn +
1

6
h(k1 + k2 + k3 + k4) (5.6)

k1 = g(xn, φn) (5.7)

k2 = g(xn + 0.5h, φn + 0.5hk1) (5.8)

k3 = g(xn + 0.5h, φn + 0.5hk2) (5.9)

k4 = g(xn + h, φn + hk3) (5.10)

where h is step size. And, g(x, φ) is RHS of the equation (5.1) as evaluated by the
finite difference calculation.

Figure 5.3 shows numerical solutions of the 1+1 KG equation within a charged
scalar field in a 60 × 60 grid. Figure 5.4 shows minimum error comparison data to 159
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Fig. 4.8: Numerical Solutions of 1+1 Klein-Gordon Equation for a charged scalar field
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Fig. 4.9: Numerical Solutions of 1+1 Klein-Gordon Equation for a charged scalar field

the Runge-Kutta method. We test 30, 60, and 120 step numbers.

5.3. Explicit Difference Method. We use Explicit Difference method. We
reconstruct the KG equation as follows:

−
ψn+1
j − 2ψnj + ψn−1

j

∆t2
+
ψnj+1 − 2ψnj + ψnj−1

∆x2
+ ψjn = f (5.11)

Figure 5.5 shows numerical solutions of the 1+1 KG equation within a charged
scalar field in a 60 × 60 grid. Figure 5.6 shows minimum error comparison data to
the Explicit Difference method. We test 30, 60, and 120 step numbers.

5.4. Crank-Nicolson Method. We use the Crank-Nicolson method. We re-
construct the KG equation as follows:

−
ψn+1
j − 2ψnj + ψn−1

j

∆t2
+

1

2∆x2
((ψn+1

j+1 −2ψn+1
j +ψn+1

j−1 )+(ψnj+1−ψnj +ψnj−1))+ψjn = f

(5.12)
Figure 5.7 shows numerical solutions of the 1+1 KG equation within a charged scalar
field in a 60 × 60 grid. Figure 5.8 shows minimum error comparison data to the
Crank-Nicolson method. We test 30, 60, and 120 step numbers.

6. Conclusion & Future Research. We present the results of the Klein-
Gordon equation using a space-time finite element method in the 1+1 dimension
of spin-0 particle propagation in the charged field. We use a time decomposition
strategy to implement time parallelizable algorithm. The numerical results show that
this method is promising to develop future parallel simulation for the KG equation. 160
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Fig. 5.2: Minimum error comparison data plot of the 1+1 Klein-Gordon Equation
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It will be very interested in future research to investigate the optimal mixed tem-
poral spatial domain decomposition. Another important future research topic is to
extend current implementation of the space-time Finite Element method to 2+1 and
3+1 dimensions. These extensions will be needed parallel implementation in High
Performance Computing machines.
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discussions on the subject of this paper.

Appendix A. Free Spin-0 Particle. The KG equation is:(
1

c2
∂2

∂t2
−∇2 +

m2c2

~2

)
Ψ(x, t) = 0 (A.1)

A possible ansatz of the solution for a free wave is:

Ψ = A exp

(
− i
~
pµx

µ

)
(A.2)

Where 1
~pµ = kµ. There exist two possible solutions for a given momentum p, one

with positive and one with negative energy. Consequently:

Ψ± = A± exp

(
i

~
(px∓ Ept)

)
(A.3) 161
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Fig. 5.3: Numerical Solutions of the 1+1 Klein-Gordon Equation with the Runge-
Kutta Method
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Fig. 5.4: Minimum error comparison data plot of the 1+1 Klein-Gordon Equation
with the Runge-Kutta Method

Where Ep = ±c
√
p2 +m2c2. Discretizing the continuous plane wave by confining the

wave to a cubic box (normalization box) with body length L. This leads to:

Ψn(±) = An(±) exp

(
i

~
(pnx∓ Ent)

)
(A.4)

Where:

pn =
2pi

L
n, n = (n1, n2, n3), ni ∈ N (A.5)

And:

Epn = c
√
p2
n +m2c2 = En (A.6)

The normalization factors An(±) are determined by:

±
∫
L3

d3xρ = ± En
mc2

A2
n(±)L

3 (A.7)

Choosing the phase such that the amplitudes are real:

An(±) =

√
mc2

L3En
(A.8)

And the solutions are in [12]:

Ψn(±) =

√
mc2

L3En
exp

(
i

~
(pnx∓ Ent)

)
(A.9)
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We can take the real part of the solution with positive energy for testing particle
propagation in free space.

Appendix B. The Charged Klein-Gordon Field. In the case of a charged
scalar field (Charged Klein-Gordon field), the current is given by:

jµ =
ie~
2m

(φ∗∂µφ− φ∂µφ∗) (B.1)

With ∂jµ

∂xµ = 0 and the total charge is:

Q =
ie~

2mc2

∫
d3x

(
φ∗
∂φ

∂t
− φ∂φ

∗

∂t

)
(B.2)

To examine charged fields, we decompose φ into real and imaginary components:

φ =
1√
2

(φ1 + iφ2), (B.3)

Where φ1 and φ2 are real. To demonstrate the new degree of freedom (charge), we
need to adjust the solutions’ forms. We consider spin-0 particles in a charged field
in [12]:

Ψ = An(±)

(
φ1

φ2

)
exp

(
i

~
(px− Ent)

)
(B.4)

We expect that the solutions indicate an electromagnetic wave in space-time. So, we
need to set the forcing function to examine electromagnetic action, and also choose
the real part of the solution with positive energy for simulation. 163
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Fig. 5.7: Numerical Solutions of the 1+1 Klein-Gordon Equation with the Crank-
Nicolson Method
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Fig. 5.8: Minimum error comparison data plot of the 1+1 Klein-Gordon Equation
with the Crank-Nicolson Method

Appendix C. Calculating Element Stiffness Matrices.
Define Ω = [0, 1] × [0, 1] ⊂ R2, or in other words, let Ω be the unit square. We

divide the mesh using uniform squares which can be defined to have equal size h with
respect to x and t.

For calculating element stiffness matrices Aj , we consider a single square element.
The element stiffness matrix for this singular element is represented as:

Aj =


aj(φA, φA) aj(φA, φB) aj(φA, φC) aj(φA, φD)
aj(φB , φA) aj(φB , φB) aj(φB , φC) aj(φB , φD)
aj(φC , φA) aj(φC , φB) aj(φC , φC) aj(φC , φD)
aj(φD, φA) aj(φD, φB) aj(φD, φC) aj(φD, φD)


We use Aj to assemble the stiffness matrix for the entire domain. Because all of

the elements in the square of Ω are the same size, we can utilize Aj for all elements,
only having to adjust for the orientation of the square. We determine the basis
functions explicitly at the nodes:

φj(A) =

{
1 if E = A
0 if E 6= A

for E ∈ A,B,C,D

φj(B) =

{
1 if E = B
0 if E 6= B

for E ∈ A,B,C,D

φj(C) =

{
1 if E = C
0 if E 6= C

for E ∈ A,B,C,D 164



φj(D) =

{
1 if E = D
0 if E 6= D

for E ∈ A,B,C,D

Consider first the basis function φA, this creates a plane over the element region,
which can be represented as φA = uAx+ vAt+wAxt+ zA, where uA, vA, wA, zA ∈ <.
We note that φA = 1 when x = 0 and t = 0 and that φA = 0 when x = h and t = 0.
Also, φA = 0 when x = 0 and t = h, and φA = 0 when x = h and t = h. We can
develop a set of four equations for the four unknowns. Hence:

1 = uA(0) + vA(0) + wA(0) + zA ⇒ zA = 1 (C.1)

0 = uA(h) + vA(0) + wA(0) + zA ⇒ uA = − 1

h
(C.2)

0 = uA(0) + vA(h) + wA(0) + zA ⇒ vA = − 1

h
(C.3)

0 = uA(h) + vA(h) + wA(h2) + zA ⇒ wA =
1

h2
(C.4)

So that:

φA =
1

h2
xt− 1

h
x− 1

h
t+ 1 for (x, t) ∈ Tj (C.5)

We again have a plane, so φB = uBx+ vBt+wBxt+ zB . This time, φB = 1 at (h, 0)
and φB = 0 at (0, 0), (0, h), and (h, h). Our system of equations solving for uB , vB ,
and wB becomes:

0 = uB(0) + vB(0) + wB(0) + zB ⇒ zB = 0 (C.6)

1 = uB(h) + vB(0) + wB(0) + zB ⇒ uB =
1

h
(C.7)

0 = uB(0) + vB(h) + wB(0) + zB ⇒ vB = 0 (C.8)

0 = uB(h) + vB(h) + wB(h2) + zB ⇒ wB = − 1

h2
(C.9)

Therefore:

φB = − 1

h2
xt+

1

h
x for (x, t) ∈ Tj

Next, consider φC . This plane is represented by φC = uCx+ vCt+ wCxt+ zC , with
φC = 1 at (h, h) and φC = 0 at (0, 0), (h, 0), and (0, h). We solve the system:

0 = uC(0) + vC(0) + wC(0) + zC ⇒ zC = 0 (C.10)

0 = uC(h) + vC(0) + wC(0) + zC ⇒ uC = 0 (C.11)

0 = uC(0) + vC(h) + wC(0) + zC ⇒ vC = 0 (C.12)

1 = uC(h) + vC(h) + wC(h2) + zC ⇒ wC = − 1

h2
(C.13)

So that:

φC =
1

h2
xt for (x, t) ∈ Tj

Finally, consider φD. This plane is φD = uDx + vDt + wDxt + zD, with φD = 1 at
(0, h) and φD = 0 at (0, 0), (h, 0), and (h, h). We solve the system:

0 = uD(0) + vD(0) + wD(0) + zD ⇒ zD = 0 (C.14)

0 = uD(h) + vD(0) + wD(0) + zD ⇒ uD = 0 (C.15)

1 = uD(0) + vD(h) + wD(0) + zD ⇒ vD =
1

h
(C.16)

0 = uD(h) + vD(h) + wD(h2) + zD ⇒ wD = − 1

h2
(C.17) 165



So that:

φD = − 1

h2
xt+

1

h
t for (x, t) ∈ Tj

To sum up, the basis functions are:

φA =
1

h2
xt− 1

h
x− 1

h
t+ 1

φB = − 1

h2
xt+

1

h
x

φC =
1

h2
xt

φD = − 1

h2
xt+

1

h
t

(a) φA = 1
h2 xt− 1

h
x− 1

h
t+ 1 (b) φB = − 1

h2 xt+ 1
h
x

(c) φC = 1
h2 xt (d) φD = − 1

h2 xt+ 1
h
t

Fig. C.1: Quadrilateral four-node finite elements

Our equation needs three types of element stiffness matrices. First, we consider
the Poisson term uxx,

Poissonj(aα, aβ) =

∫
Tj

∇φi∇φjdΩ (C.18)

We calculate the stiff matrix in the 1+1 dimension, so that matrix Aj is a 4x4
matrix. We can see that A is an unsymmetric matrix. By the definition of the basis
functions, we can also see that many of the a(φi, φj) have values, which means that
the total matrix A will be non-symmetrical. Due to this fact, we need to examine
the stiffness matrix carefully. In addition, we can show that A is a positive definitive
matrix. As illustrated above, this calculation is the Poisson case. Knowing the basis 166



function with respect to the (x, t) coordinates allows us to compute the components of
the element stiffness matrix directly. Thus, the time derivation term is not necessary.
This elements calculation indicates:

aj(φA, φA) =

∫ h

0

∫ h

0

(
∂φA
∂x

∂φA
∂x

)
dtdx =

1

3

aj(φA, φB) =

∫ h

0

∫ h

0

(
∂φA
∂x

∂φB
∂x

)
dtdx = −1

3

aj(φA, φC) =

∫ h

0

∫ h

0

(
∂φA
∂x

∂φC
∂x

)
dtdx = −1

6

aj(φA, φD) =

∫ h

0

∫ h

0

(
∂φA
∂x

∂φD
∂x

)
dtdx =

1

6

aj(φB , φB) =

∫ h

0

∫ h

0

(
∂φB
∂x

∂φB
∂x

)
dtdx =

1

3

aj(φB , φC) =

∫ h

0

∫ h

0

(
∂φB
∂x

∂φC
∂x

)
dtdx =

1

6

aj(φB , φD) =

∫ h

0

∫ h

0

(
∂φB
∂x

∂φD
∂x

)
dtdx = −1

6

aj(φC , φC) =

∫ h

0

∫ h

0

(
∂φC
∂x

∂φC
∂x

)
dtdx =

1

3

aj(φC , φD) =

∫ h

0

∫ h

0

(
∂φC
∂x

∂φD
∂x

)
dtdx = −1

3

aj(φD, φD) =

∫ h

0

∫ h

0

(
∂φD
∂x

∂φD
∂x

)
dtdx =

1

3

Using these calculated values, we can create the element stiffness matrix with
respect to Poisson case as:

Aj; Poisson(i, j) =



1
3 − 1

3 − 1
6

1
6

− 1
3

1
3

1
6 − 1

6

− 1
6

1
6

1
3 − 1

3

1
6 − 1

6 − 1
3

1
3


In similar way, we also need to show two more element matrices forms which are:

Heatj(aα, aβ) =

∫
Tj

∂φi
∂t

φjdΩ (C.19)
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Calculating each element of the matrices:

aj(φA, φA) =

∫ h

0

∫ h

0

(
∂φA
∂t

φA +
∂φA
∂t

φA

)
dxdt = −h

3

aj(φA, φB) =

∫ h

0

∫ h

0

(
∂φA
∂t

φB +
∂φB
∂t

φA

)
dxdt = −h

6

aj(φA, φC) =

∫ h

0

∫ h

0

(
∂φA
∂t

φC +
∂φC
∂t

φA

)
dxdt =

h

6

aj(φA, φD) =

∫ h

0

∫ h

0

(
∂φA
∂t

φD +
∂φD
∂t

φA

)
dxdt =

h

3

aj(φB , φB) =

∫ h

0

∫ h

0

(
∂φB
∂t

φB +
∂φB
∂t

φB

)
dxdt = −h

3

aj(φB , φC) =

∫ h

0

∫ h

0

(
∂φB
∂t

φC +
∂φC
∂t

φB

)
dxdt =

h

3

aj(φB , φD) =

∫ h

0

∫ h

0

(
∂φB
∂t

φD +
∂φD
∂t

φB

)
dxdt =

h

6

aj(φC , φC) =

∫ h

0

∫ h

0

(
∂φC
∂t

φC +
∂φC
∂t

φC

)
dxdt =

h

3

aj(φC , φD) =

∫ h

0

∫ h

0

(
∂φC
∂t

φD +
∂φC
∂t

φD

)
dxdt =

h

6

aj(φD, φD) =

∫ h

0

∫ h

0

(
∂φD
∂t

φD +
∂φD
∂t

φD

)
dxdt =

h

3

Aj; Heat(i, j) =



−h3 −h6
h
6

h
3

−h6 −h3
h
3

h
6

−h6 −h3
h
3

h
6

−h3 −h6
h
6

h
3



Standardj(aα, aβ) =

∫
Tj

φiφjdΩ

aj(φA, φA) =

∫ h

0

∫ h

0

φAφAdtdx =
h2

9 168



aj(φA, φB) =

∫ h

0

∫ h

0

φAφBdtdx =
h2

18

aj(φA, φC) =

∫ h

0

∫ h

0

φAφCdtdx =
h2

36

aj(φA, φD) =

∫ h

0

∫ h

0

φAφDdtdx =
h2

18

aj(φB , φB) =

∫ h

0

∫ h

0

φBφBdtdx =
h2

9

aj(φB , φC) =

∫ h

0

∫ h

0

φBφCdtdx =
h2

18

aj(φB , φD) =

∫ h

0

∫ h

0

φBφDdtdx =
h2

36

aj(φC , φC) =

∫ h

0

∫ h

0

φCφCdtdx =
h2

9

aj(φC , φD) =

∫ h

0

∫ h

0

φCφDdtdx =
h2

18

aj(φD, φD) =

∫ h

0

∫ h

0

φDφDdtdx =
h2

9

Aj; Standard(i, j) =



h2

9
h2

18
h2

36
h2

18

h2

18
h2

9
h2

18
h2

36

h2

36
h2

18
h2

9
h2

18

h2

18
h2

36
h2

18
h2

9


(C.20)

Appendix D. Additive Schwarz Method.
Domain Decomposition methods(DD) solve a boundary value problem by split-

ting it into smaller boundary value problems on subdomains and iterating to coor-
dinate the solution between adjacent subdomains. The problems in the subdomains
are independent, which makes domain decomposition methods suitable for parallel
computing. Domain decomposition methods are typically used as preconditioners for
Krylov space iterative methods, such as the conjugate gradient method or GMRES.
Domain decomposition methods embody large potential for a parallelization of the
FEM, and serve a basis for distributed, parallel computations. See the detail about
the preconditioner in Appendix E. 169



Time decomposition methods in this paper can be a variant for time of the additive
Schwarz method (ASM). For a domain Ω = ∪iΩi, ASM can be written as:

un+1 = un +
∑
i

Bi(f −Aun) with Bi = RTi A
−1
Ωi
Ri. (D.1)

The additive Schwarz method may be viewed as a generalization of block Jacobi
methods. [10, 17, 11]

Appendix E. Preconditioner.
Finite element simulations of moderate size models require solving linear systems

with millions of unknowns. Several hours per time step is an average sequential run
time thus, the parallel computing is a necessity. The development of scalable parallel
numerical methods for large algebraic systems is central in solving very large scale
linear systems. The most widely used methods for such problems are Krylov subspace
methods such as GMRES and the Conjugate Gradient method.

The key to scalability is preconditioning which accelerates the convergence of the
iterative solver. Preconditioning means replacing the system Ax = b to a system that
is more easily solved. For example, one might replace Ax = b to M−1Ax = M−1b
where M is an approximation of A with the properties:

1. M−1A is well conditioned or has few extreme eigenvalues,
2. Mx = b is easy to solve.

A careful choice of M can often make the condition number of M−1A much smaller
than the condition number of A and thus accelerate convergence.

REFERENCES

[1] D. Shirokoff. Renormalized waves and thermalization of the Klein-Gordon Equation. Physical
Review E, 83(046217):1–13, 2011.

[2] B. Muller Walter Greiner and J. Rafelski. Quantum Electrodynamics of Strong Fields. Springer,
second edition, 1985.

[3] M. Jiang Y. J. Li R. Grobe Q. Z. Lv, A. C. Su and Q. Su. Pair creation for bosons in electric
and magnetic fields. Physical Review A, 87(023416):1–11, 2013.
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